

Security Standards Overview

Name: Graham Speake

Position: Vice President and Chief Product Architect

Company: NexDefense

- ** BSc Electrical and Electronics Engineer
- ** 20 years experience in computer security
- ** 14 Years experience in automation security
- ** Worked as an independent consultant on financial security
- ··· Member of ISA, ISCI, ISC²
- ** Worked for Ford Motor Company, ICS, ATOS-Origin, BP and Yokogawa
- ** Vice President and Chief Product Architect at **NexDefense**

Background And History

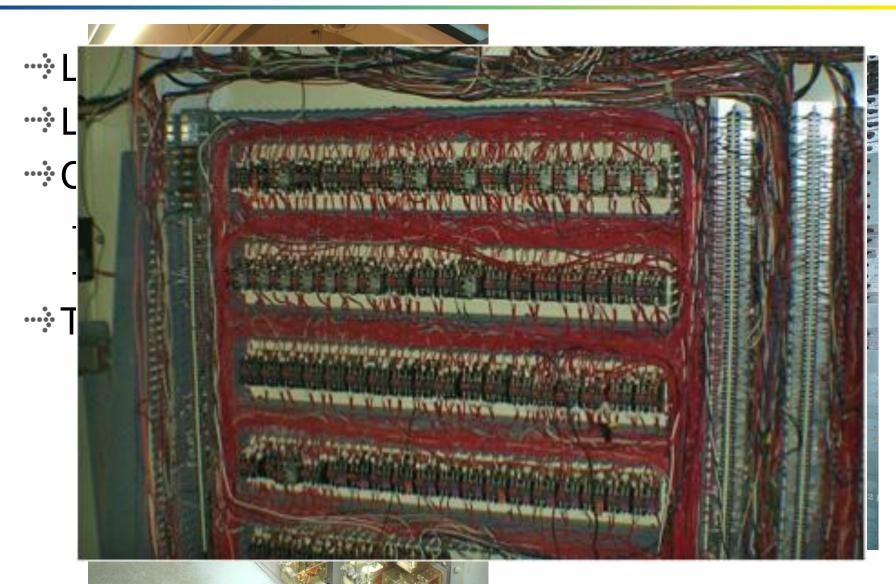
Language difficulties

I am not in the office at the moment. Send any work to be translated

→ Early days

- Man has always invented machinery to ease the burden
- :: IBM minicomputers used in 1960s
- ** First industrial control computer
 - Texaco Port Arthur (Ramo-Wooldridge)
- ··· First DCS: 1975
 - Yokogawa Centum
 - Honeywell TDC 2000

Hardwired systems


- Processes originally controlled by hardwired systems
- ··· Completely stand-alone
- ···· Relay-based
 - Really hard to hack into

→ Relay systems

Early computerization

- ** 70s and 80s show an explosion in systems
- ** PLCs, multiple DCS manufacturers
- ** End users rushed in to deploy
 - Configuration and modification simplification
 - Enhanced control functions
- Vendors came (and went)

→ Vendors

- ··· Metso
- Taylor Instrument
- ··· Foxboro
- Varian Data Machines
- ··· Valmet
- ··· Bristol
- ··* Midac
- ··* DEC

DCS evolution

** Major evolution of DCS during 1980s

- More powerful operator stations (HMIs)
- Fully distributed control
- Proprietary hardware and software
- Little / no standardization
 - Between vendors
 - Within a company (vendor or end user)
- Growth in oil and gas exploration

Rise of the DCS

- I/O boards
- Number of different devices
- Control software increases in sophistication
- Security?

Proprietary systems

Proliferation of systems

- Many disparate vendors
- Multiple vendor mergers and acquisitions
 - Well known names of 70s and 80s disappear
 - Users think about standardization
- Custom made hardware and software
- Rise of Microsoft and IBM PCs in IT world

Vendor Systems Development

- Often non-computer orientated design team
 - Systems designed by engineers
- ··· Computer Science seen as an corporate IT function
 - Based on mainframes / minicomputers
 - Punched cards
 - 8" floppy disks
- → DEC PDP-11 often used
 - Used and taught in engineering ucgrees

Rise of Personal Computing

- ** Personal computers proliferate in 1980s and 1990s
 - Atari
 - Sinclair
 - BBC (Acorn)
- ···· Cost of computers came down
 - (but why do they always seem to be the same?)
- ** Networking became the norm (but not standardized)
 - Token ring

Internet and TCP/IP

- → Growth of TCP/IP in late 80s
- :: Internet starting becoming popular
 - CompuServe
 - AOL
 - BBS
- Microsoft Windows gained popularity
 - Added games!

Rise of Microsoft

Microsoft Windows NT

- Stable (ish) platform
- Used extensively in IT
- Large pool of expertise

··· OPC (1996)

- Object Linking and Embedding for Process Control
- Now Open Platform Communication Foundation
- Communication of real-time plant data between different vendors

Cost equation


- ** HMIs can cost \$50000
- → PC can cost \$2000
 - Do more
 - Better display
 - Easily extensible
 - Buy from multiple sources
- ··· End users
 - Question cost
 - Standardization
- Vendors pushed towards Windows

Typical deployment

Where we are today

- ** 9/11 changed the thought process
- ··· Companies looked at security
- :: Industrial security woefully lacking
- ··· Control systems compromised

Accidental incidents

- PLCs crashed by IT security audit
- Duplicate IP address prevents machine startup
- :: IP address change shuts down chemical plant
- Accidental programming of a remote PLC
- ** AV software prevents boiler safety shutdown
- Multiple USB infections

Malware infections

- Sasser infects chemical plant
- Blaster infects chemical plant
- > Slammer infects power company control centre
- Nachi and Sasser infect baggage handling systems
- Sobig virus shuts down train signalling system
- > Slammer infects nuclear power plant
- Virus shuts down flight planning computer

Internal hackers

- > Disgruntled employee changes PLC passwords to obscenity
- Maroochy Shire Sewage Spill
- White hat takeover of DCS consoles
- > Venezuela Oil striking PLC hacker sabotage

→ External hackers

··· APT at

··· Stuxne

··· Shamo

– Up t **∵⊹ Zomb**i

Advances since 2001

Slow progress

- Vendors, asset owners, consultants
- Public private initiatives
 - Lots of paper
 - Roadmaps
- Standards coming out
 - ISA 99 / ISA 62443 / IEC 62443
- ··· Certifications
 - Process / systems / people

Reasons for inaction — I've got a firewall! 2014 YOKOGAWA USERS CONFERENCE North America

→ Reason 2 – I've got a Windows firewall!

