Contents

1. Introduction
 1.1 For Safe Use of Product.................................2
 1.2 Warranty ..3
 1.3 ATEX Documentation.................................4

2. Handling Cautions
 2.1 Model and Specifications Check..................6
 2.2 Selecting the Installation Location6
 2.3 Pressure Connection6
 2.4 Installation of an Explosion-Protected Instrument6
 2.5 EMC Conformity Standards15
 2.6 Pressure Equipment Directive (PED)16
 2.7 Safety Requirement Standards...................17

3. Installation
 3.1 Mounting ..18
 3.2 Mounting the Diaphragm Seals18
 3.3 Diaphragm Seals Installation Consideration19
 3.4 Mounting the Flushing Connection Ring20
 3.5 Affixing the Teflon Film21
 3.6 Rotating Transmitter Section22
 3.7 Changing the Direction of Integral Indicator22

4. Installing Impulse Piping
 4.1 Impulse Piping Installation Precautions23
 4.2 Impulse Piping Connection Examples25
 4.3 Process Piping Installation Precautions (EJX115C)/26

5. Wiring
 5.1 Wiring Precautions28
 5.2 Connections of External Wiring to Terminal Box28
 5.3 Wiring ..30
 5.4 RTD Cable Connection (EJX910A/EJX930A)31
 5.5 Grounding ...34
 5.6 Power Supply Voltage and Load Resistance34

6. Operation
 6.1 Preparation for Starting Operation35
 6.2 Zero Point Adjustment36
 6.3 Local Parameter Setting37

7. Errors and Countermeasures

8. Parameter Summary

YOKOGAWA
Yokogawa Electric Corporation

IM 01C25A01-01E
8th Edition
1. Introduction

Thank you for purchasing the DPharp electronic pressure transmitter. This manual provides the basic guidelines for installation and wiring procedures of the DPharp EJX Series and EJA-E Series with BRAIN and HART protocols. It does not provide the product specific functional specifications and explanations, maintenance, troubleshooting, FOUNDATION Fieldbus™ and PROFIBUS PA communication operating procedures and handling precautions of safety transmitters. For the items which are not covered in this manual, see the applicable user’s manuals in the CD-ROM attached to this manual as listed in Table 1.1.

- Installation manual (this document) EJX and EJA-E series common manual
 <Contents>
 • Installation
 • Impulse piping installation
 • Wiring
 • Zeroing

- Attached CD-ROM includes PDF manuals for:
 • Product specific manuals, 6 PDFs by model code
 • Communication manuals, 6 PDFs
 <Contents of product specific manuals>
 • Installation
 • Impulse piping installation
 • Wiring
 • Zeroing
 • BT200 operation
 • Maintenance
 • Specifications

Table 1.1 PDF Manual List and Applicable Style Code

<table>
<thead>
<tr>
<th>Models</th>
<th>Document No.</th>
<th>Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJX110A</td>
<td>IM 01C25B01-01E</td>
<td>S3</td>
</tr>
<tr>
<td>EJX120A</td>
<td>IM 01C25B01-01E</td>
<td>S1</td>
</tr>
<tr>
<td>EJX130A, EJX310A, EJX430A and EJX440A</td>
<td>IM 01C25B01-01E</td>
<td>S2</td>
</tr>
<tr>
<td>EJX210A</td>
<td>IM 01C25C01-01E</td>
<td>S2</td>
</tr>
<tr>
<td>EJX510A and EJX530A</td>
<td>IM 01C25F01-01E</td>
<td>S2</td>
</tr>
<tr>
<td>EJX610A and EJX630A</td>
<td>IM 01C25F01-01E</td>
<td>S1</td>
</tr>
<tr>
<td>EJX118A and EJX438A</td>
<td>IM 01C25H01-01E</td>
<td>S2</td>
</tr>
<tr>
<td>EJX115A</td>
<td>IM 01C25K01-01E</td>
<td>S1</td>
</tr>
<tr>
<td>DPharp HART 5/HART 7 Communication Type</td>
<td>IM 01C25T01-06EN</td>
<td>—</td>
</tr>
<tr>
<td>DPharp Fieldbus Communication Type</td>
<td>IM 01C25T02-01E</td>
<td>—</td>
</tr>
<tr>
<td>DPharp BRAIN Communication Type</td>
<td>IM 01C25T03-01E</td>
<td>—</td>
</tr>
<tr>
<td>DPharp PROFIBUS PA Communication Type</td>
<td>IM 01C25T04-01EN</td>
<td>—</td>
</tr>
</tbody>
</table>

Regarding This Manual

- This manual should be passed on to the end user.
- The contents of this manual are subject to change without prior notice.
- All rights reserved. No part of this manual may be reproduced in any form without Yokogawa’s written permission.
- Yokogawa makes no warranty of any kind with regard to this manual, including, but not limited to, implied warranty of merchantability and fitness for a particular purpose.
- If any question arises or errors are found, or if any information is missing from this manual, please inform the nearest Yokogawa sales office.
- The specifications covered by this manual are limited to those for the standard type under the specified model number break-down and do not cover custom-made instruments.
- Please note that changes in the specifications, construction, or component parts of the instrument may not immediately be reflected in this manual at the time of change, provided that postponement of revisions will not cause difficulty to the user from a functional or performance standpoint.
• Yokogawa assumes no responsibilities for this product except as stated in the warranty.

• If the customer or any third party is harmed by the use of this product, Yokogawa assumes no responsibility for any such harm owing to any defects in the product which were not predictable, or for any indirect damages.

• When describing the model name like EJ□110□ in this manual, it shows the applicability for both EJX110A and EJA110E. The same representations are used for the other models, too.

NOTE

For FOUNDATION Fieldbus and PROFIBUS PA protocol versions, please refer to manuals in the attached CD-ROM, in addition to this manual.

• The following safety symbol marks are used in this manual:

WARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

IMPORTANT

Indicates that operating the hardware or software in this manner may damage it or lead to system failure.

NOTE

Draws attention to information essential for understanding the operation and features.

- Direct current
- Functional grounding terminal
- Caution

This symbol indicates that the operator must refer to an explanation in the user’s manual in order to avoid the risk of injury or death of personnel or damage to the instrument.

1.1 For Safe Use of Product

For the protection and safety of the operator and the instrument or the system including the instrument, please be sure to follow the instructions on safety described in this manual when handling this instrument. In case the instrument is handled in contradiction to these instructions, Yokogawa does not guarantee safety. Please give your attention to the followings.

(a) Installation

• The instrument must be installed by an expert engineer or a skilled personnel. The procedures described about INSTALLATION are not permitted for operators.

• In case of high process temperature, care should be taken not to burn yourself because the surface of body and case reaches a high temperature.

• The instrument installed in the process is under pressure. Never loosen the process connector bolts to avoid the dangerous spouting of process fluid.

• During draining condensate from the pressure detector section, take appropriate care to avoid contact with the skin, eyes or body, or inhalation of vapors, if the accumulated process fluid may be toxic or otherwise harmful.

• When removing the instrument from hazardous processes, avoid contact with the fluid and the interior of the meter.

• All installation shall comply with local installation requirement and local electrical code.

(b) Wiring

• The instrument must be installed by an expert engineer or a skilled personnel. The procedures described about WIRING are not permitted for operators.

• Please confirm that voltages between the power supply and the instrument before connecting the power cables and that the cables are not powered before connecting.

(c) Operation

• Wait 5 min. after power is turned off, before opening the covers.

• Do not open the cover in wet weather or humid environment. If the cover is opened, stated enclosure protection is not applicable.
1.2 Warranty

- The warranty shall cover the period noted on the quotation presented to the purchaser at the time of purchase. Problems occurred during the warranty period shall basically be repaired free of charge.

- In case of problems, the customer should contact the Yokogawa representative from which the instrument was purchased, or the nearest Yokogawa office.

- If a problem arises with this instrument, please inform us of the nature of the problem and the circumstances under which it developed, including the model specification and serial number. Any diagrams, data and other information you can include in your communication will also be helpful.

- Responsible party for repair cost for the problems shall be determined by Yokogawa based on our investigation.

- The Purchaser shall bear the responsibility for repair costs, even during the warranty period, if the malfunction is due to:
 - Improper and/or inadequate maintenance by the purchaser.
 - Failure or damage due to improper handling, use or storage which is out of design conditions.
 - Use of the product in question in a location not conforming to the standards specified by Yokogawa, or due to improper maintenance of the installation location.
 - Failure or damage due to modification or repair by any party except Yokogawa or an approved representative of Yokogawa.
 - Malfunction or damage from improper relocation of the product in question after delivery.
 - Reason of force majeure such as fires, earthquakes, storms/floods, thunder/lightening, or other natural disasters, or disturbances, riots, warfare, or radioactive contamination.

(d) Maintenance

- Please do not carry out except being written to maintenance descriptions. When these procedures are needed, please contact nearest YOKOGAWA office.
- Care should be taken to prevent the build up of drift, dust or other material on the display glass and name plate. In case of its maintenance, soft and dry cloth is used.

(e) Explosion Protected Type Instrument

- Users of explosion proof instruments should refer first to section 2.4 (Installation of an Explosion Protected Instrument) of this manual.
- The use of this instrument is restricted to those who have received appropriate training in the device.
- Take care not to create sparks when accessing the instrument or peripheral devices in a hazardous location.

(f) Modification

- Yokogawa will not be liable for malfunctions or damage resulting from any modification made to this instrument by the customer.
1.3 ATEX Documentation

This is only applicable to the countries in European Union.

- **GB**: All instruction manuals for ATEX Ex related products are available in English, German and French. Should you require Ex related instructions in your local language, you are to contact your nearest Yokogawa office or representative.
- **DK**: Alle brugervedledninger for produkter relatert til ATEX Ex er tilgængelige på engelsk, tysk og fransk. Skulle De ønske yderligere oplysninger om håndtering af Ex produkter på eget sprog, kan De rette henvendelse herom til den nærmeste Yokogawa afdeling eller forhandler.
- **I**: Tutti i manuali operativi di prodotti ATEX contrassegnati con Ex sono disponibili in inglese, tedesco e francese. Se si desidera ricevere i manuali operativi di prodotti Ex in lingua locale, mettersi in contatto con l'ufficio Yokogawa più vicino o con un rappresentante.
- **E**: Todos los manuales de instrucciones para los productos antexplosivos de ATEX están disponibles en inglés, alemán y francés. Si desea solicitar las instrucciones de estos artículos antexplosivos en su idioma local, deberá ponerse en contacto con la oficina o el representante de Yokogawa más cercano.
- **NL**: Alle handleidingen voor producten die te maken hebben met ATEX explosiebeveiliging (Ex) zijn verkrijgbaar in het Engels, Duits en Frans, Neem, indien u aanwijzingen op het gebied van explosiebeveiliging nodig heeft in uw eigen taal, contact op met de dichtstbijzijnde vestiging van Yokogawa of met een vertegenwoordiger.
- **SF**: Kaikkien ATEX Ex -tyypisten tuotteiden käyttöohjeet ovat saatavilla englanniksi-, saksaksi- ja ruotsiksi. Mikäli tarvitset Ex-tyypisten tuotteiden ohjeita omilla paikallaasi, otakaa yhteyttä tähänään Yokogawa-toimistoon tai edustajaasi.
- **PL**: Wszystkie instrukcje obsługi dla urządzeń w wykonaniu przeciwpowodziowym Ex, zgodnych z wymaganiami ATEX, dostępne są w języku angielskim, niemieckim i francuskim. Jeżeli wymagane jest instrukcja obsługi w Państwa lokalnym języku, prosimy o kontakt z najbliższym biurem Yokogawa.
- **BG**: Вся информация за продукти от серията ATEX се предлагат на английски, немски и френски език. Ако се нуждаете от информация за продукти от серията Ex на други езици, се свържете с най-близката офис или представителство на фирмата Yokogawa.
- **RO**: Toate manualele de instructiuni pentru produsele ATEX Ex sunt disponibile in limba engleza, germana si franceza. In cazul in care doriți instrucțiuni în limba locală, trebuie să contactați cel mai apropiat birou sau reprezentant Yokogawa.
- **GR**: Όλα τα εγκεκριμένα κατασκευάσματα των προϊόντων με ATEX παρέχονταν στα Αγγλικά, Γερμανικά και Γαλλικά. Σε περίπτωση που χρειάζεστε άλλες ιδιότητες σχετικά με τα προϊόντα που αφορούν τη γεωργία της Υοκόγκαβα ή αντιπρόσωπό της.
2. Handling Cautions

When the transmitter is delivered, visually check them to make sure that no damage occurred during shipment. Also check that all transmitter mounting hardware shown in Figure 2.1 is included. If the transmitter was ordered without the mounting bracket or without the process connector, the transmitter mounting hardware is not included.

