

Agenda

- Industrial wireless industries and Yokogawa's users
- Industrial Wireless today ... and where it is going
- Why an industrial wireless infrastructure is needed
- Value drivers & inhibitors for wireless infrastructure
- Real-world examples at LCRA
- Visionary thoughts on possible applications
- SCADA and HART Historical analogies between Industrial Wireless and HMI-

Top Five Industries and Applications

Success Stories

- Top Five Industries
- Oil and Gas
- **Primary Metals**
- Electric Power
- Food and Beverage
- Water/Wastewater
- Top Five Applications
- Tank Level Monitoring
- Overhead Crane Controls
- Temperature Monitoring
- Flow Meter Monitoring
- Conveyor Monitoring

support these wireless industries! Yokogawa matches up well to

Proposition: Industrial Wireless Will Be Everywhere

- Industrial wireless will eventually be everywhere in your plants
- Pervasive technology like HMI-SCADA
- First apps are in difficult to reach and costly to implement solutions in monitoring where there is a 90% cost advantage versus wired solutions
- Next will be traditional safety and security applications
- "Stranded" Loop Controllers PLCs In Remote Locations
- Non-traditional applications in Safety & Security like mobile asset tracking and man down systems
- advantage and increasing security and reliability Finally <u>non-critical</u> control will be done wirelessly because of the cost

Applications, Bandwidth Requirements, Wireless Tech

Roadmap: Matching RF Technologies to Applications

Example: Developing User Industrial Wireless Roadmap

What's needed to meet this challenge

ION: example of an open, extensible wireless system

Industrial wireless value: sources, uses and measures

Key Business Unit Metrics Affected

Cost of Goods Sold, Safety, Security, Compliance, Sustainability

Sources of Value

- Standards Based
- Open
- Extensible
- Framework Versus Pt. to Pt. & Common device Configuration
- Industrially Rugged C1D1 & C1D2 Network Nodes
- Common Network Maint. and Monitoring 24/7

Uses of Value

- Ops. & Trng. Costs Minimized
- Increased Vendor Selection
- Sys. Int. Meets System Needs
- Reduced Implementation Cost
 & Fast Time To Solution Value
- Operations & Training Costs
 Minimized With One Network
- -Network Uptime & Equipment Availability Maximized

Measures of Value

Implement Wireless Solutions Minimal Time & Total Costs to

OEE (Util., Downtime, Avail.) % Production Targets Met

Number of Safety Incidents & Lost Work Days Minimized

FERC, OSHA, EPA Incidents & Penalties Minimized

User experiences with wireless evaluation

installation? Question: "What were your experiences with your wireless evaluation or

Costs, reliability, integration issues decreasing

User perceived obstacles to using wireless field devices

opinion. "Please rank the following Obstacles to the use of wireless field devices in your

Major Obstacle Minor Obstacle	No Obstacle
Have had bad experiences in the past	
No applications for wireless transmitters	
Battery - labor cost for replacing	
Current wireless products don't meet our needs	
Potton volishility	
Limited update time	
Drippe too high	
Battery lifetime	
Lack of standards	
Interference	
Data Security concerns	
Lack of device interoperability	

Security, standards & interoperability (open) getting much better

Driver Variables for Wireless Infrastructure

Open To The Elements Plant Roofed Plant

Where Wireless Is Going

Today

Many proprietary point solutions

Three Years From Now

- Standards based, open and extensible framework
- Each application managed on its own
- Process plants with a large footprint
- Most activity in North America
- Early adopters just starting to apply
- Basic applications

- Managed services and applications
- All industries
- Global market
- Rapid diffusion
- Innovative mobile worker apps

Real world example: LCRA's Sim Gideon Power Plant

Setting the Standard for Automation"

POWID Symposium

2007 ISA/EPRI POWID FACILITY OF THE YEAR

Wireless in Action: LCRA Lost Pines Power Park

Sim Gideon Power Plant

- Began commercial operation 1965
- Three units combined generation of 620 Megawatts (140,000 homes)
- Many systems and equipment reaching obsolescence or end of useful life

Lost Pine Power Project

- Commercial operation 2001
- Provides 545 megawatts of electricity (110,000 homes)
- 30-40 percent more efficient than traditional gas fired plants

Lost Pines Power Project

Wireless in Action: LCRA

- 802.11
- VoIP/PA
- WiMAX
- Condition Monitoring
- Remote I/O

Wireless applications currently in progress at LCRA

- Wireless PA/VoIP communications network
- Remote pumping station monitoring
- Video surveillance of entrances and critical infrastructure
- Tank farm fuel oil level indications
- **Condition Monitoring and Alarming**
- Pump vibration
- Sewage lift stations
- Anhydrous ammonia leak detection

- Remote unmanned peaker plant infrastructure extension
- WilMaxlongshot technology
- Extension of push to talk communications with parent site
- Video surveillance of plant for security and visual monitoring
- Potential for equipment health monitoring
- FW Heater level control and alarming
- Hi temp furnace video monitoring
- Burner performance
- Fireball monitoring
- Burner tilt performance

Futuristic example: Complete Tank Farm Monitoring

- Complete Tank Farm / Terminal Monitoring
- Tank level monitoring
- Berm leak detection
- Corrosion monitoring
- Pipe leak detection
- Percent water detection
- Health of the wireless infrastructure monitored 24/7
- Completely Class I Division I and wireless links fully redundant
- Implements World class technology: minimizes any EPA fines

Futuristic example: Tracking Mobile Assets

- Tracking mobile operating assets in the field in remote areas
- Where is a critical piece of equipment right now?
- Where are all the pieces I need for a job right now?
- the engineering office? What are the SOP's for installing this equipment ... three miles from

© 2007 Apprion

Futuristic example: Safety for workers or contractors

- another worker who sees a "man down" Man down detection – no response from a worker or possibly an alert from
- Safety shower has just been turned on who's in there?
- Where is everyone that knows CPR within 500 feet of a man down?
- Where are all the fire trucks, right now?
- Where are all the workers right now that are assigned to Area One
- Automatically turn the video cameras toward the heat/smoke sensor that just went off, before we send a fire crew into that area

HMI & Industrial Wireless .. A Lot In Common

HMI / SCADA Graphical User Interface

- Market leader Wonderware took an open approach to connectivity and extensibility -Switzerland
- Large number of plants and applications
- Broad market process, batch & discrete
- Purchase budget / decision by plant
- 3rd party channels
- Extensibility of apps by System Integrators
- Significant reuse of apps

Industrial Wireless Infrastructure & Managed Applications

- Open, standards based market leader opportunity
- Large number of plants and applications
- Broad market process, batch & discrete
- Purchase budget / decision by plant
- 3rd party channels
- Extensibility of apps by System Integrators
- Significant reuse of apps

Apprion Estimate

- Over 45% of the global 76,120 plants that could adopt a wireless infrastructure will do so in the future
- Over 34,000 plants worldwide
- The exact number and timing is uncertain
- But if you look at wireless pervasiveness in other areas where wireless has penetrated ... estimate is conservative
- the same historical rate as HART and HMI-SCADA We think the Wireless Infrastructure industry will grow at roughly

Apprion Plant Model Versus Global Foresight Group

Source: Rasmusson& Willey LLC

How Can You Move Forward?

So what are your applications for industrial wireless ... today ... and three years from now?

How can you move forward?

- Learn more about industrial wireless
- Develop a wireless roadmap to solve problems
- Calculate the value created by the projects
- Calculate the investment required .. and solution ROI

Powering An Open Wireless System For Your Plant