Reasons for inaction

··· Asset owners

- Skills not available
- Cost of deployment (and opex)
- Not a target
- No management buy-in
- Shareholders
- Not regulated

··· Vendors

- Skills not available
- No management buy-in
- Not seen as saleable

Consultants

Certifications

··· Wurldtech

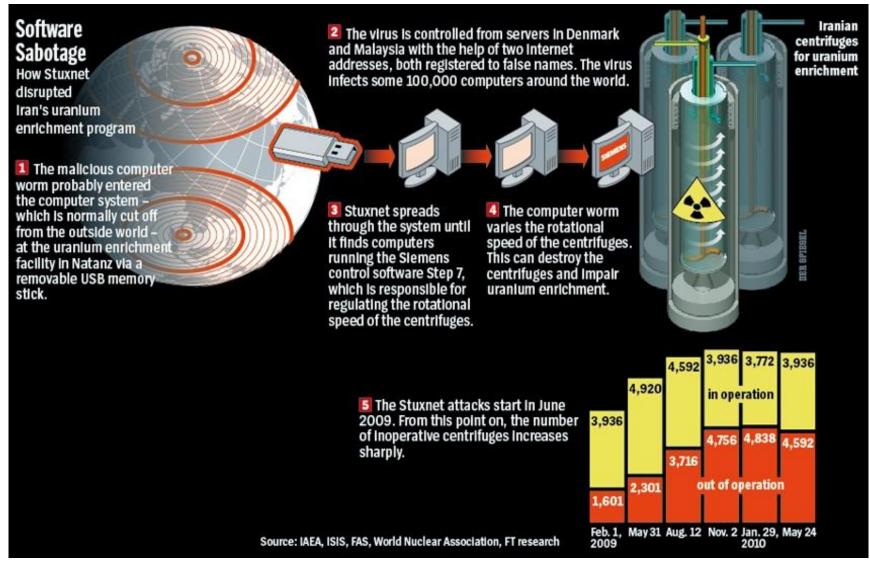
- WIB certification scheme
- Now becoming 62443-2-4
- Processes and systems
- Mainly vendors
- Take-up very slow
- ··· Wurldtech
 - Achilles

Threats

- ··· Stuxnet
- ··· Duqu
- ··· Nitro
- ··· Shamoon
- ··· Anonymous
- Dragonfly / Energetic Bear

→ Stuxnet (2010)

··· Stuxnet


- Very targeted attack
- Air gapped system
- Not a game changer

Stuxnet

→ Duqu (2011)

- → Based on Stuxnet code
- Stolen digital certificate to aid installation
- :: Information gathering

Source:

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_dugu_the_precur sor_to_the_next_stuxnet_research.pdf

→ Nitro (2011)

- → NGOs -> motor industry -> chemicals
- ** 30 chemical companies infected
- Phishing and spear-phishing attacks
- → Poison-ivy RAT
- Target: intellectual property

Source:

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the nitro attacks.pdf

→ Night Dragon (2009 - 2011)

- Targeted many oil and gas companies
- Primary purpose data extraction
- Attacker IP addresses resolve to China

→ Night Dragon (2009 - 2011)

Source: http://www.mcafee.com/us/resources/white-papers/wp-global-energy-cyberattacks-night-dragon.pdf Anatomy of a Hack

→ Shamoon (2012)

- Self-replicating worm
- Destructive wiped the hard drives
- Purpose stop the flow of oil
- Spread to RasGas and others

Anonymous (ongoing)

- ··· Hacktivist group
- ··· OpPetrol

→ Heartbleed (2014)

- ··· SSL/TSL bug
- ··· Code used in critical infrastructure components
- Discovered by Codenomicon

Dragonfly / Energetic Bear (2014)

Dragonfly Group (Symantec) / Energetic Bear (Crowdstrike)

- Active since 2011
- Appears to be Russian origin
- HAVEX RAT and SYSMain RAT
- Initial targets:
 - US / Canada defense and aviation
- Lately
 - European energy firms

Dragonfly modus operandi

- :: Initially spear phishing executives
- ** Watering hole attacks
 - Mainly ICS vendors
- ··· Infected software packages
 - VPN into PLC equipment
 - 250 downloads
 - PLC manufacturer
 - Software available 6 weeks
 - Alternative energy manufacturer
 - Software available for 10 days

Source: https://scadahacker.com/files/havex/Symantec%20-%20Security%20Response%20-%20Dragonfly%20v1.0.pdf

→ Fertger (Peacepipe)

** Actively scanning for OPC

(yet)

```
14:46:11.0081: Start finging of LAN hosts...
14:46:11.0081: Was found 2 hosts in LAN:
                         01) [\\<hostname>]
                         02) [\\<hostname>]
14:46:11.0081: Start finging of OPC Servers...
14:46:17.0133: Thread 01 return error code: 0x800706ba
14:46:17.0133: Was found 2 OPC Servers.
          1) [\\<hostname>\ArduinoSerialOPCDAServer.1]
               CLSID:
                                    {F57384B1-95E2-4591-
876C-C608F439FEEA}
                                    OPC Server for Arduino
               UserType:
               VerIndProgID:
ArduinoSerialOPCDAServer.TISMInternalOPCDataItemServer
               OPC version support: +++
          2) [\\<hostname>\Matrikon.OPC.Simulation.1]
               CLSID:
                                    {F8582CF2-88FB-11D0-
B850-00C0F0104305}
                                    MatrikonOPC Server for
Simulation and Testing
               VerIndProgID:
                                    Matrikon.OPC.Simulation
               OPC version support: +++
14:46:17.0133: Start finging of OPC Tags...
14:46:17.0133: Thread 01 running...
14:46:17.0133: Thread 02 running...
14:46:17.0133: Thread 01 finished.
14:46:17.0398: Thread 02 finished.
     1)[\\<hostname>\Matrikon Inc (780) 448-1010
http://www.matrikonopc.com]
     Saved in 'OPCServer01.txt'
```

Source: http://www.fireeye.com/blog/technical/targeted-attack/2014/07/havex-its-down-with-opc.html

Mitigation strategies

- Defense in depth

Defence in Depth

Don't just rely on one very strong protection measure.