Table 2.1 Applicable Model Code for Mounting Hardware

<table>
<thead>
<tr>
<th>Applicable model</th>
<th>Suffix code</th>
<th>Part name</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJ□110</td>
<td></td>
<td>Process connector bolt</td>
<td>4</td>
</tr>
<tr>
<td>EJ□120</td>
<td></td>
<td>Process connector</td>
<td>2</td>
</tr>
<tr>
<td>EJ□130</td>
<td></td>
<td>Process connector gasket</td>
<td>2</td>
</tr>
<tr>
<td>EJX910A</td>
<td>1,2,3 and 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EJX930A</td>
<td>1,2,3 and 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EJ□210</td>
<td></td>
<td>Process connector bolt</td>
<td>2</td>
</tr>
<tr>
<td>EJ□310</td>
<td></td>
<td>Process connector</td>
<td>1</td>
</tr>
<tr>
<td>EJ□340</td>
<td></td>
<td>Process connector gasket</td>
<td>1</td>
</tr>
<tr>
<td>EJ□440</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EJ□110</td>
<td></td>
<td>U-bolt</td>
<td>1</td>
</tr>
<tr>
<td>EJ□120</td>
<td></td>
<td>U-bolt nut</td>
<td>2</td>
</tr>
<tr>
<td>EJ□130</td>
<td></td>
<td>Mounting bracket</td>
<td>1</td>
</tr>
<tr>
<td>EJ□340</td>
<td></td>
<td>Mounting bracket (L type)</td>
<td></td>
</tr>
<tr>
<td>EJ□340</td>
<td></td>
<td>Transmitter mounting bolt</td>
<td>4</td>
</tr>
<tr>
<td>EJ□350</td>
<td></td>
<td>U-bolt (L and S)</td>
<td>1 ea.</td>
</tr>
<tr>
<td>EJ□530</td>
<td></td>
<td>U-bolt nut (L and S)</td>
<td>2 ea.</td>
</tr>
<tr>
<td>EJ□610</td>
<td></td>
<td>Mounting bracket</td>
<td>1</td>
</tr>
<tr>
<td>EJ□630A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EJX910A</td>
<td></td>
<td>External temperature input</td>
<td>1</td>
</tr>
<tr>
<td>EJX930A</td>
<td>B, C and D</td>
<td>RTD cable</td>
<td></td>
</tr>
<tr>
<td>EJ□210</td>
<td></td>
<td>External temperature input</td>
<td>1</td>
</tr>
<tr>
<td>EJ□310</td>
<td>1, 2, 3 and 4</td>
<td>Cable gasket</td>
<td>2</td>
</tr>
<tr>
<td>EJ□438</td>
<td></td>
<td>Teflon film</td>
<td>1</td>
</tr>
<tr>
<td>EJ□118</td>
<td></td>
<td>Fluorinated oil</td>
<td>1</td>
</tr>
<tr>
<td>EJ□438</td>
<td></td>
<td>Teflon film</td>
<td>2</td>
</tr>
<tr>
<td>EJ□118</td>
<td></td>
<td>Fluorinated oil</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 2.1 Transmitter Mounting Hardware
2.1 Model and Specifications Check

The model name and specifications are indicated on the name plate attached to the case.

![Name Plate](image)

Figure 2.2 Name Plate

2.2 Selecting the Installation Location

The transmitter is designed to withstand severe environmental conditions. However, to ensure that it will provide years of stable and accurate performance, take the following precautions when selecting the installation location.

(a) Ambient Temperature
Avoid locations subject to wide temperature variations or a significant temperature gradient. If the location is exposed to radiant heat from plant equipment, provide adequate thermal insulation and/or ventilation.

(b) Ambient Atmosphere
Do not install the transmitter in a corrosive atmosphere. If this cannot be avoided, there must be adequate ventilation as well as measures to prevent the leaking of rain water and the presence of standing water in the conduits.

(c) Shock and Vibration
Although the transmitter is designed to be relatively resistant to shock and vibration, an installation site should be selected where this is kept to a minimum.

(d) Installation of Explosion-protected Transmitters
An explosion-protected transmitter is certified for installation in a hazardous area containing specific gas types. See subsection 2.4 “Installation of an Explosion-Protected Instrument.”

2.3 Pressure Connection

WARNING

- Never loosen the process connector bolts when an instrument is installed in a process. The device is under pressure, and a loss of seal can result in a sudden and uncontrolled release of process fluid.
- When draining toxic process fluids that have condensed inside the pressure detector, take appropriate steps to prevent the contact of such fluids with the skin or eyes and the inhalation of vapors from these fluids.

The following precautions must be observed in order to safely operate the transmitter under pressure.

(a) Make sure that the process connector bolts are tightened firmly.
(b) Make sure that there are no leaks in the impulse piping.
(c) Never apply a pressure higher than the specified maximum working pressure.

2.4 Installation of an Explosion-Protected Instrument

NOTE

For FOUNDATION Fieldbus and PROFI BUS PA explosion protected type, please refer to manual in the attached CD-ROM.

If a customer makes a repair or modification to an intrinsically safe or explosionproof instrument and the instrument is not restored to its original condition, its intrinsically safe or explosionproof construction may be compromised and the instrument may be hazardous to operate. Please contact Yokogawa before making any repair or modification to an instrument.

CAUTION

This instrument has been tested and certified as being intrinsically safe or explosionproof. Please note that severe restrictions apply to this instrument’s construction, installation, external wiring, maintenance and repair. A failure to abide by these restrictions could make the instrument a hazard to operate.

WARNING

Maintaining the safety of explosionproof equipment requires great care during mounting, wiring, and piping. Safety requirements also place restrictions on maintenance and repair. Please read the following sections very carefully.

WARNING

The range setting switch must not be used in a hazardous area.
2.4.1 FM Approval

a. FM Intrinsically Safe Type

Caution for FM intrinsically safe type. (Following contents refer “DOC. No. IFM022-A12”)

Note 1. Model EJX/EJA-E Series Differential, gauge and absolute pressure transmitters with optional code /FS1 are applicable for use in hazardous locations.

- Applicable Standard: FM3600, FM3610, FM3611, FM3810
- Intrinsically Safe for Class I, Division 1, Groups A, B, C & D. Class II, Division 1, Groups E, F & G and Class III, Division 1, Class I, Zone 0 in Hazardous Locations, AEEx ia IIC
- Nonincendive for Class I, Division 2, Groups A, B, C & D. Class II, Division 2, Groups F & G and Class I, Zone 2, Groups IIC, in Hazardous Locations.
- Outdoor hazardous locations: NEMA TYPE 4X
- Temperature Class: T4
- Ambient temperature: −60 to 60°C

Note 2. Entity Parameters

- Intrinsically Safe Apparatus Parameters

 [Groups A, B, C, D, E, F and G]

 $\text{Vmax} = 30 \text{ V}$
 $\text{I_{max}} = 200 \text{ mA}$
 $\text{P_{max}} = 1 \text{ W}$

- Associated Apparatus Parameters

 (FM approved barriers)

 $\text{Voc} \leq 30 \text{ V}$
 $\text{Isc} \leq 225 \text{ mA}$
 $\text{P_{max}} \leq 1 \text{ W}$

- Intrinsically Safe Apparatus Parameters

 [Groups C, D, E, F and G]

 $\text{Vmax} = 30 \text{ V}$
 $\text{I_{max}} = 225 \text{ mA}$
 $\text{P_{max}} = 1 \text{ W}$

Note 3. Installation

- Barrier must be installed in an enclosure that meets the requirements of ANSI/ISA S82.01.
- Control equipment connected to barrier must not use or generate more than 250 V rms or V dc.
- Installation should be in accordance with ANSI/ISA RP12.6 “Installation of Intrinsically Safe Systems for Hazardous (Classified) Locations” and the National Electric Code (ANSI/NFPA 70).
- The configuration of associated apparatus must be FMRC Approved.
- Dust-tight conduit seal must be used when installed in a Class II, III, Group E, F and G environments.
- Associated apparatus manufacturer’s installation drawing must be followed when installing this apparatus.
- The maximum power delivered from the barrier must not exceed 1 W.
- Note a warning label worded “SUBSTITUTION OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY,” and “INSTALL IN ACCORDANCE WITH DOC. No. IFM022-A12”

Note 4. Maintenance and Repair

- The instrument modification or parts replacement by other than authorized representative of Yokogawa Electric Corporation is prohibited and will void Factory Mutual Intrinsically safe and Nonincendive Approval.
Note 2. Maintenance and Repair
- The instrument modification or parts replacement by other than authorized representative of Yokogawa Electric Corporation is prohibited and will void Factory Mutual Explosionproof Approval.

b. FM Explosionproof Type

Caution for FM explosionproof type.

Note 1. Model EJX/EJA-E Series pressure transmitters with optional code /FF1 are applicable for use in hazardous locations.
- Applicable Standard: FM3600, FM3615, FM3810, ANSI/NEMA 250
- Explosionproof for Class I, Division 1, Groups B, C and D.
- Dust-ignitionproof for Class II/III, Division 1, Groups E, F and G.
- Enclosure rating: NEMA TYPE 4X
- Temperature Class: T6
- Ambient Temperature: -40 to 60°C
- Supply Voltage: 42 V dc max.
- Output signal: 4 to 20 mA

Note 2. Wiring
- All wiring shall comply with National Electrical Code ANSI/NFPA70 and Local Electrical Codes.
- When installed in Division 1, “FACTORY SEALED, CONDUIT SEAL NOT REQUIRED.”

Note 3. Operation
- Keep the “WARNING” nameplate attached to the transmitter.
WARNING: OPEN CIRCUIT BEFORE REMOVING COVER, FACTORY SEALED, CONDUIT SEAL NOT REQUIRED. INSTALL IN ACCORDANCE WITH THE USERS MANUAL IM 01C25.
- Take care not to generate mechanical sparking when accessing to the instrument and peripheral devices in a hazardous location.

Note 4. Maintenance and Repair
- The instrument modification or parts replacement by other than authorized representative of Yokogawa Electric Corporation is prohibited and will void Factory Mutual Explosionproof Approval.

c. FM Intrinsically Safe Type/FM Explosionproof Type

Model EJX/EJA-E Series pressure transmitters with optional code /FU1 or /V1U1 can be selected the type of protection (FM Intrinsically Safe or FM Explosionproof) for use in hazardous locations.

Note 1. For the installation of this transmitter, once a particular type of protection is selected, any other type of protection cannot be used. The installation must be in accordance with the description about the type of protection in this instruction manual.

Note 2. In order to avoid confusion, unnecessary marking is crossed out on the label other than the selected type of protection when the transmitter is installed.