No single security measure is perfect – any small vulnerability could render a single protection measure ineffective

→ Rewind to the 1980's

- :: Industry-wide focus on Safety due to some significant events
- Safety Instrumented Systems (SIS) technology changing from electrical relays to programmable electronic systems (PES)
- :: Limited skillset in asset owner organizations to assess SIS safety integrity
- ** Solution:
 - IEC 61508/61511 international standards
 - Independent 3rd party safety integrity assessment

Fast Forward to Today

- :: Industry-wide focus on Security due to many significant events
- (IACS) technology changing from vendor proprietary to IP networking and COTS hardware/OS
- :: Limited skillset in asset owner organizations to assess IACS cybersecurity capabilities
- ** Solution:
 - ISA/IEC 62443 international standards
 - Independent 3rd party security assessment -**ISASecure**

Overview of ISA/IEC standards

Overview

- → The Situation
- ··· Chlorine Truck Loading Use Case
- Design & Risk Management Process
- ** Systems vs. Zones & Conduits
- Design Considerations
- Security Level Vector Discussion

The Situation

The Problem

- With so many standards out there, how do you pick the best one?
- Once you've picked a set of standards, how do you apply them?

Security Standards

- ISA/IEC 62443 (13) - ISO/IEC 2700x (10+) IT Standards NIST FIPS and SP800 (7+) - NERC CIP (8) Sector-Specific Standards – Smart Grid (?)
- And that's just the security standards, then take into account the functional standards
 - Wireless = ISA 100.11a, WirelessHART, Zigbee, WiFi, Bluetooth...
 - Safety = ISA 84, IEC 61508/61511, DO-254, OSHA...
 - Management = ISO 9000, 14000, 31000, 50001, Six-Sigma...
 - And plenty of others...

→ ISA/IEC 62443 Series (Proposed)

General

ISA-62443-1-1

Terminology, concepts and models

Published as ISA-99.00.01-2007

ISA-TR62443-1-2

Master glossary of terms and abbreviations

ISA-62443-1-3

System security compliance metrics

ISA-TR62443-1-4

IACS security lifecycle and use-case

Policies & procedures

ISA-62443-2-1

Requirements for an IACS security management system

Published as ISA-99.02.01-2009

ISA-TR62443-2-2

Implementation guidance for an IACS security management system

ISA-TR62443-2-3

Patch management in the IACS environment

ISA-62443-2-4

Installation and maintenance requirements for IACS suppliers

System

Component

ISA-TR62443-3-1

Security technologies for IACS

Published as ISA-TR99.00.01-2007

ISA-62443-3-2

Security levels for zones and conduits

ISA-62443-3-3

System security requirements and security levels

ISA-62443-4-1

Product development requirements

ISA-62443-4-2

Technical security requirements for IACS components

Security Standards

- Security standards generally tell you what has to be done or specified, but don't tell you how to go about doing it
 - Functional specifications
 - Security controls/countermeasures
- Some standards show a generic process, but leave it up to the reader to apply it in their case
- A few use-cases exist, but many times these are:
 - Sector-specific
 - Only apply in certain cases
 - Limited in scope
- Very few end-users discuss the details of their processes
 - Restrict information from potential attackers
- Almost no vendors or system integrators discuss the details of their processes
 - Restrict information from potential competitors

Chlorine Truck Loading Use Case

** Setting the Stage

- ISA99 is trying to use a single use-case throughout the entire series to show how each part of the standard fits into the process
- While the chlorine truck loading example is related to the chemical industry, the concepts presented could relate to any industry
- The example allows for somewhat more realistic discussions of risk than in an IT-focused, DHS-focused, or purely hypothetical example
- :: Use case in early development and idea phase
 - Will take quite a long time to complete entire use-case
 - Different parts of use-case will probably emerge at different times

Chlorine Truck Loading Use Case: The Narrative

- Pharmaceutical Company XYZCorp
 - Wants to start producing new product (FixItAll)
 - No room for new production plant at existing facilities
 - Chemical process requires relatively small amounts of chlorine
 - Existing facility produces chlorine in large enough quantities
- XYZCorp considers their options
 - Conducts business assessment of building new facility
 - Existing facilities all near space capacity
 - New facility has good access to roads
 - Land is suitable and available
 - Existing chlorine production facility over 50 miles away
 - Considers options for transporting chlorine
 - Pipeline
 - Rail
 - Truck

Chlorine Truck Loading Use-Case: The Plan

→ Build truck loading/unloading facilities

- Loading @ existing facility, unloading @ new facility
- Unmanned except during loading/unloading operations
- Hazardous chemical requires special handling & safety

Generations of equipment

- Existing facility uses legacy equipment (brown-field)
- New facility designed with current technology (green-field)

→ Facility monitoring & control

- Unmanned centralized monitoring @ control center
- Manned & operational local control with both local & centralized monitoring

Attached to business systems

- Billing & logistics
- Inventory tracking

Use Case: Design Considerations

··· Systems needed

- Safety Instrumented System (SIS)
- Basic Process Control System (BPCS)
- Control center
- Plant DMZ
- Enterprise systems

** Level of SIS integration with BPCS?

- Air-gapped
- Interfaced
- Integrated

→ Initial Design Process: Identify the Control Assets

- 58 -

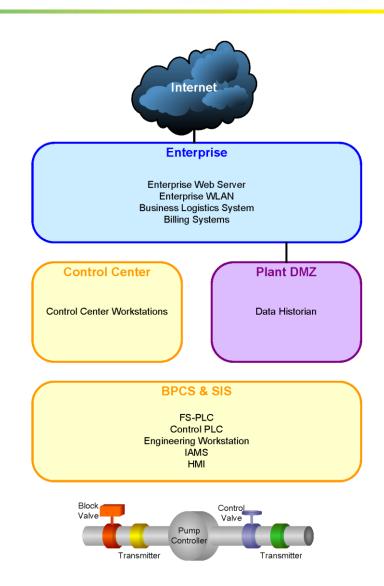
Process Equipment

- Pump Controller
- Transmitters
- Block and Control Valves

BPCS & SIS

- Functional Safety-PLC
- Control PLC
- Engineering Workstation(s)
- Instrument Asset Management System
- Human-Machine Interface(s)

Control Center


Control Center Workstations

Plant DMZ

Data Historian

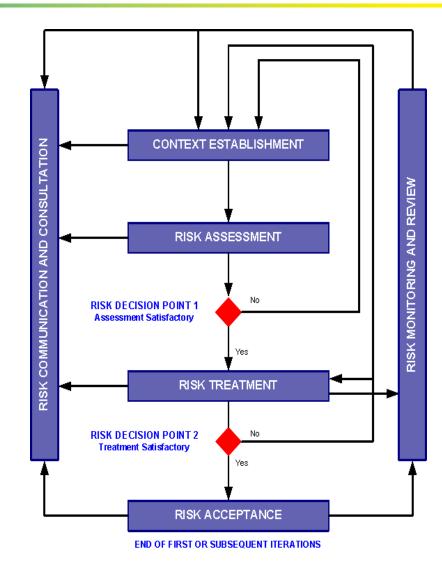
Enterprise

- Enterprise Web Server
- Enterprise WLAN
- Business Logistics System
- Billing System

Now What???