2.4.2 CSA Certification

a. CSA Intrinsically Safe Type

Caution for CSA Intrinsically safe and nonincendive type. (Following contents refer to “DOC No. IC5013-A13”)

Note 1. Model EJX/EJA-E Series differential, gauge, and absolute pressure transmitters with optional code /CS1 are applicable for use in hazardous locations
Certificate: 1606623
[For CSA C22.2]
- Applicable Standard: C22.2 No.0, C22.2 No.0.4, C22.2 No.25, C22.2 No.94, C22.2 No.157, C22.2 No.213, C22.2 No.61010-1, C22.2 No.60079-0
- Intrinsically Safe for Class I, Division 1, Groups A, B, C & D, Class II, Division 1, Groups E, F & G, Class III, Division 1
- Nonincendive for Class I, Division 2, Groups A, B, C & D, Class II, Division 2, Groups F & G, Class III, Division 1
- Enclosure: Type 4X
- Temp. Code: T4
- Amb. Temp.: –50° to 60°C
- “-15°C when /HE is specified.
- Process Temperature: 120°C max.
[For CSA E60079]
- Ex ia IIC T4, Ex nL IIC T4
- Ambient Temperature: –50 to 60°C
- Max. Process Temp.: 120°C
- Enclosure: IP66/IP67
Note 2. Entity Parameters

- Intrinsically safe ratings are as follows:
 - Maximum Input Voltage (Vmax/UI) = 30 V
 - Maximum Input Current (Imax/II) = 200 mA
 - Maximum Input Power (Pmax/PI) = 0.9 W
 - Maximum Internal Capacitance (CI) = 10 nF
 - Maximum Internal Inductance (LI) = 0 µH
- Type “n” or Nonincendive ratings are as follows:
 - Maximum Input Voltage (Vmax/UI) = 30 V
 - Maximum Internal Capacitance (CI) = 10 nF
 - Maximum Internal Inductance (LI) = 0 µH
- Installation Requirements
 - Uo ≥ Ui, Io ≤ li, Po ≤ Pi
 - Ca ≥ Ci + Ccable, La ≥ Li + Lcable
 - Voc ≥ Vmax, Isc ≤ Imax,

Note 3. Installation

- In any safety barrier used output current must be limited by a resistor ‘R’ such that Io=Uo/R or Isc=Voc/R.
- The safety barrier must be CSA certified.
- Input voltage of the safety barrier must be less than 250 Vrms/Vdc.
- Installation should be in accordance with Canadian Electrical Code Part I and Local Electrical Code.
- Dust-tight conduit seal must be used when installed in Class II and III environments.
- The instrument modification or parts replacement by other than authorized representative of Yokogawa Electric Corporation and Yokogawa Corporation of America is prohibited and will void Canadian Standards Intrinsically safe and nonincendive Certification.

[Intrinsically Safe]

Hazardous Location Nonhazardous Location

Group IIC, Zone 0
Class I, II, III, Division 1,
Groups A, B, C, D, E, F, G
Pressure Transmitters

Supply

[Nonincendive]

Hazardous Location Nonhazardous Location

Group IIC, Zone 2
Class I, II, Division 2,
Groups A, B, C, D, F, G
Class III, Division 1.
Pressure Transmitters

Supply

b. CSA Explosionproof Type

Caution for CSA explosionproof type.

Note 1. Model EJX/EJA-E Series pressure transmitters with optional code /CF1 are applicable for use in hazardous locations:

- Certificate: 2014354
- Applicable Standard: C22.2 No.0, C22.2 No.0.5, C22.2 No.25, C22.2 No.30, C22.2 No.94, C22.2 No.61010-1, C22.2 No.60079-0, C22.2 No.60079-1
- Explosion-proof for Class I, Groups B, C and D.
- Dustignition-proof for Class II/III, Groups E, F and G.
- Enclosure: TYPE 4X
- Temperature Code: T6...T4
- Ex d IIc T6...T4
- Enclosure: IP66/IP67
- Maximum Process Temperature: 120°C (T4), 100°C (T5), 85°C (T6)
- Ambient Temperature: −50° to 75°C (T4), −50° to 80°C (T5), −50° to 75°C (T6) −15°C when /HE is specified.
- Supply Voltage: 42 V dc max.
- Output Signal: 4 to 20 mA dc

Note 2. Wiring

- All wiring shall comply with Canadian Electrical Code Part I and Local Electrical Codes.
- In hazardous location, wiring shall be in conduit as shown in the figure.
- WARNING: A SEAL SHALL BE INSTALLED WITHIN 50cm OF THE ENCLOSURE.
- UN SCELLEMENT DOIT ÊTRE INSTALLÉ À MOINS DE 50cm DU BOÎTIER.
- WARNING: WHEN INSTALLED IN CL I, DIV 2, SEAL NOT REQUIRED.
- UNE FOIS INSTALLÉ DANS CL I, DIV 2, AUCUN JOINT N’EST REQUIS.
• All wiring shall comply with local installation requirements and local electrical code.
• In hazardous locations, the cable entry devices shall be of a certified flameproof type, suitable for the conditions of use and correctly installed.
• Unused apertures shall be closed with suitable flameproof certified blanking elements. (The plug attached is flameproof certified.)

Note 3. Operation
- WARNING: AFTER DE-ENERGIZING, DELAY 5 MINUTES BEFORE OPENING. APRÈS POWER-OFF, ATTENDRE 5 MINUTES AVANT D’OUVRIR.
- WARNING: WHEN AMBIENT TEMPERATURE ≥ 65°C, USE THE HEAT-RESISTING CABLES ≥ 90°C. QUAND LA TEMPÉRATURE AMBIANTE ≥ 65°C, UTILISEZ DES CÂBLES RÉSISTANTS À LA CHALEUR ≥ 90°C.
- Take care not to generate mechanical sparking when accessing to the instrument and peripheral devices in a hazardous location.

Note 4. Maintenance and Repair
- The instrument modification or parts replacement by other than authorized representative of Yokogawa Electric Corporation and Yokogawa Corporation of America is prohibited and will void Canadian Standards Explosionproof Certification.

C. CSA Intrinsically Safe Type/CSA Explosionproof Type
Model EJX/EJA-E Series pressure transmitters with optional code /CU1 or /V1U1 can be selected the type of protection (CSA Intrinsically Safe or CSA Explosionproof) for use in hazardous locations.

Note 1. For the installation of this transmitter, once a particular type of protection is selected, any other type of protection cannot be used. The installation must be in accordance with the description about the type of protection in this instruction manual.

Note 2. In order to avoid confusion, unnecessary marking is crossed out on the label other than the selected type of protection when the transmitter is installed.

2.4.3 ATEX Certification
(1) Technical Data
a. ATEX Intrinsically Safe Type (Except for EJX9□0A)
Caution for ATEX Intrinsically safe type.

Note 1. Model EJX/EJA-E Series pressure transmitters with optional code /KS21 for potentially explosive atmospheres:
- No. DEKRA 11ATEX0228 X
- Type of Protection and Marking code:
 - Ex ia IIC T4 Ga
 - Ex ia IIC T85 °C T100 °C T120 °C Db
- Group: II
- Category: 1G, 2D
- Ambient Temperature for EPL Ga: –50 to 60°C
- Ambient Temperature for EPL Db: –30° to 60°C
 * –15°C when /HE is specified.
- Process Temperature (Tp.): 120°C max.
- Maximum Surface Temperature for EPL Db: T85°C (Tp.: 80°C) T100°C (Tp.: 100°C) T120°C (Tp.: 120°C)
- Enclosure: IP66 / IP67

Note 2. Electrical Data
- In type of explosion protection intrinsic safety Ex ia IIC or Ex ia IIIC, only for connection to a certified intrinsically safe circuit with following maximum values:
 - Ui = 30 V
 - li = 200 mA
 - Pi = 0.9 W
 (Linear Source)
 - Maximum internal capacitance; Ci = 27.6 nF
 - Maximum internal inductance; Li = 0 μH

Note 3. Installation
- Refer to the control drawing. All wiring shall comply with local installation requirements.

[Control Drawing]

Note 4. Maintenance and Repair
- The instrument modification or parts replacement by other than authorized representative of Yokogawa Electric Corporation is prohibited and will void DEKRA Intrinsically safe Certification.

Note 5. Special Conditions for Safe Use
<2. Handling Cautions>

WARNING

- In the case where the enclosure of the Pressure Transmitter is made of aluminium, if it is mounted in an area where the use of category 1 G apparatus is required, it must be installed such, that, even in the event of rare incidents, ignition sources due to impact and friction sparks are excluded.
- Electrostatic charge may cause an explosion hazard. Avoid any actions that cause the generation of electrostatic charge, such as rubbing with a dry cloth on coating face of the product.
- In case of the enclosure of the Pressure Transmitter with paint layers, if it is mounted in an area where the use of category 2D apparatus is required, it shall be installed in such a way that the risk from electrostatic discharges and propagating brush discharges caused by rapid flow of dust is avoided.
- To satisfy IP66 or IP67, apply waterproof glands to the electrical connection port.
- When the lightning protector option is specified, the apparatus is not capable of withstanding the 500V insulation test required by EN60079-11. This must be taken into account when installing the apparatus.

b. ATEX Intrinsically Safe Type for EJX910A and EJX930A

Caution for ATEX Intrinsically safe type.

Note 1. Model EJX Series pressure transmitters with optional code /KS2 for potentially explosive atmospheres:
- No. KEMA 06ATEX 0037X
- Type of Protection and Marking code: EEx ia IIC T4
- Group: II
- Category: 1G, 1D
- Ambient Temperature for gas-proof: –50°C to 60°C
 * –15°C when /HE is specified.
- Process Temperature (Tp.): 120°C max.
- Maximum Surface Temperature for dust-proof: T85°C (Tamb.: –40°C to 60°C, Tp.: 80°C)
 T100°C (Tamb.: –40°C to 60°C, Tp.: 100°C)
 T120°C (Tamb.: –40°C to 60°C, Tp.: 120°C)
 * –15°C when /HE is specified.
- Enclosure: IP66 and IP67

Note 2. Electrical Data

[Supply/Output circuit (terminals + and -)]

In type of explosion protection intrinsic safety EEx ia IIC, only for connection to a certified intrinsically safe circuit with following maximum values:

- $U_i = 30$ V
- $i_i = 200$ mA
- $P_i = 0.9$ W

Effective internal capacitance; $C_i = 10$ nF
Effective internal inductance; $L_i = 0$ mH

[Pulse Output circuit (terminals - and pulse)]

In type of explosion protection intrinsic safety EEx ia IIC, only for connection to a certified intrinsically safe circuit with following maximum values:

- $U_i = 30$ V
- $i_i = 200$ mA
- $P_i = 0.9$ W
- $C_i = 10$ nF
- $L_i = 0$ mH

[External temperature input circuit (connector)]

In type of explosion protection intrinsic safety EEx ia IIC, with following maximum values:

- $U_0 = 30$ V
- $I_0 = 95.4$ mA
- $P_0 = 468$ mW
- $C_0 = 11$ nF
- $L_0 = 3.9$ mH

Note 3. Installation

- All wiring shall comply with local installation requirements. (Refer to the installation diagram)
- When the analog and pulse circuits are connected to separate barriers, it shall be assured that the voltage difference between these output circuits is not more than 30 V.
- When used in a potentially explosive atmosphere, requiring the use of apparatus of equipment category 1D or 2D, certified cable entry devices shall be used that are suitable for the application and correctly installed.

Note 4. Maintenance and Repair

- The instrument modification or parts replacement by other than authorized representative of Yokogawa Electric Corporation is prohibited and will void KEMA Intrinsically safe Certification.

Note 5. Special Conditions for Safe Use

- In the case where the enclosure of the Pressure Transmitter is made of aluminium, if it is mounted in an area where the use of category 1 G apparatus is required, it must be installed such, that, even in the event of rare incidents, ignition sources due to impact and friction sparks are excluded.
c. ATEX Flameproof Type

Caution for ATEX flameproof type.

Note 1. Model EJX/EJA-E Series pressure transmitters with optional code KF22 for potentially explosive atmospheres:

- No. KEMA 07ATEX0109 X
- Type of Protection and Marking Code: Ex d IIC T6...T4 Gb, Ex tb IIIC T85°C Db
- Group: II
- Category: 2G, 2D

Note 2. Electrical Data

- Supply voltage: 42 V dc max.
- Output signal: 4 to 20 mA

Note 3. Installation

- All wiring shall comply with local installation requirement.
- The cable entry devices shall be of a certified flameproof type, suitable for the conditions of use.

Note 4. Operation

- Keep the “WARNING” label attached to the transmitter.

WARNING: AFTER DE-ENERGIZING, DELAY 5 MINUTES BEFORE OPENING. WHEN THE AMBIENT TEMP ≥65°C, USE HEAT-RESISTING CABLE AND CABLE GLAND ≥90°C.