Design Process

- Now that the business case and some initial design ideas have been put down, where do you go from here?
 - A. Design the control system without worrying about the security?
 - Design everything so secure that it becomes unusable?
 - C. Throw in firewalls everywhere?
 - D. Conduct a detailed risk assessment at the device level?
 - E. Conduct a multi-stage risk assessment starting with the top level and working down to the low level as the design progresses?



Modified ISO/IEC 27005 Risk Management Process

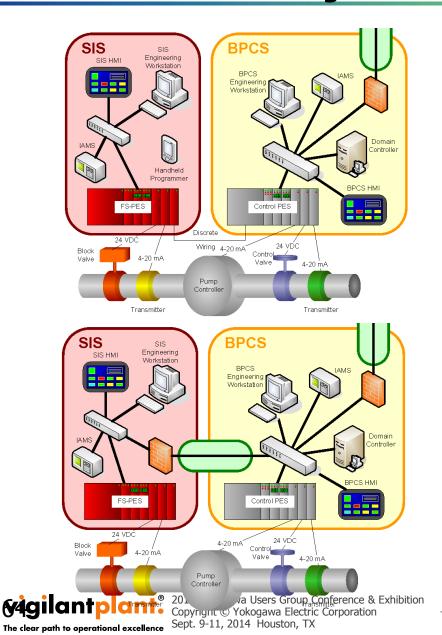
- → ISA99, Working Group 2 working on modified ISO/IEC 27005 risk management process
 - Uses basic shell from 27005
 - Modifies it for multi-stage risk assessment process
 - Discusses "jump-in" point
 - Relates risk management process to overall cyber security management system design process
 - Business planning
 - Change management
 - Decommissioning

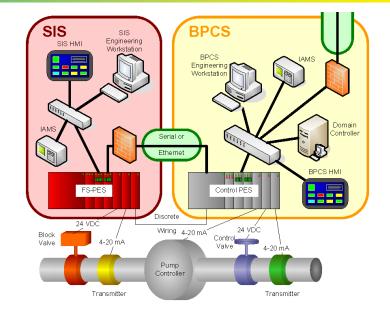
Systems vs. Zones & Conduits

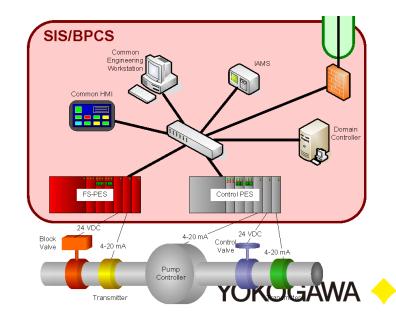
- Conducting a system breakdown may give some indication of future zones, but there is no direct one-to-one correlation between the two
- Systems = Collections of equipment/assets that logically function together to perform at least one task
- Zones = Collections of equipment/assets that logically have similar security requirements
- :: System breakdown helps to identify different sets of equipment during the risk assessment phase
- Zones are created after the risk assessment phase based on the particular security requirements for that set of equipment/assets
- ··· Conduits are a special kind of zone containing a communication channel

Security Levels

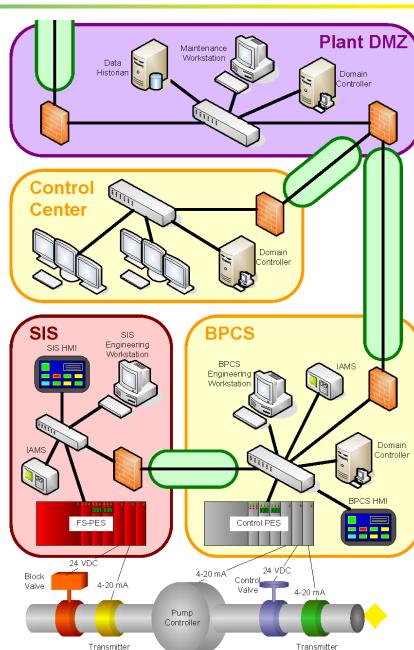
- LEVEL 1
 - Casual & Coincidental
 - Violation
- LEVEL 2
 - Simple Means
 - Low Resources
 - Generic Skills
 - Low Motivation


- - Sophisticated Means
 - Moderate Resources
 - System-Specific Skills
 - Moderate Motivation
- - Sophisticated Means
 - Extended Resources
 - System-Specific Skills
 - **High Motivation**