- Take care not to generate mechanical sparking when accessing to the instrument and peripheral devices in a hazardous location.

Note 5. Special Conditions for Safe Use

WARNING

- Electrostatic charge may cause an exlosion hazard. Avoid any actions that cause the generation of electrostatic charge, such as rubbing with a dry cloth on coating face of the product.
- In the case where the enclosure of the Pressure Transmitter is made of aluminium, if it is mounted in an area where the use of category 2D apparatus is required, it shall be installed in such a way that the risk from electrostatic discharges and propagating brush discharges caused by rapid flow of dust is avoided.
- The instrument modification or parts replacement by other than an authorized Representative of Yokogawa Electric Corporation is prohibited and will void the certification.
- To satisfy IP66 or IP67, apply waterproof glands to the electrical connection port.
d. ATEX Intrinsically Safe Type/ATEX Flameproof Type

Model EJX/EJA-E Series pressure transmitters with optional code /KU22 or /V1U1 can be selected the type of protection ATEX Flameproof, Intrinsically Safe. Ex ia, or Ex ic for use in hazardous area.

Note 1. For the installation of this transmitter, once a particular type of protection is selected, any other type of protection cannot be used. The installation must be in accordance with the description about the type of protection in this user’s manual.

Note 2. For combined approval types

Once a device of multiple approval type is installed, it should not be re-installed using any other approval types. Apply a permanent mark in the check box of the selected approval type on the certification label on the transmitter to distinguish it from unused approval types.

- ATEX Intrinsically Safe Ex ic

Caution for ATEX intrinsically safe Ex ic
- Applicable Standard:
 EN 60079-0:2009/EN 60079-0:2012,
 EN 60079-11:2012
- Type of Protection and Marking Code:
 Category: II 3G Ex ic IIC T4 Gc
- Ambient Temperature: −30°C to +60°C
 −15°C when /HE is specified.
- Ambient Humidity: 0 to 100% (No condensation)
- Maximum Process Temperature: 120°C
- IP Code: IP66
- Ambient pollution degree: 2
- Overvoltage category: I

Note 1. Electrical Data

U_i = 30 V
C_i = 27.6 nF
L_i = 0 μH

Note 2. Installation

- All wiring shall comply with local installation requirements. (refer to the control drawing)
- Cable glands, adapters and/or blanking elements shall be of Ex “n”, Ex “e” or Ex “d” and shall be installed so as to maintain the specified degree of protection (IP Code) of the transmitters.

Note 3. Maintenance and Repair

- The instrument modification or parts replacement by other than authorized representative of Yokogawa Electric Corporation is prohibited and will void ATEX intrinsically safe.

Note 4. Specific Conditions of Use

WARNING

- Electrostatic charge may cause an explosion hazard. Avoid any actions that cause the generation of electrostatic charge, such as rubbing with a dry cloth on coating face of the product.
- When the lightning protector option is specified, the apparatus is not capable of withstanding the 500V insulation test required by EN60079-11. This must be taken into account when installing the apparatus.

(2) Electrical Connection

A mark indicating the electrical connection type is stamped near the electrical connection port. These marks are as followed:

<table>
<thead>
<tr>
<th>Screw Size</th>
<th>Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO M20 × 1.5 female</td>
<td>△ M</td>
</tr>
<tr>
<td>ANSI 1/2 NPT female</td>
<td>△ N or △ W</td>
</tr>
</tbody>
</table>

(3) Installation

WARNING

- All wiring shall comply with local installation requirements and the local electrical code.
- There is no need for conduit seal in Division 1 and Division 2 hazardous locations because this product is sealed at the factory.
(4) Operation

WARNING

- OPEN CIRCUIT BEFORE REMOVING COVER. INSTALL IN ACCORDANCE WITH THIS USER’S MANUAL
- Take care not to generate mechanical sparking when access to the instrument and peripheral devices in a hazardous location.

(5) Maintenance and Repair

WARNING

The instrument modification or parts replacement by other than an authorized Representative of Yokogawa Electric Corporation is prohibited and will void the certification.

(6) Name Plate

- **Name plate**
- **Tag plate for flameproof type**
- **Tag plate for intrinsically safe type** (for EJX910A and EJX930A)

MODEL: Specified model code.
STYLE: Style code.
SUFFIX: Specified suffix code.
SUPPLY: Supply voltage.
OUTPUT: Output signal.
MWP: Maximum working pressure.
CAL RNG: Specified calibration range.
NO.: Serial number and year of production*1.
TOKYO 180-8750 JAPAN:
The manufacturer name and the address*2.
*1: The first number in the second block of “NO.” column is the last one number of the production year.

NO. 91K819857

The year 201

*2: “180-8750” is a zip code which represents the following address.
2-9-32 Nakacho, Musashino-shi, Tokyo Japan

*3: The identification number of Notified Body.

2.4.4 IECEx Certification

Model EJX Series pressure transmitters with optional code /SU2 can be selected the type of protection (IECEx Intrinsically Safe/type n or flameproof) for use in hazardous locations.

Note 1. For the installation of this transmitter, once a particular type of protection is selected, any other type of protection cannot be used. The installation must be in accordance with the description about the type of protection in this instruction manual.

Note 2. In order to avoid confusion, unnecessary marking is crossed out on the label other than the selected type of protection when the transmitter is installed.

a. IECEx Intrinsically Safe Type / type n

Caution for IECEx Intrinsically safe and type n.

Note 1. Model EJX Series differential, gauge, and absolute pressure transmitters with optional code /SU2 are applicable for use in hazardous locations
- No. IECEx CSA 05.0005
• Ex ia IIC T4, Ex nL IIC T4
• Ambient Temperature: –50 to 60°C
• Max. Process Temp.: 120°C
• Enclosure: IP66/IP67

Note 2. Entity Parameters
• Intrinsically safe ratings are as follows:
 Maximum Input Voltage (Vmax/Ui) = 30 V
 Maximum Input Current (Imax/Ii) = 200 mA
 Maximum Input Power (Pmax/Pi) = 0.9 W
 Maximum Internal Capacitance (Ci) = 10 nF
 Maximum Internal Inductance (Li) = 0 µH
• Type "n" ratings are as follows:
 Maximum Input Voltage (Vmax/Ui) = 30 V
 Maximum Internal Capacitance (Ci) = 10 nF
 Maximum Internal Inductance (Li) = 0 µH
• Installation Requirements
 Uo ≥ Ui, Io ≤ Ii, Po ≥ Pi,
 Co ≥ Ci + Ccable, Lo ≥ Li + Lcable
 Voc ≤ Vmax, Isc ≤ Imax,
 Ca ≥ Ci + Ccable, La ≥ Li + Lcable
 Uo, Io, Po, Co, Lo, Voc, Isc, Ca and La are parameters of barrier.

Note 3. Installation
• In any safety barrier used output current must be limited by a resistor ‘R’ such that Io=Uo/R.
• The safety barrier must be IECEx certified.
• Input voltage of the safety barrier must be less than 250 Vrms/Vdc.
• The instrument modification or parts replacement by other than authorized representative of Yokogawa Electric Corporation and will void IECEx Intrinsically safe and type n certification.

[Intrinsically Safe]

Hazardous Location → Nonhazardous Location
Group IIC, Zone 0
EJX Series Pressure Transmitters
Supply

IECEx certified

Safety Barrier

General Purpose Equipment

IECEx Certified Equipment [nL]

Hazardous Location → Nonhazardous Location
Group IIC, Zone 2
EJX Series Pressure Transmitters
Supply

IECEx Flameproof Type
Caution for IECEx flameproof type.

Note 1. Model EJX/EJA-E Series pressure transmitters with optional code /SF2 or /SU2 are applicable for use in hazardous locations:
• No. IECEx CSA 07.0008
• Flameproof for Zone 1, Ex d IIC T6...T4
• Enclosure: IP66/IP67
• Maximum Process Temperature: 120°C (T4), 100°C (T5), 85°C (T6)
• Ambient Temperature: –50 to 75°C (T4), –50 to 80°C (T5), –50 to 75°C (T6)
• Supply Voltage: 42 V dc max.
• Output Signal: 4 to 20 mA dc

Note 2. Wiring
• In hazardous locations, the cable entry devices shall be of a certified flameproof type, suitable for the conditions of use and correctly installed.
• Unused apertures shall be closed with suitable flameproof certified blanking elements.

Note 3. Operation
• WARNING: AFTER DE-ENERGIZING, DELAY 5 MINUTES BEFORE OPENING.
• WARNING: WHEN AMBIENT TEMPERATURE ≥ 65°C, USE THE HEAT-RESISTING CABLES ≥ 90°C.
• Take care not to generate mechanical sparking when accessing to the instrument and peripheral devices in a hazardous location.

Note 4. Maintenance and Repair
• The instrument modification or parts replacement by other than authorized representative of Yokogawa Electric Corporation is prohibited and will void IECEx Certification.

2.5 EMC Conformity Standards
EN61326-1 Class A, Table 2 (for use in industrial locations)
EN61326-2-3

CAUTION
To meet EMC regulations, Yokogawa recommends that customers run signal wiring through metal conduits or use shielded twisted-pair cabling when installing EJX/EJA-E Series transmitters in a plant.
2.6 Pressure Equipment Directive (PED)

(1) General

- EJX/EJA-E Series pressure transmitters are categorized as piping under the pressure accessories section of directive 97/23/EC, which corresponds to Article 3, Paragraph 3 of PED, denoted as Sound Engineering Practice (SEP).
- EJX110A-□MS, EJX110A-□HS, EJX110A-□VS, EJA110E with /HG, EJC130□, EJC440□, EJC510□, EJC530□, EJX610A-□D, and EJX630A-□D can be used above 200 bar and therefore considered as a part of a pressure retaining vessel where category III, Module H applies. These models with option code /PE3 conform to that category.

(2) Technical Data

- Models without /PE3
 Article 3, Paragraph 3 of PED, denoted as Sound Engineering Practice (SEP).
- Models with /PE3
 Module: H
 Type of Equipment: Pressure Accessory-Vessel
 Type of fluid: Liquid and Gas
 Group of fluid: 1 and 2

<table>
<thead>
<tr>
<th>Model</th>
<th>Capsule code</th>
<th>Capsule code PS*1 (bar)</th>
<th>V(L)</th>
<th>PS.V (bar.L)</th>
<th>Category*2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJA110E</td>
<td>M, H, V</td>
<td>160</td>
<td>0.01</td>
<td>1.6</td>
<td>Article 3, Paragraph 3 (SEP)</td>
</tr>
<tr>
<td>EJC110□</td>
<td>F, L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EJX110A</td>
<td>M, H, V</td>
<td>250</td>
<td>0.01</td>
<td>2.5</td>
<td>III</td>
</tr>
<tr>
<td>EJC110□</td>
<td>M, H, V</td>
<td>250</td>
<td>0.01</td>
<td>2.5</td>
<td>III</td>
</tr>
<tr>
<td>EJC130□</td>
<td>M, H</td>
<td>500</td>
<td>0.01</td>
<td>5.0</td>
<td>Article 3, Paragraph 3 (SEP)</td>
</tr>
<tr>
<td>EJC130□</td>
<td>M, H</td>
<td>500</td>
<td>0.01</td>
<td>5.0</td>
<td>III</td>
</tr>
<tr>
<td>EJC310□</td>
<td>L, M, A, B</td>
<td>160</td>
<td>0.01</td>
<td>1.6</td>
<td>Article 3, Paragraph 3 (SEP)</td>
</tr>
<tr>
<td>EJC430□</td>
<td>H, A, B</td>
<td>160</td>
<td>0.01</td>
<td>1.6</td>
<td>Article 3, Paragraph 3 (SEP)</td>
</tr>
<tr>
<td>EJC440□</td>
<td>C, D</td>
<td>500</td>
<td>0.1</td>
<td>5.0</td>
<td>Article 3, Paragraph 3 (SEP)</td>
</tr>
</tbody>
</table>

*1: PS is maximum pressure for vessel itself based on Pressure Equipment Directive 97/23/EC. Refer to General Specification for maximum working pressure of a transmitter.