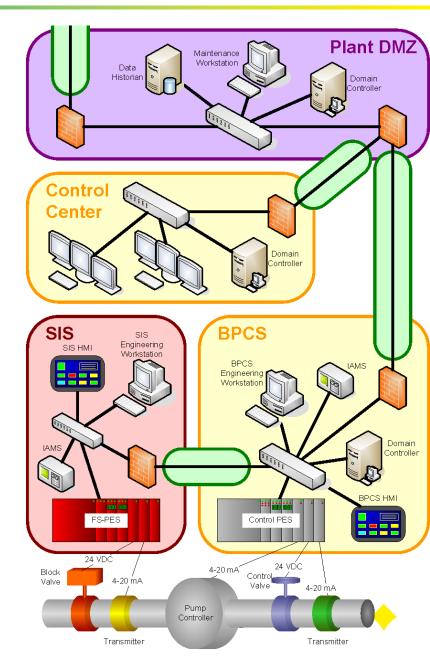


Design Considerations: SIS Air-Gapped vs. Interfaced vs. Integrated



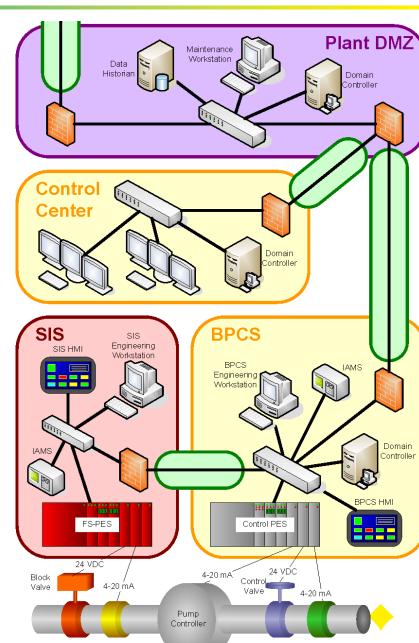
→ Security Level Vector Discussion

- Industrial Security Isn't Always About Death & Dismemberment
 - Some security concepts don't fit into that model
- Use the Foundational Requirements to Engineer the System Security
 - Identification & Authentication Control
 - Use Control
 - System Integrity
 - Data Confidentiality
 - Restricted Data Flow
 - Timely Response to Events
 - Resource Availability



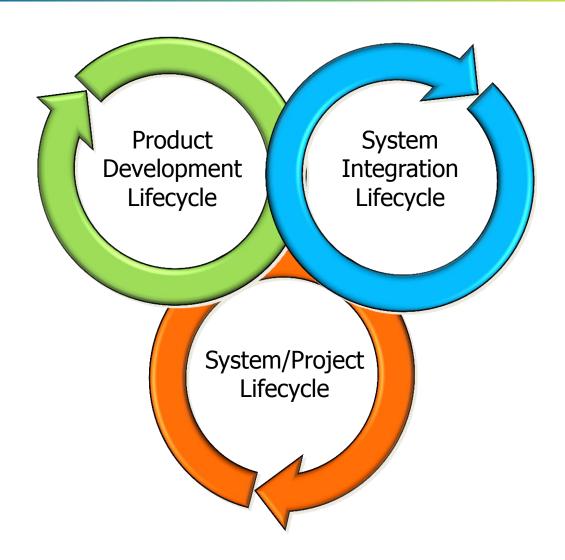
→ Security Level Vector Discussion

- How will the switches affect the security of the BPCS & SIS?
 - High availability is fairly common
 - Uncommon for switches to have good access control (natively)
 - Confidentiality depends, is SNMP enabled AND secured?
 - If switch fails completely, what happens to system integrity? What about intermittent failures, or bad ports? What are the safety implications?



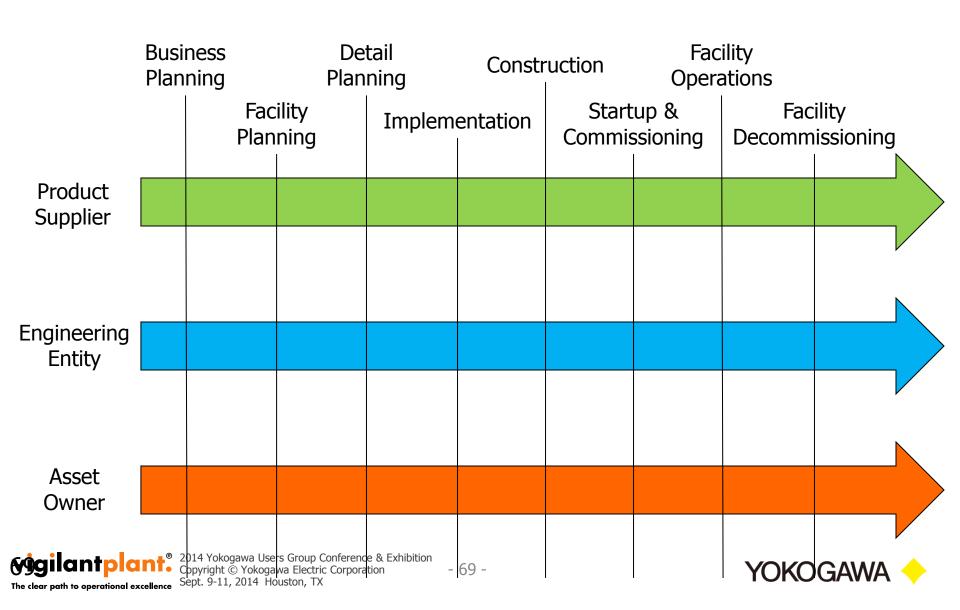
→ Security Level Vector Discussion

Transmitter


- Now, what about other components?
- How do each of the component capabilities roll into a system capability?
 - Mathematical/Additive?
 - Qualitative assessment of capabilities?
- How do capabilities relate to achieved security levels?

Transmitter

→ Security Lifecycles



⇒ Security Lifecycle

ISCI

Internationally Accredited Conformance Scheme

ISASecure certification programs are accredited as an ISO/IEC Guide 65 conformance scheme and ISO/IEC 17025 lab operations by ANSI/ACLASS.

- Provides global recognition for ISASecure certification
- Independent CB accreditation by ANSI/ACLASS and other global Accreditation Bodies such as JAB or UKAS
- :: ISASecure can scale on a global basis
- :: Ensures certification process is open, fair, credible, and robust.

Global Acceptance of ISASecure

- One set of certification criteria
- ··· One certification test/assessment
- ··· One globally recognized mark

Economically efficient for both suppliers and asset owners

Supporters-ISCI Member Companies

ISCI membership is open to all organizations

- Strategic membership
- Technical membership
- Government membership
- Associate membership
- Informational membership

Member organizations

- Chevron
- **Aramco Services**
- **CSSC**
- Codenomicon
- exida
- ExxonMobil
- Honeywell
- IT Promotion Agency, Japan
- Schneider Electric (Invensys)
- RTP Corp.
- Yokogawa
- **ISA99 Committee Liaison**

Global Adoption Expands to Japan

Japan Information-technology Promotion Agency and Control System Security Center

- → IPA Translated ISASecure specifications to Japanese
- :: CSSC set up a test lab in Tagajo-city near Sendai Japan - Control System Security Center Certification Laboratory (CSSC-CL)
- ** CSSC-CL was accredited by JAB (Japan Accreditation Board) to ISASecure in Q1 2014
- ** CSSC and CSSC-CL are promoting ISASecure as part of the Japanese critical infrastructure security scheme.
- ** CSSC-CL certified two EDSA devices in Q2 2014

Japan CSSC Supporters

- 1. Advanced Institute of Science and Technology
- ALAXALA Networks Corporation CSSC Associate Member Companies
- 3. **Azbil Corporation**
- 4. Fuji Electric Co., Ltd.
- 5. **Fujitsu Limited**
- Hitachi, Ltd. 6.
- 7. Information Technology Promotion Agency
- 8. Japan Quality Assurance Organization
- 9. LAC Co., Ltd.
- 10. McAfee Co., Ltd.
- 11. Meidensha Corporation
- 12. Mitsubishi Electric Corporation
- 13. Mitsubishi Heavy Industries Ltd.
- Mitsubishi Research Institute Inc. 14.