*2: Referred to Table 1 covered by ANNEX II of EC Directive on Pressure Equipment Directive 97/23/EC

(3) Operation

CAUTION

- The temperature and pressure of fluid should be maintained at levels that are consistent with normal operating conditions.
- The ambient temperature should be maintained at a level that is consistent with normal operating conditions.
- Please take care to prevent water hammer and the like from inducing excessive pressures in pipes and valves. If phenomena are likely, install a safety valve or take some other appropriate measure to prevent pressure from exceeding PS.
- Take appropriate measures at the device or system level to protect transmitters if they are to be operated near an external heat source.
2.7 Safety Requirement Standards

Applicable standard: EN61010-1, EN61010-2-30

(1) Pollution Degree 2

"Pollution degree" describes the degree to which a solid, liquid, or gas which deteriorates dielectric strength or surface resistivity is adhering. "2" applies to normal indoor atmosphere. Normally, only non-conductive pollution occurs. Occasionally, however, temporary conductivity caused by condensation must be expected.

(2) Installation Category I

"Overvoltage category(Installation category)" describes a number which defines a transient overvoltage condition. It implies the regulation for impulse withstand voltage. "I" applies to electrical equipment which is supplied from the circuit when appropriate transient overvoltage control means (interfaces) are provided.

(3) Altitude of installation site:

Max. 2,000 m above sea level

(4) Indoor/Outdoor use
3. **Installation**

IMPORTANT

- When welding piping during construction, take care not to allow welding currents to flow through the transmitter.
- Do not step on this instrument after installation.
- For EJ□430□, EJ□440□ and EJ□438□, the atmospheric opening is located on the low pressure side cover flange. For EJ□530□ and EJ□630A whose capsule code is A, B, or C, the pipe of the atmospheric opening is located on the pressure detecting section. These openings must not face upward.

![Figure 3.1 EJ□530□ and EJ□630A Horizontal Mounting Position](image1)

3.1 Mounting

- The transmitter can be mounted on a nominal 50 mm (2-inch) pipe using the mounting bracket supplied, as shown in Figure 3.2 and 3.3. Tighten the (four) bolts that hold the transmitter with a torque of approximately 39 N·m (4 kgf·m).

![Figure 3.2 Transmitter Mounting (Horizontal Impulse Piping Type)](image2)

3.2 Mounting the Diaphragm Seals

IMPORTANT

- Please use a gasket with an inside diameter (ød) that is greater than the diameter of the diaphragm seal. If a gasket with a smaller inside diameter is used, the diaphragm may not function correctly.
- During the diaphragm seal installation, ensure as far as possible that no seal liquid high pressure is applied to the diaphragm seals.
- Exercise care so as not to damage diaphragm surfaces. Since the diaphragm protrudes approx. 1 mm from the flange surface, do not place the pressure detector section face down on a surface as this can damage the diaphragm.
- Do not sharply bend or twist capillary tube or apply excessive stress to them.
- *Never loosen the four bolts* securing the cover flange or the screws at the joints between the capillary tube and cover flanges. If the seal liquid leaks, the transmitter cannot be used.
3.2.1 EJ□210□

The transmitter is mounted on a process using its high pressure side flange as shown in Figure 3.5. The customer should prepare the mating flange, gasket, stud bolts and nuts.

![Figure 3.5 EJ□210□ Mounting](F0305.ai)

3.2.2 EJ□118□ and EJ□438□

Mount the diaphragm seals using the flanges as shown in Figure 3.6. The mating flange, gasket, bolts and nuts are to be procured by the customer.

![Figure 3.6 Mounting the Diaphragm Seals](F0306.ai)

3.3 Diaphragm Seals Installation Consideration

IMPORTANT

- When measuring the liquid level of the tank, the minimum liquid level (zero point) must be set to a level at least 50 mm above the center of the high pressure side diaphragm seal (see Figure 3.7).
- Correctly install the diaphragm seals on the high and low pressure sides of the process, checking the label on each seal.
- To avoid measuring error duets temperature difference between the two diaphragm seals, capillary tube must be bound together. The capillary tube must be securely fixed to the tank wall to prevent movement by wind or vibration. If the capillary tube is too long, loosely coil the extra tube portion (coil diameter of 300 mm or more) and secure the coiled tube with a clamp.

IMPORTANT

Install the sealed diaphragm so that the shank positions downward.

![Figure 3.7 Installing the Diaphragm Seals to a Tank](F0307.ai)
The transmitter should be installed at least 600 mm below the high pressure (HP) process connection to ensure a positive head pressure of fill fluid. Pay special attention to vacuum applications.

If it cannot be installed at least 600 mm below the HP process connection, please use the equation below:

\[h = \frac{(P - P_0)}{d_s} \times 0.102 \text{ [mm]} \]

- **h**: Vertical height between the HP process connection and the transmitter (mm)
- **h≤0**: Install the transmitter at least h (mm) below the HP process connection
- **h>0**: Install the transmitter at most h (mm) above the HP process connection

P: Pressure in the tank (Pa abs)

P0: Minimum working pressure limit of the transmitter (Pa abs) See below table.

For fill fluid code A, B, C, D, E

<table>
<thead>
<tr>
<th>Wetted parts material code</th>
<th>Capillary length</th>
<th>Process connection size code</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
<td>1 to 5m</td>
<td>2, 3, 4, 8</td>
</tr>
<tr>
<td></td>
<td>6 to 10m</td>
<td>2, 3, 4, 8</td>
</tr>
<tr>
<td>SE</td>
<td>1 to 5m</td>
<td>6790, 3190</td>
</tr>
<tr>
<td></td>
<td>6 to 10m</td>
<td>10030, 3520</td>
</tr>
<tr>
<td>SY</td>
<td>1 to 5m</td>
<td>10030, 3520</td>
</tr>
<tr>
<td></td>
<td>6 to 10m</td>
<td>3190, 3520</td>
</tr>
<tr>
<td>HW</td>
<td>1 to 5m</td>
<td>19150, 6140</td>
</tr>
<tr>
<td></td>
<td>6 to 10m</td>
<td>6390, 3520</td>
</tr>
<tr>
<td>TW</td>
<td>1 to 5m</td>
<td>9620, 3620</td>
</tr>
<tr>
<td></td>
<td>6 to 10m</td>
<td>4210, 3520</td>
</tr>
<tr>
<td>UW</td>
<td>1 to 5m</td>
<td>9540, 4750</td>
</tr>
<tr>
<td></td>
<td>6 to 10m</td>
<td>6050, 3520</td>
</tr>
</tbody>
</table>

For fill fluid code 1, 2, 4

<table>
<thead>
<tr>
<th>Wetted parts material code</th>
<th>Capillary length</th>
<th>Process connection size code</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
<td>1 to 5m</td>
<td>2, 3, 4, 8</td>
</tr>
<tr>
<td></td>
<td>6 to 10m</td>
<td>2, 3, 4, 8</td>
</tr>
<tr>
<td>SE</td>
<td>1 to 5m</td>
<td>2570, 320</td>
</tr>
<tr>
<td></td>
<td>6 to 10m</td>
<td>4680, 530</td>
</tr>
<tr>
<td>SY</td>
<td>1 to 5m</td>
<td>2570, 320</td>
</tr>
<tr>
<td></td>
<td>6 to 10m</td>
<td>4680, 530</td>
</tr>
<tr>
<td>HW</td>
<td>1 to 5m</td>
<td>10220, 2050</td>
</tr>
<tr>
<td></td>
<td>6 to 10m</td>
<td>3450, 530</td>
</tr>
<tr>
<td>TW</td>
<td>1 to 5m</td>
<td>4270, 570</td>
</tr>
<tr>
<td></td>
<td>6 to 10m</td>
<td>960, 3520</td>
</tr>
</tbody>
</table>

d_s: Specific gravity of fill fluid (at 25°C). See below table.

Fill fluid code

<table>
<thead>
<tr>
<th>A, 1, 4</th>
<th>B</th>
<th>C, 2</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.07</td>
<td>0.94</td>
<td>1.09</td>
<td>1.90 to 1.92</td>
<td>1.09</td>
</tr>
</tbody>
</table>

3.4 Mounting the Flushing Connection Ring

3.4.1 Mounting to Pressure Detector Section

The flushing connection ring is mounted to the pressure detector section as shown in Figure 3.9. At the factory shipment, the flushing connection ring is already assembled and attached to process detector section.

1. Mount the ring holder on the ring and loosely tighten the mounting screws.
2. Place the spiral gasket in the ring groove. With the ring correctly aligned and flush with the face of the pressure detector, securely tighten each ring holder’s mounting screws.
3. Position the ring so that the vent/drain plugs are aligned straight up and down.
3.4.2 Mounting to Process Flange

Tighten the bolts to completely close the gap between the ring and the pressure detector section. The mating flange, gasket, stud bolts and nuts are to procured by the customer.

![Figure 3.10 Mounting to Process Flange](F0310.ai)

Table 3.1 Spiral Gasket for Pressure Detector Section Side*

<table>
<thead>
<tr>
<th>Part number</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F9350SV</td>
<td>Ø100×Ø120×t4.5</td>
<td>For 3-inch flange</td>
</tr>
<tr>
<td>F9970XF</td>
<td>Ø100×Ø120×t4.5</td>
<td>For 3-inch flange**</td>
</tr>
<tr>
<td>F9350ST</td>
<td>Ø70×Ø90×t4.5</td>
<td>For 2-inch flange</td>
</tr>
<tr>
<td>F9970XD</td>
<td>Ø70×Ø90×t4.5</td>
<td>For 2-inch flange**</td>
</tr>
<tr>
<td>F9346ZH</td>
<td>Ø60×Ø75×t4.5</td>
<td>For 1 1/2-inch flange</td>
</tr>
<tr>
<td>F9970XB</td>
<td>Ø60×Ø75×t4.5</td>
<td>For 1 1/2-inch flange**</td>
</tr>
</tbody>
</table>

*: Material: 316SST (Hoop), PTFE Teflon (Filler)
**: For oil-prohibited use (Option code: /K1, /K2, /K5, /K6)

3.5 Affixing the Teflon Film

IMPORTANT

The FEP Teflon option includes a teflon film and fluorinated oil. Before mounting the transmitter to the process flange, affix the teflon film as follows:

1. Position the diaphragm seal so that the diaphragm is in an upward position.
2. Pour the fluorinated oil on the diaphragm and gasket area covering it completely and evenly. Be careful not to scratch the diaphragm or change its shape.
3. Affix the teflon film over the diaphragm and gasket area.
4. Next, carefully inspect the cover and try to identify any entrapped air between the diaphragm and the teflon film. The air must be removed to ensure optimum performance. If air pockets are present, use your fingers to remove the air by starting at the center of the diaphragm and work your way out.
5. Position the gasket on the Teflon film.
6. Mount the transmitter onto the process flange.

![Figure 3.11 Affixing the Teflon Film](F0311.ai)
3.6 Rotating Transmitter Section

The transmitter section can be rotated approximately 360° (180° to either direction or 360° to one direction from the original position at shipment, depending on the configuration of the instrument.) It can be fixed at any angle within above range.

1) Remove the two setscrews that fasten the transmitter section and capsule assembly, using the Allen wrench.
2) Rotate the transmitter section slowly and stop it at designated position.
3) Tighten the two setscrews to a torque of 1.5 N·m.

IMPORTANT

Do not rotate the transmitter section more than the above limit.

Vertical impulse piping type

1. **Pressure-detector section**
 - Stopper
 - Rotate 0 to ±180° segments
 - Conduit connection

Horizontal impulse piping type

1. **Transmitter section**
 - Conduit connection
 - Zero-adjustment screw

Figure 3.12 Rotating Transmitter Section (Left Side High Pressure Type)

3.7 Changing the Direction of Integral Indicator

IMPORTANT

Always turn OFF power, release pressure and remove a transmitter to non-hazardous area before disassembling and reassembling an indicator.

An integral indicator can be installed in the following three directions.

Figure 3.13 Integral Indicator Direction

IMPORTANT

The terminal box cover is locked by an Allen head bolt (a shrouding bolt) on ATEX flameproof type transmitters. When the shrouding bolt is driven clockwise by an Allen wrench, it is going in and cover lock is released, and then the cover can be opened. When a cover is closed it should be locked by a shrouding bolt without fail. Tighten the shrouding bolt to a torque of 0.7 N·m.

1) Remove the cover.
2) While supporting the integral indicator with one hand, loosen its two mounting screws.
3) Dismount the LCD board assembly from the CPU assembly. When doing this, carefully pull the LCD board assembly straight forward so as not to damage the connector pins between it and the CPU assembly.
4) After rotating the LCD, align both the LCD board assembly and CPU assembly connectors and engage them.
5) Insert and tighten the two mounting screws.
6) Replace the cover.

Figure 3.14 Rotating Integral Indicator
4. Installing Impulse Piping

4.1 Impulse Piping Installation Precautions

The impulse piping that connects the process outputs to the transmitter must convey the process pressure accurately. If, for example, gas collects in a liquid-filled impulse line, or the drain of a gas-filled impulse line becomes plugged, it will not convey the pressure accurately. Since this will cause errors in the measurement output, select the proper piping method for the process fluid (gas, liquid, or steam). Pay careful attention to the following points when routing the impulse piping and connecting the impulse piping to a transmitter.

4.1.1 Connecting Impulse Piping to the Transmitter

(1) Check the High and Low Pressure Connections on the Transmitter (Figure 4.1)

Symbols “H” and “L” have been placed on the capsule assembly to indicate high and low pressure side. With differential pressure transmitters, connect the high pressure side impulse line to the “H” side, and the low pressure side impulse line to the “L” side.

With gauge/absolute pressure transmitters, connect the impulse line to the “H” side.

Differential Pressure Transmitter

![Figure 4.1 “H” and “L” Symbols on a Capsule Assembly](F0401.ai)

(2) Changing the Process Connector Piping Connections (for differential pressure transmitters)

The impulse piping connection distances can be changed between 51 mm, 54 mm and 57 mm by changing the orientation of the process connectors. This is convenient for aligning the impulse line with a process connectors.

![Figure 4.2 Process Connector Impulse Piping Connection Distances](F0402.ai)

(3) Tightening the Process Connector Mounting Bolts

After connecting an impulse line, tighten the process connector mounting bolts uniformly.

(4) Removing the Impulse Piping Connecting Port Dustproof Cap

The impulse piping connecting port on the transmitter is covered with a plastic cap to keep out dust. This cap must be removed before connecting the line. (Be careful not to damage the threads when removing this cap. Never insert a screwdriver or other tool between the cap and port threads to remove the cap.)

(5) Connecting the Transmitter and 3-Valve Manifold (for differential pressure transmitters)

A 3-valve manifold consists of two stop valves to block process pressure and an equalizing valve to equalize the pressures on the high and low pressure sides of the transmitter. Such a manifold makes it easier to disconnect the transmitter from the impulse piping, and is convenient when adjusting the transmitter zero point.

There are two 3-valve manifold types: the pipe-mounting type and the direct-mounting type; care should be taken with respect to the following points when connecting the manifold to the transmitter.

Pipe-Mounting Type 3-Valve Manifold

![Figure 4.3 3-Valve Manifold (Pipe-Mounting Type)](F0403.ai)

Impulse piping

Vent plug (optional)

Stop valve (low pressure side)

Equalizing valve (balancing)

Stop valve (high pressure side)

50 mm (2-inch) pipe

Process connector bolts

Ball head lock nut

Nipple

Pipe

Ball head lock nut

Nipple

Process connector

Bolt

“H” and “L” are shown

Process connection

Process connection

Process connector

Figure 4.3 3-Valve Manifold (Pipe-Mounting Type)
1) Screw nipples into the connection ports on the transmitter side of the 3-valve manifold, and into the impulse piping connecting ports on the process connectors. (To maintain proper sealing, wind sealing tape around the nipple threads.)

2) Mount the 3-valve manifold on the 50 mm (2-inch) pipe by fastening a U-bolt to its mounting bracket. Tighten the U-bolt nuts only lightly at this time.

3) Install the pipe assemblies between the 3-valve manifold and the process connectors and lightly tighten the ball head lock nuts. (The ball-shaped ends of the pipes must be handled carefully, since they will not seal properly if the ball surface is scratched or otherwise damaged.)

4) Now tighten the nuts and bolts securely in the following sequence:
 Process connector bolts → transmitter-end ball head lock nuts → 3-valve manifold ball head lock nuts → 3-valve manifold mounting bracket U-bolt nuts

■ Direct-Mounting Type 3-Valve Manifold

1) Mount the 3-valve manifold on the transmitter. (When mounting, use the two gaskets and the four bolts provided with the 3-valve manifold. Tighten the bolts evenly.)

2) Mount the process connectors and gaskets on the top of the 3-valve manifold (the side on which the impulse piping will be connected.)

4.1.2 Routing the Impulse Piping

(1) Process Pressure Tap Angles

If condensate, gas, sediment or other extraneous material in the process piping gets into the impulse piping, pressure measurement errors may result. To prevent such problems, the process pressure taps must be angled as shown in Figure 4.5 according to the kind of fluid being measured.

![NOTE]

- If the process fluid is a gas, the taps must be vertical or within 45° either side of vertical.
- If the process fluid is a liquid, the taps must be horizontal or below horizontal, but not more than 45° below horizontal.
- If the process fluid is steam or other condensing vapor, the taps must be horizontal or above horizontal, but not more than 45° above horizontal.

![Figure 4.5 Process Pressure Tap Angle (For Horizontal Piping)]

(2) Position of Process Pressure Taps and Transmitter

If condensate (or gas) accumulates in the impulse piping, it should be removed periodically by opening the drain (or vent) plugs. However, this will generate a transient disturbance in the pressure measurement, and therefore it is necessary to position the taps and route the impulse piping so that any extraneous liquid or gas generated in the leadlines returns naturally to the process piping.

- If the process fluid is a gas, then as a rule the transmitter must be located higher than the process pressure taps.
- If the process fluid is a liquid or steam, then as a rule the transmitter must be located lower than the process pressure taps.

(3) Impulse Piping Slope

The impulse piping must be routed with only an upward or downward slope. Even for horizontal routing, the impulse piping should have a slope of at least 1/10 to prevent condensate (or gases) from accumulating in the pipes.

![NOTE]

After completing the connection of the transmitter and 3-valve manifold, be sure to CLOSE the low pressure and high pressure stop valves, OPEN the equalizing valve, and leave the manifold with the equalizing valve OPEN.

You must do this in order to avoid overloading the transmitter from either the high or the low pressure side when beginning operation.
(4) Temperature Difference Between Impulse Piping (for differential pressure transmitters)

If there is a temperature difference between the high and low impulse lines, the density difference of the fluids in the two lines will cause an error in the measurement pressure. When measuring flow, impulse lines must be routed together so that there is no temperature difference between them.

(5) Condensate Pots for Steam Flow Measurement (for differential pressure transmitters)

If the liquid in the impulse piping repeatedly condenses or vaporizes as a result of changes in the ambient or process temperature, this will cause a difference in the fluid head between the high pressure and low pressure sides. To prevent measurement errors due to these head differences, condensate pots are used when measuring steam flow.

(6) Preventing Wind Speed Effects in Very Low Differential Pressure Measurement (for differential pressure transmitters)

IMPORTANT

When using a differential pressure transmitter to measure very low pressures (draft pressure), the low pressure connection port is left open to atmospheric pressure (the reference pressure). Any wind around the differential pressure transmitter will therefore cause errors in the measurement. To prevent this, it will be necessary either to enclose the transmitter in a box, or to connect a impulse line to the low pressure side and insert its end into a wind excluding pot (cylindrical with a base plate).

(7) Preventing Freezing

If there is any risk that the process fluid in the impulse piping or transmitter could freeze, use a steam jacket or heater to maintain the temperature of the fluid.

NOTE

After completing the connections, close the valves on the process pressure taps (main valves), the valves at the transmitter (stop valves), and the impulse piping drain valves, so that condensate, sediment, dust and other extraneous material cannot enter the impulse piping.

4.2 Impulse Piping Connection Examples

Figure 4.6, 4.7, and 4.8 shows examples of typical impulse piping connections. Before connecting the transmitter to the process, study the transmitter installation location, the process piping layout, and the characteristics of the process fluid (corrosiveness, toxicity, flammability, etc.), in order to make appropriate changes and additions to the connection configurations.

Note the following points when referring to these piping examples.

- If the impulse line is long, bracing or supports should be provided to prevent vibration.
- The impulse piping material used must be compatible with the process pressure, temperature, and other conditions.
- A variety of process pressure tap valves (main valves) are available according to the type of connection (flanged, screwed, welded), construction (globe, gate, or ball valve), temperature and pressure. Select the type of valve most appropriate for the application.

Figure 4.6 Impulse Piping Connection Examples (for differential pressure transmitters)

Figure 4.7 Impulse Piping Connection Examples (EJ □210 □)
4.3 Process Piping Installation Precautions (EJ□115□)

4.3.1 Connecting Process Piping to the Transmitter

(1) Confirming the Process Fluid Flow Direction

The mark “<” on the manifold indicates the direction in which the process fluid is flowed (from right to left). When connecting the process piping to the process connector, confirm the process fluid flow direction.

(2) Tightening the Process Connector Mounting Bolts

The transmitter is shipped with the process connector mounting bolts only loosely tightened. After connecting the process piping, tighten these bolts uniformly to prevent leaks with a torque of 39 to 49 N·m (4 to 5 kgf·m).

(3) Removing the Process Connector Port Dustproof Cap

The process connector port threads are covered with a plastic cap to exclude dust. This cap must be removed before connecting the piping. (Be careful not to damage the threads when removing this cap. Never insert a screwdriver or other tool between the cap and port threads to remove the cap.)

4.3.2 Routing the Process Piping

(1) Relationship between Process Fluid and Manifold Locations (For the vertical impulse piping type)

If condensate (or gas) generated in the process piping were allowed to accumulate, then it would be necessary to remove it periodically by opening the drain or vent plug. However, this would generate a transient disturbance in the pressure measurement. Therefore, the process piping must be routed so that any condensate (or gas) generated in the process piping will not accumulate in the pressure-sensing assembly of the transmitter.

NOTE

- If the process fluid is a gas, then as a rule the manifold must be located at the downside of the pressure-sensing assembly.
- If the process fluid is a liquid, then as a rule the manifold must be located at the upside of the pressure-sensing assembly.

(2) Pipe Size for Process Piping

Use a 15 mm (1/2-inch) pipe for process piping connection to the process connector.

(3) Preventing Freezing

If there is any risk that the process fluid in the transmitter pressure-sensing assembly could freeze or solidify, use a steam jacket or heater to maintain the temperature of the fluid.

(4) Process Piping Connection Examples

Figure 4.10 shows examples of typical process piping connections. Before connecting the transmitter to the process, study the transmitter installation location, the process piping layout, and the characteristics of the process fluid (corrosiveness, toxicity, flammability, etc.), in order to make appropriate changes and additions to the connection configurations.

Note the following points when referring to these piping examples.

- The process piping material used must be compatible with the process pressure, temperature, and other conditions.
• A variety of process piping-mounted stop valves are available according to the type of connection (flanged, screwed, welded), construction (globe, gate, or ball valve), temperature and pressure. Select the type of valve most appropriate for the application.

Figure 4.10 Process Piping Connection Examples (EJ□115□)
5. Wiring

5.1 Wiring Precautions

- Lay wiring as far as possible from electrical noise sources such as large capacity transformers, motors, and power supplies.
- Remove electrical connection dust cap before wiring.
- All threaded parts must be treated with waterproofing sealant. (A non-hardening silicone group sealant is recommended.)
- To prevent noise pickup, do not pass signal and power cables through the same ducts.
- Explosion-protected instruments must be wired in accordance with specific requirements (and, in certain countries, legal regulations) in order to preserve the effectiveness of their explosion-protected features.
- The terminal box cover is locked by an Allen head bolt (a shrouding bolt) on ATEX flameproof type transmitters. When the shrouding bolt is driven clockwise using an Allen wrench, it goes in. The cover lock can then be released and the cover can be opened by hand. When a cover is closed it should be locked by a shrouding bolt without fail. Tighten the shrouding bolt to a torque of 0.7 N·m.