- 15. Mori Building Co., Ltd.
- 16. **NEC Corporation**
- 17. NRI Secure Technologies Ltd.
- 18. **NTT Communications Corporation**
- 19. **OMRON** Corporation
- 20. The University of Electro-Communications
- 21. Tohoku Information Systems Company, Incorporated
- 22. **Toshiba Corporation**
- Toyota Info. Technology Center Co., Ltd. 23.
- 24. Trend Micro Incorporated
- 25. Yokogawa Electric Corporation

CSSC Supporter Companies

- Ixia Communications K.K.
- 2. Japan Nuclear Security System Co., Ltd
- 3. OTSL Inc.
- 4. Rock international
- 5. The Japan Gas Association(JGA)
- 6. **TOYO Corporation**

→ Three ISASecure® certifications available 2011

1. Embedded Device Security Assurance (EDSA) IEC-62443-4-2

2. System Security Assurance (SSA) IEC-62443-3-3

3. Security Development Lifecycle Assurance (SDLA) IEC-62443-4-1

"An ISASecure Certified Development Organization"

ISASecure™

Embedded Device Security Assurance (EDSA)

EDSA Overview

- ··· Certification that the supplier's product is robust against network attacks and is free from known security vulnerabilities
- embedded devices (will be re-aligned with 4-2 when formally approved by IEC)
- ∴ Currently available 7 devices certified with more devices under assessment

What is an Embedded Device?

Special purpose device running embedded software designed to directly monitor, control or actuate an industrial process, examples:

- Programmable Logic Controller (PLC)
- Distributed Control System (DCS) controller
- Safety Logic Solver
- Programmable Automation Controller (PAC)
- Intelligent Electronic Device (IED)
- Digital Protective Relay
- Smart Motor Starter/Controller
- SCADA Controller
- Remote Terminal Unit (RTU)
- Turbine controller
- Vibration monitoring controller
- Compressor controller

→ ISASecure EDSA Certification Program

Embedded Device Security Assurance (EDSA)

Software Development Security Assessment (SDSA)

> **Functional Security Assessment (FSA)**

Communications Robustness Testing (CRT)

Detects and Avoids systematic design faults

- The vendor's software development and maintenance processes are audited
- Ensures the organization follows a robust, secure software development process

Detects Implementation Errors / Omissions

- A component's security functionality is audited against its derived requirements for its target security level
- Ensures the product has properly implemented the security functional requirements

Identifies vulnerabilities in networks and devices

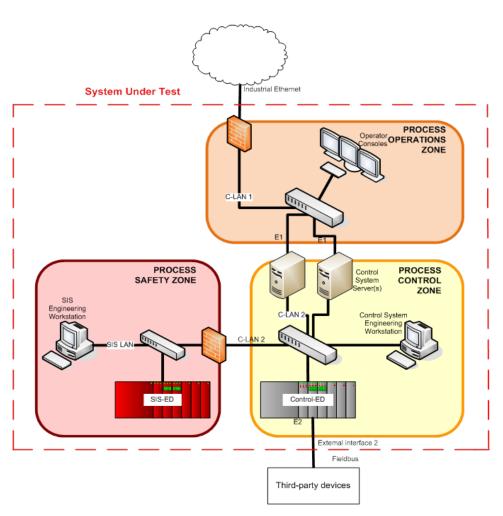
- A component's communication robustness is tested against communication robustness requirements
- Tests for vulnerabilities in the 4 lower layers of OSI Reference Model

ISASecure™

System Security Assurance (SSA)

SSA Overview

- ··· Certification that the supplier's product is robust against network attacks and is free from known security vulnerabilities
- ** Meets requirements of ISA/IEC-62443-3-3 (SSA) was re-aligned with 3-3 by ISCI in 2013 when it was approved by IEC)



→ What is a "System"?

- Industrial Control System (ICS) or SCADA system
- Available from a single supplier
- Supported by a single supplier
- Components are integrated into a single system
- May consist of multiple Security Zones
- Can be identified by a product name and version
- Off the shelf; not site or project engineered yet

→ ISASecure SSA Certification Program

System Security Assessment (SSA)

> **Security Development Lifecycle Assessment** (SDLA)

Functional Security Assessment (FSA)

System Robustness Testing (SRT) and

Vulnerability Identification Testing (VIT)

Ensures Security Was Designed-In

- The supplier's system development and maintenance processes are audited for security practices
- Ensures the system was designed following a robust, secure development process

Ensures Fundamental Security Features are Provided

- A system's security functionality is audited against defined requirements for its target security level
- Ensures the system has properly implemented the security functional requirements

Identifies Vulnerabilities in Actual Implementation

- Structured penetration testing at all entry points
- Scan for known vulnerabilities (VIT)
- Combination of CRT and other techniques

SSA System Robustness Test

Asset Discovery Scan

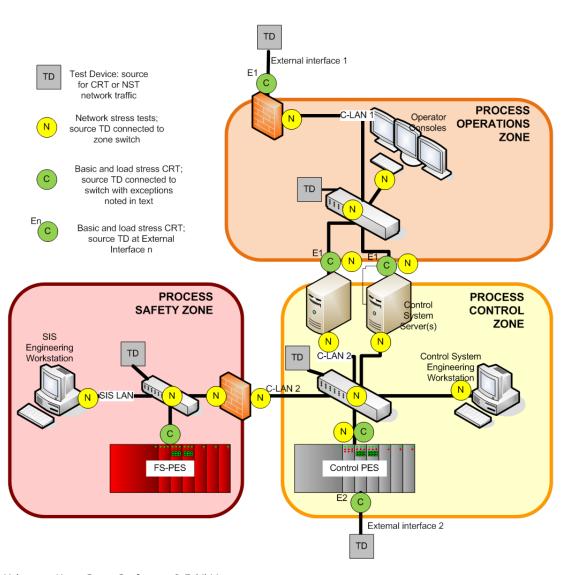
scan to discover the components on the network

··· Communications Robustness Test

 verify that essential functions continue to operate under high network load and malformed packets

 verify that essential functions continue to operate under high network load

** Vulnerability Identification Test


- scan all components for the presence of known vulnerabilities (using Nessus)
- based on National Vulnerability Database

SSA System Robustness Test

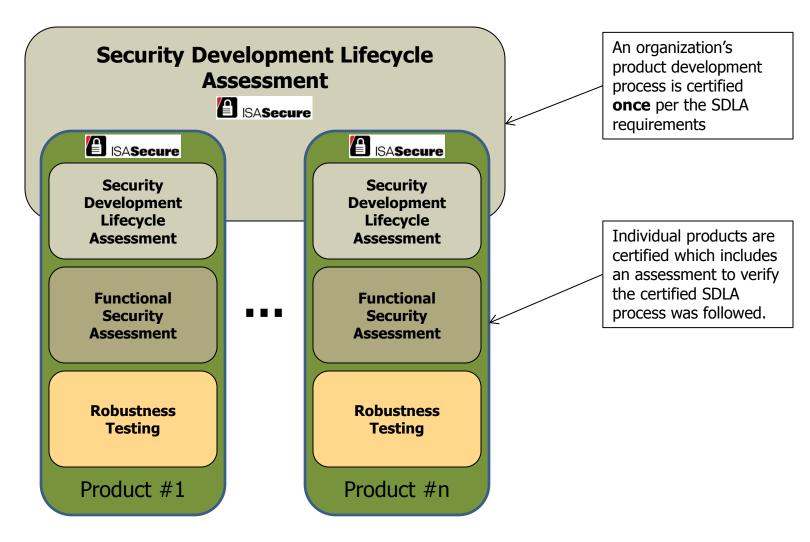
ISASecure™

Security Development Lifecycle Assurance (SDLA)

SDLA Overview

- ··· Certification that the supplier's product development work process includes security considerations throughout the lifecycle. (Organization process certification)
- → Meets requirements of ISA/IEC-62443-4-1 (will be re-aligned with 4-1 when it is formally approved by IEC)
- **Based on several industry-recognized security development lifecycle processes
- ** Launched May 2014

SDLA Phases


- Security Management Process
- Security Requirements Specification
- Security Architecture Design 3.
- Security Risk Assessment (Threat Model) 4.
- **Detailed Software Design**
- **Document Security Guidelines**
- Module Implementation & Verification
- **Security Integration Testing**
- **Security Process Verification**
- 10. Security Response Planning
- 11. Security Validation Testing
- 12. Security Response Execution

Multiple Product Certification

Security Level 4

Security Level 2		Security Level 3 Secure Development Lifecycle Assessment	Secure Development Lifecycle Assessment				
Security Level 1	Secure Development Lifecycle Assessment		Functional Security				
Secure Development Lifecycle Assessment	Functional Security	Functional Security Assessment	Assessment				
Functional Security Assessment Vulnerability Identification Testing	Assessment Vulnerability Identification Testing	Vulnerability Identification Testing	Vulnerability Identification Testing				
Communication Robustness Testing							

→ Test Tools Available for Use in ISASecure

Communication Robustness Test tools

- Codenomicon Defensics X
- FFR Raven
- Wurldtech Achilles

Vulnerability Scanning Tools

1. Tenable - Nessus

Simplified Asset Owner Use Case

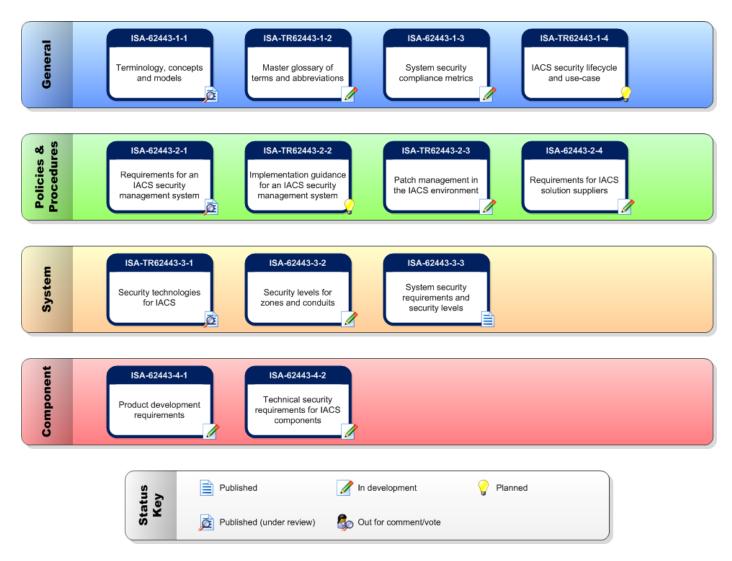
- Establishes and operates a security program based upon 62443-2-1 & -2-2
- Maintains a patch management system using -2-3
- Certifies that suppliers & vendors comply with -2-4
- Measures achieved security using metrics from -1-3
 - Uses zone & conduit model to design their systems based upon -3-2
 - Builds and/or procures systems that comply with technical requirements in -3-3
 - Builds and/or procures components that comply with:
 - Product development lifecycle in -4-1
 - Technical requirements in -4-2

→ In Summary

- ** ISA/IEC-62443 standards set the requirements for Industrial Automation and Control Systems
- :: ISASecure certifies that suppliers and products meet the ISA/IEC-62443 standards
- ---- Asset Owners have confidence that the IACS products they purchase are robust against network attacks and are free from known security vulnerabilities