5.2 Connections of External Wiring to Terminal Box

5.2.1 Power Supply Wiring Connection

Connecting with the commercial AC power supply will damage the device. Be sure to use the DC power supply in the predetermined range.

Connect the power supply wiring to the SUPPLY + and – terminals.

![Power Supply Wiring Connection](F0502.ai)

Figure 5.2 Power Supply Wiring Connection

5.2.2 Configuration Tool Connection

Connect the configuration tool to the SUPPLY + and – terminals. (Use hooks.)

![Configuration Tool Connection](F0503.ai)

Figure 5.3 Configuration Tool Connection

5.2.3 Status Output Connection

When option code /AL is specified, connect the external wiring as shown in Figure 5.4.

To configure and activate the process alarm function and status output, it is necessary to set some parameters. Refer to each communication manual for procedures.

![Status Output Connection](F0504.ai)

Figure 5.4 Status Output Connection
5.2.4 Connection Example for EJX910A and EJX930A

Table 5.1 The connection example for simultaneous analog and pulse and alarm, status output. (For HART protocol type)

<table>
<thead>
<tr>
<th>Connection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Output</td>
<td>In this case, Communication is possible (up to a distance of 2km when a CEV cable is used.)</td>
</tr>
<tr>
<td></td>
<td>Transmitter Electrical Terminal</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributor (or communication medium : ex. EP card)</td>
</tr>
<tr>
<td>Pulse Output</td>
<td>In this case, No communication is possible.</td>
</tr>
<tr>
<td></td>
<td>Transmitter Electrical Terminal</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Status Output</td>
<td>In this case, No communication is possible.</td>
</tr>
<tr>
<td></td>
<td>Transmitter Electrical Terminal</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Simultaneous Analog -Pulse Output</td>
<td>Example 1</td>
</tr>
<tr>
<td></td>
<td>In this case, Communication is possible (up to a distance of 200m when a CEV cable is used) and R = 1kΩ.</td>
</tr>
<tr>
<td></td>
<td>Example 2</td>
</tr>
<tr>
<td></td>
<td>In this case, Communication is possible (up to a distance of 2km when a CEV cable is used) and R = 1kΩ.</td>
</tr>
<tr>
<td></td>
<td>Example 3</td>
</tr>
<tr>
<td></td>
<td>In this case, Communication is possible (when shielded cable is not used).</td>
</tr>
<tr>
<td>The load resistance of pulse output should be used to 1kΩ, 2W.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If no translation of the pulse output possible by the cable length or the frequency of the pulse output, the load resistance should be selected by calculation as shown below.</td>
</tr>
</tbody>
</table>
| | \[
| E (V) \leq R (kΩ) \leq 0.1
| \]
| | \[E (V) = \text{Supply voltage (V)}\]
| | \[C (\mu F) \times f (\text{kHz})\]
| | \[P (\text{mW}) = \frac{E^2 (V)}{R (kΩ)}\]
| | Where E = Supply voltage (V) \]
| | f = Frequency of pulse output (kHz) \]
| | P = Power ratio of the load resistance (mW) \]
| | Example of CEV cable capacitance \]
| | \[= 0.1\mu F/km\]
| | \[C = \text{Cable capacitance (\mu F)}\]

*1: To avoid the influence of external noise, use an electric counter which fits to the pulse frequency.

*2: Resistor is not necessary in case of an electric counter which can receive contact pulse signal directly.

*3: When using analog and pulse output simultaneously, the HART communication may be influenced by noise comparing analog output only. Take countermeasure for noise shown above, e.g. use shield cable etc.
5.2.5 External Temperature Connection (for EJX910A and EJX930A)
Connect the RTD cable assembly to the Juck Terminal.

5.3 Wiring

5.3.1 Loop Configuration
Since the DPharp uses a two-wire transmission system, signal wiring is also used as power wiring.
DC power is required for the transmitter loop. The transmitter and distributor are connected as shown below.
For details of the power supply voltage and load resistance, see Section 5.6.

(1) General-use Type and Flameproof Type
- Analog Output

![Figure 5.6 Connection between Transmitter and Distributor](F0506.png)

- Pulse output and Alarm, Status Output or Simultaneous Analog-Pulse Output (for EJX910A and EJX930A)

![Figure 5.7 Connection between Transmitter and Distributor](F0507.png)

(2) Intrinsically Safe Type
With the intrinsically safe type, a safety barrier must be included in the loop.

![Figure 5.8 Connection between Transmitter and Distributor](F0508.png)

(3) Intrinsically Safe Type (for EJX910A and EJX930A)
- Analog Output

![Figure 5.9 Connection between Transmitter, barrier and receiver](F0509.png)

- Simultaneous Analog-Pulse Output

![Figure 5.9 Connection between Transmitter, barrier and receiver](F0510.png)
5.3.2 Wiring Installation

(1) General-use Type and Intrinsically Safe Type

With the cable wiring, use a metallic conduit or waterproof glands.

- Apply a non-hardening sealant to the terminal box connection port and to the threads on the flexible metal conduit for waterproofing.

![Diagram](image1.png)

Figure 5.10 Typical Wiring Using Flexible Metal Conduit

(2) Flameproof Type

Wire cables through a flameproof packing adapter, or use a flameproof metal conduit.

- Wiring cable through flameproof packing adapter.
 - Apply a non-hardening sealant to the terminal box connection port and to the threads on the flameproof packing adapter for waterproofing.

![Diagram](image2.png)

Figure 5.11 Typical Cable Wiring Using Flameproof Packing Adapter

- Flameproof metal conduit wiring
 - A seal fitting must be installed near the terminal box connection port for a sealed construction.
 - Apply a non-hardening sealant to the threads of the terminal box connection port, flexible metal conduit and seal fitting for waterproofing.

5.4 RTD Cable Connection (EJX910A/EJX930A)

Connection of the RTD cable is always required to measure external temperature. Follow the procedures below to connect a cable when a cable gland or a conduit is used.

5.4.1 Connecting Shielded Cable with Cable Gland (External temperature input code: -1, -2, -3, and -4)

- RTD connection components: EJX multivariable transmitter, two cable glands, and RTD cable. Two cable glands are attached.

- Magnified view of the RTD connector in the transmitter's terminal box.

![Diagram](image3.png)

The RTD cable connecting port is covered with a cap to keep out dust. The cap should not be removed until you are ready to install the cable.
Components for the cable gland

The cable gland assembly consists of an entry, seal, running coupler, and backnut. Confirm that the seal is attached inside the entry and that the thread size of the cable gland is the same as that for the RTD electrical connection.

1/2NPT Type

1/2NPT Type

M20 Type

Gasket

Entry with Seal

Running Coupler

Backnut

CAUTION

Input/output signal is non-isolated.
Do not turn on power supply until you complete all the wiring work.

Procedure

(1) Disassemble the cable gland: loosen the running coupler to separate the backnut from the entry.

(2) Remove the protection cap over the transmitter electrical connection and install the entry on the electrical connection. Note that a non-hardening sealant should be applied to the threads for a 1/2 NPT connection and a gasket should be used for an M20 connection.

(3) Pass the RTD cable through the running coupler and backnut assembly.

(4) Insert the RTD cable and firmly plug its connector into the connecting port in the transmitter's terminal box.

(5) Align the running coupler on the entry.

(6) Turn the running coupler until the seal in the entry comes into contact with the RTD cable.

(7) Rotate the running coupler another half turn to securely tighten the seal on the RTD cable.

(8) Use a protection conduit, if necessary. In this case, insert the cable through the conduit and attach it to the Backnut.

CAUTION

After the cable is secured as explained above, do not tighten the running coupler any further; to do so could damage the RTD connection. Do not pull the cable or subject it to excessive mechanical shock.
5.4.2 Connecting Shielded Cable for Conduit Use (External temperature input code: -B, -C, and -D)

- RTD connection components: EJX multivariable transmitter and RTD cable

Procedure

1. Remove the protection cap protecting the RTD electrical connection and insert the RTD cable.

2. Remove the cap protecting the connecting port. Then insert the RTD cable and firmly plug the connector into the connecting port in the transmitter's terminal box.

3. Insert the cable through the conduit and attach it to the RTD electrical connection.

CAUTION

Do not pull the cable or subject it to excessive mechanical shock.

5.4.3 Cable Connection RTD Terminal Box Side

EJX multivariable transmitter RTD I/F is for 3-wire Type RTD, Pt100.
Heed the following when wiring an RTD of the 2- or 4-wire type.

NOTE

Please note that a temperature error will occur when you use a 2-wire RTD because of wiring resistance. Please do not ground the shield on the RTD side of the cable.

CAUTION

Please use only the cables provided with this instrument.
When wiring, be sure not to damage the cable's insulation or its core.
All the cable cores must have sufficient insulation around them.
Do not let the signal line contact the shield line.
Do not allow the shield line or the signal line to come the earth potential voltage.

Figure 5.13 The Method of Wiring for the RTD Side

Table 5.2 The Method of Wiring for the RTD Side RTD Terminal

<table>
<thead>
<tr>
<th>RTD Terminal</th>
<th>A</th>
<th>a</th>
<th>B</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Wire</td>
<td>White</td>
<td>-</td>
<td>Blue1 and Blue2</td>
<td>-</td>
</tr>
<tr>
<td>3-Wire</td>
<td>White</td>
<td>-</td>
<td>Blue1</td>
<td>Blue2</td>
</tr>
<tr>
<td>4-Wire</td>
<td>White</td>
<td>open</td>
<td>Blue1</td>
<td>Blue2</td>
</tr>
</tbody>
</table>

NOTE

The color display in the table shows the white line of the cable.
The cable color could change depending on the cable type.
Blue 1 and blue 2 allow changing places.
For 2-wire Type, connect either which is blue1 or blue2, and give other side as OPEN.
5.5 Grounding

Grounding is always required for the proper operation of transmitters. Follow the domestic electrical requirements as regulated in each country. For a transmitter with a built-in lightning protector, grounding should satisfy ground resistance of 10Ω or less.

Ground terminals are located on the inside and outside of the terminal box. Either of these terminals may be used.

![Ground Terminal Diagram]

Figure 5.14 Ground Terminals

5.6 Power Supply Voltage and Load Resistance

When configuring the loop, make sure that the external load resistance is within the range in the figure below.

(Note) In case of an intrinsically safe transmitter, external load resistance includes safety barrier resistance.

![Power Supply Voltage vs Load Resistance Graph]

Figure 5.15 Relationship between Power Supply Voltage and External Load Resistance
6. Operation

NOTE

For FOUNDATION Fieldbus and PROFIBUS PA communication types and for the transmitter operating confirmation and zeroing by any communication method, refer to manuals in the attached CD-ROM for further information.

6.1 Preparation for Starting Operation

Confirming that Transmitter is Operating Properly

On the integral indicator

- If the wiring system is faulty, the display stays blank.
- If the transmitter is faulty, an error code is displayed.

NOTE

If any of the above errors are indicated on the display of the integral indicator, refer to Chapter 7 for the corrective action.

- Verify and Change Transmitter Parameter Setting and Values

The parameters related to the following items are set at factory as specified in order:
- Calibration range
- Integral indicator display
- Output mode
- Software damping (optional)

Other parameters like following are shipped with the default setting:
- Low-cut
- Process alarm setting
- Static pressure range
- Signal characterizer
- Write protection

To confirm or change the values, please refer to manuals in the attached CD-ROM.

- Output Status Setting at CPU Failure and Hardware Write Protection

Set the switches as shown in the figure below to set the burn-out direction and write protection. The Burnout switch is set to the H side for delivery (unless option code /C1 or /C2 is specified in the order), and the hardware write protection switch is set to E side except EJX910A and EJX930A. The setting of the switches can be confirmed via communication.