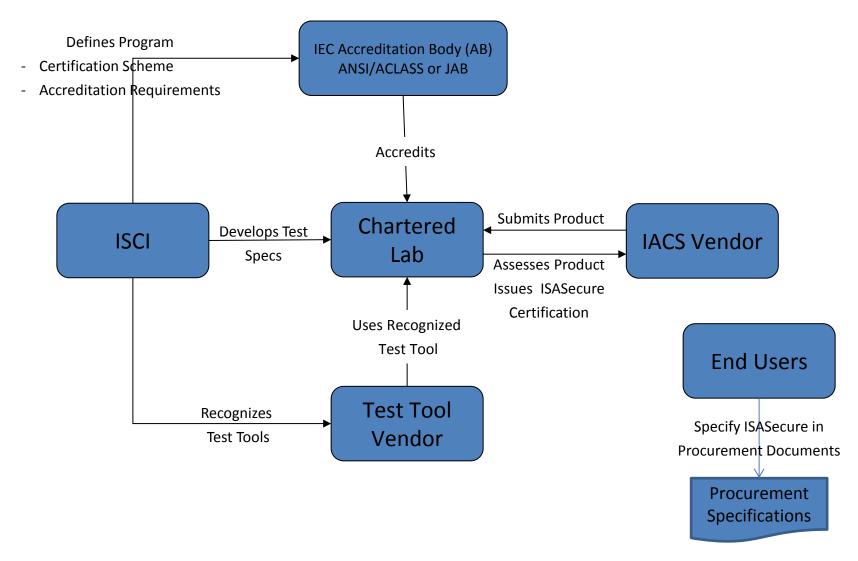
USA Government – Executive Order

- :: ISA under Automation Federation facilitating NIST effort to develop a cybersecurity framework.
- → Draft framework 1.0 completed in 2013. IEC 62443 standards are prominent in the document.
- ** Cybersecurity Framework 2.0. Plans are underway for a meeting this Fall in Illinois by the White House and NIST

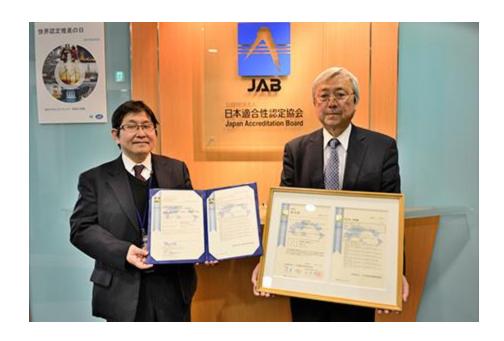

Acronym	Description
ACLASS	One of three brands of the ANSI-ASQ National Accreditation Board
ANSI	American National Standards Institute
CSSC	Control System Security Center, Japan-R&D and test lab in Tagajo-city Japan
CSSC-CL	Control System Security Center, Japan – certification lab operation
ISA	International Society of Automation
IACS	Industrial Automation and Control System
ICS	Industrial Control System
IEC	International Electrotechnical Commission
IPA	Information-technology Promotion Agency, Japan
ISCI	ISA Security Compliance Institute
JAB	Japan Accreditation Board-Japan based IEC accreditation body (AB)

⋯ ISA 62443 Status (July 2014)

→ ISASecure Certified Devices – Q3 2014


Supplier	Туре	Model	Version	Level	Test Lab
Honeywell Process Solutions	Safety Manager	HPS 1009077 C001	R145.1	EDSA 2010.1 Level 1	exida
RTP Corporation	Safety manager	RTP 3000	A4.36	EDSA 2010.1 Level 2	exida
Honeywell Process Solutions	DCS Controller	Experion C300	R400	EDSA 2010.1 Level1	exida
Hanayayall Dragges Calutions	Fieldbus Controller	Evnerion FIM	R400	EDSA 2010.1 Level 1	ovida
Honeywell Process Solutions Yokogawa Electric	Safety Control	Experion FIM	K400	EDSA 2010.1 Level 1	exida
Corporation	System	ProSafe-RS	R3.02.10	EDSA2010.1 Level 1	exida
Yokogawa Electric					
Corporation	DCS Controller	CENTUM VP	R5.03.00	EDSA 2010.1 Level 1	CSSC-CL
Hitachi, Ltd.	DCS Controller	HISEC 04/R900E	01-08-A1	EDSA 2010.1 Level 1	CSSC-CL

→ ISASecure Program Structure



CSSC-CL Receives Accreditation from JAB

April 2014 Photo-Mr. Hideaki Kobayashi, Vice-President of CSSC-CL showing Guide 65 and ISO 17025 accreditation certificates from JAB for ISASecure EDSA conformance scheme.

☆ CSSC-CL ISCI Meeting July 2014


July 2014 Photo-Andre Ristaino, ISCI Managing Director with Mr. Hideaki Kobayashi, Vice-President of CSSC-CL and team members during tour and celebration of accreditation by JAB and completion of first two ISASecure EDSA certifications.

→ Questions?

No bears were hurt in the making of this presentation

Graham Speake

Vice President and Chief Product Architect, NexDefense ICS 410 Course Instructor, The SANS Institute

Email: graham.speake@nexdefense.com

LinkedIn: Graham Speake

→ Who to contact for ISA99 committee

Eric Cosman Co-Chairman ISA99 Committee eric.cosman@gmail.com

Jim Gilsinn Co-Chairman ISA99 Committee jimqilsinn@gmail.com

ISASecure certificate - exida

Certificate / Certificat Zertifikat / 合格証

HPS 1108033 C002

exida hereby confirms that the

Experion® Series C FIM

Manufactured by

Honeywell Process Solutions Phoenix, Arizona USA

Has been assessed per the relevant requirements of:

ISASecure™ Embedded Device Security **Assurance Program** 2010.1

And meets the requirements for:

LEVEL 1

Series C FIM with 9 Port FTE Control Model Number:

Firewall Module and Input Output Termination Assemblies (IOTA)

Firmware Version: R400

→ Who to Contact to Certify Products

ISASecure EDSA Chartered Lab:

Exida - USA and EU

Mike Medoff

Director of Security Services

Phone: (215) 453-1720 Fax: (215) 257-1657

Email: mmedoff@exida.com Website: http://www.exida.com

ISASecure EDSA Chartered Lab:

CSSC - Japan

Kenzo Yoshimatsu

Phone: +81 (22) 353-6751

Email: kenzo.yoshimatsu@css-center.or.jp

Website: http://www.css-center.or.jp

Who to contact for ISCI Membership

Andre Ristaino

Managing Director, ASCI

Phone: 919-990-9222

919-549-8288 Fax:

Email: aristaino@isa.org

Website: http://www.isasecure.org

Section Divider