<table>
<thead>
<tr>
<th>Burnout Direction switch (BO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burnout Direction Switch Position</td>
</tr>
<tr>
<td>Burnout Direction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardware write protection switch (WR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write Protection Switch Position</td>
</tr>
<tr>
<td>Write Protection</td>
</tr>
</tbody>
</table>

Figure 6.1 Burn-out Direction and Hardware Write Protection Slide Switch
6.2 Zero Point Adjustment

After completing preparations for operating the transmitter, adjust the zero point.

Zero point adjustment can be done by turning the transmitter’s zero-adjustment screw or by using the communicator. This section describes the procedure for the zero-adjustment screw. For the communicator procedure, please refer to manuals in the attached CD-ROM.

IMPORTANT
Do not turn off the power to the transmitter immediately after performing a zero point adjustment. Powering off within 30 seconds of performing this procedure will return the zero point to its previous setting.

6.2.1 Adjusting Zero Point for Differential Pressure Transmitters

Before adjusting zero point, make sure that the equalizing valve is open.

![Zero-adjustment screw cover](F0603.ai)

Figure 6.2 External Zero Adjustment Screw

The zero-adjustment screw is located inside the cover. Use a slotted screwdriver to turn the zero-adjustment screw. Equalize the transmitter, then turn the screw clockwise to increase the output or counterclockwise to decrease the output. The zero point adjustment can be made with a resolution of 0.01% of the setting range. The degree of zero adjustments varies with the screw turning speed; turn the screw slowly to make a fine adjustment, quickly to make a rough adjustment.

When using differential pressure transmitters for level measurement and if you cannot obtain the lower range value from the actual measurement value of 0%, refer to subsection 6.2.2(2).

6.2.2 Adjusting Zero Point for Gauge/Absolute Pressure Transmitters

1) When you can obtain the Low Range Value from the actual measured value of 0%

 If you cannot obtain the Low Range Value from the actual measured value of 0% (0 kPa, atmospheric pressure); For pressure measurement using gauge pressure transmitters, follow the steps below before performing zero point adjustment.

 1. Close the tap valve (main valve).
 2. Loosen the fill plug so that the pressure applied to the transmitter is only the head of the seal liquid.
 3. Adjust the zero point at this status.
 4. After the adjustment, close the fill plug and then gradually open the tap valve.

 Use a slotted screwdriver to turn the zero-adjustment screw. Turn the screw clockwise to increase the output or counterclockwise to decrease the output. The zero point adjustment can be made with a resolution of 0.01% of the setting range. Since the degree of the zero adjustment varies with the screw turning speed, turn the screw slowly to make a fine adjustment and quickly to make a rough adjustment.

2) When you cannot obtain the Low Range Value from the actual measured value of 0%;

 Adjust the transmitter output to the actual measured value obtained by a digital manometer or a glass gauge.

 [Example]

 The measuring range of 50 to 250 kPa; the actual measured value of 130 kPa.

 Actual measured value = \(\frac{130 - 50}{250 - 50} \times 100 = 40.0\% \)

 (=10.4mA)

 Turn the screw to match the output signal to the actual measured value.
6.3 Local Parameter Setting

WARNING

The local push button on the integral indicator must not be used in a hazardous area. When it is necessary to use the push button, operate it in a non-hazardous location.

IMPORTANT

- Do not turn off the power to the transmitter immediately after performing parameter setting. Powering off within 30 seconds of performing this procedure will return the parameter to its previous setting.
- The parameter of Ext SW must be "Enabled" to perform this configuration. See the user’s manual IM 01C25T (HART/BRAIN) for the setting procedure.
- The Local Parameter Setting function is available with HART or BRAIN communication type.

6.3.1 Local Parameter Setting (LPS) Overview

Parameter configuration by the external adjustment screw and push button (integral indicator code E) offers easy and quick setup for parameters of Tag number, Unit, LRV, URV, Damping, Output mode (linear/square root), Display out 1, and Re-range by applying actual pressure (LRV/URV). There is no effect on measurement signal (analog output or communication signal) when Local Parameter Setting is carried out.

![Figure 6.3 External Adjustment Screw](F0604.ai)

![Figure 6.4 Range Setting Switch (push button)](F0605.ai)
*Note that the above 1 to 7 parameter configurations are available with the software revision (SOFTWARE) 2.03 or later.
Software revision can be checked via a field communicator (HART/BRAIN) or DTM. Please refer to IM 01C25T01 for HART parameter "Software rev" and IM 01C25T03 for BRAIN "SOFTWARE".

Figure 6.5
6.3.2 Activating Local Parameter Setting

Press the push button on the integral indicator to activate the Local Parameter Setting mode. The transmitter will exit automatically from the Local Parameter Setting mode if no operation is carried out for 10 minutes.

6.3.3 Parameter Setting Review

Current setting value for the below parameters are shown sequentially by each press of the push button.
- Tag number, Unit, LRV, URV, Damping, Output mode (linear/square root), Display out 1.

To configure each parameter value, turn the external adjustment screw on each parameter screen after activating the Local Parameter Setting mode.
6.3.4 Tag Number Configuration

Tag Number is edited by turning the external adjustment screw. Up to 8 alphanumeric characters for HART or 16 alphanumeric characters for BRAIN can be set.

![Diagram of Tag Number Configuration](F0608.ai)

6.3.5 Pressure Unit Configuration

Pressure unit for the below table can be changed as below. By turning the external adjustment screw, user can scroll between the various available pressure units.

![Diagram of Pressure Unit Configuration](F0609.ai)

- [Available pressure units]
 - kPa
 - bar
 - inH₂O@4degC(39.2degF)
 - Torr
 - mbar
 - inH₂O@20degC(68degF)
 - atm
 - g/cm²
 - inHg
 - MPa
 - kg/cm²
 - ftH₂O@4degC(39.2degF)
 - hPa
 - Pa
 - ftH₂O@20degC(68degF)
 - mmHg
 - mmH₂O@4degC(39.2degF)
 - mmH₂O
 - mmH₂O@20degC(68degF)
 - psi
 - mmH₂O@4degC(39.2degF)
 - mmWG
 - mmWG@4degC
 - mmWG@20degC

In addition to the above units, mmAq@4degC, mmAq@20degC, mmWG@4degC and mmWG@20degC are available for BRAIN communication type.

6.3.6 Damping Time Constant Configuration

The damping time constant for the amplifier assembly can be set. Quick Response Parameter is automatically set to ON when the damping time constant is set to less than 0.5 seconds. Damping time constant is rounded off to two decimal places.

![Diagram of Damping Time Constant Configuration](F0610.ai)
6.3.7 Re-range by applying actual pressure (LRV/URV).

This feature allows the lower and upper range values to be setup with the actual input applied.

Follow the procedure below to change the LRV and URV settings.

[Example]

Rrange LRV to 0 and URV to 3 MPa.

1) Connect the transmitter and apparatus and warm it up for at least five minutes.
2) Press the push-button. The integral indicator then displays “LRV.SET.”
3) Apply a pressure of 0 kPa (atmospheric pressure) to the transmitter. (Note 1)
4) Turn the external adjustment screw in the desired direction. The integral indicator displays the output signal in %. (Note 2)
5) Adjust the output signal to 0% (1 V DC) by rotating the external adjustment screw. Press the push button to save the value. Doing so completes the LRV setting. (Note 3)
6) Press the push-button. The integral indicator then displays “URV.SET.”
7) Apply a pressure of 3 MPa to the transmitter. (Note 1)
8) Turn the external adjustment screw in the desired direction. The integral indicator displays the output signal in %. (Note 2)
9) Adjust the output signal to 100% (5 V DC) by rotating the external adjustment screw. Press the button to save the value. Doing so completes the URV setting.
10) Press the push-button. The transmitter then switches back to the normal operation mode with the measurement range of 0 to 3 MPa.

Note 1: Wait until the pressure inside the pressure-detector section has stabilized before proceeding to the next step.

Note 2: If the pressure applied to the transmitter exceeds the previous LRV (or URV), the integral indicator may display error number “AL.30” (In this case, the output signal percent and “AL.30” are displayed alternately every two seconds). Although “AL.30” is displayed, you may proceed to the next step. However, should any other error number be displayed, take the appropriate measure in reference to “Errors and Countermeasures” in each communication manual.

Note 3: Changing the lower range value (LRV) also automatically changes the upper range value (URV), keeping the span constant. New URV=previous URV+(new LRV−previous LRV)

6.3.8 Save or Cancel

At the end of each parameter setting, select “Save” or “Cancel” by the external adjustment screw and press the push button to save or cancel the configuration.

6.3.9 Abort Configuration

6.3.9.1 Abort Configuration (Menu)

Hold down the push button for over 2 seconds to exit the Local Parameter Setting mode.
6.3.9.2 Abort Configuration (Parameter)

To exit the configuration while editing the value, hold down the button for over 2 seconds and select “Save” or “Cancel.”

6.3.10 Local Parameter Setting Lock

To disable parameter changes by the Local Parameter Setting there are three different ways.

<table>
<thead>
<tr>
<th>Communication Parameter</th>
<th>Locked features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext SW =disable (EXT ZERO ADJ = disable)</td>
<td>• External Zero Adjustment
• Local Parameter Setting</td>
</tr>
<tr>
<td>Communication Parameter Write Protect = On (WRT PROTECT = Yes)</td>
<td>• Local Parameter Setting
• All Communication Parameters *</td>
</tr>
<tr>
<td>Hardware write protection switch on CPU assembly = D (Disable)</td>
<td>• Local Parameter Setting
• All Communication Parameters *</td>
</tr>
</tbody>
</table>

* External Zero Adjustment is unlocked.

The above parameter setting is carried out by using field communicator or DTM. See the user’s manual IM 01C25T (HART/BRAIN) for the setting procedure. Reviewing local parameter setting by push button on the integral indicator is available at any time even when the Local Parameter Setting is locked.

6.3.11 Others

• Difference between BRAIN and HART

<table>
<thead>
<tr>
<th></th>
<th>HART</th>
<th>BRAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag Number</td>
<td>Up to 8 characters can be set</td>
<td>Up to 16 characters can be set</td>
</tr>
<tr>
<td>Output Mode (Linear/Sq root)</td>
<td>“TRNS.FC” shown on the integral indicator</td>
<td>“OUT.MOD” shown on the integral indicator</td>
</tr>
</tbody>
</table>

• The degree of adjustment depends on the speed of turning the adjustment screw. Turn the screw slowly for fine tuning and turn the screw fast for quick tuning.
7. Errors and Countermeasures

NOTE

For HART protocol revision 7, FOUNDATION Fieldbus, and PROFIBUS PA communication types, please refer to manuals in the attached CD-ROM.

The table below shows a summary of error messages for BRAIN and HART (protocol revision 5) protocols.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Cause</th>
<th>Output Operation during Error</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 01 CAP. ERR</td>
<td>Sensor problem.</td>
<td>Outputs the signal (Hold, High, or Low) set with parameter.</td>
<td>Replace capsule when error keeps appearing even after restart.</td>
</tr>
<tr>
<td>AL. 02 AMP. ERR</td>
<td>Amplifier temperature sensor problem.</td>
<td>Outputs the signal (Hold, High, or Low) set with parameter.</td>
<td>Replace amplifier.</td>
</tr>
<tr>
<td>AL. 10 PRESS</td>
<td>Input is outside measurement range limit of capsule.</td>
<td>Outputs high range limit value or low range limit value.</td>
<td>Check input or replace capsule when necessary.</td>
</tr>
<tr>
<td>AL. 11 ST. PRSS</td>
<td>Static pressure exceeds limit.</td>
<td>Continues to operate and output.</td>
<td></td>
</tr>
<tr>
<td>AL. 12 CAP. TMP</td>
<td>Capsule temperature is outside range (~50 to 130°C).</td>
<td>Use heat insulation or make lagging to keep temperature within range.</td>
<td></td>
</tr>
<tr>
<td>AL. 13 AMP. TMP</td>
<td>Amplifier temperature is outside range (~50 to 95°C).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 30 RANGE</td>
<td>Output is outside upper or lower range limit value.</td>
<td>Outputs high range limit value or low range limit value.</td>
<td>Check input and range setting, and change them as needed.</td>
</tr>
<tr>
<td>AL. 31 SP. RNG</td>
<td>Static pressure exceeds specified range.</td>
<td>Holds output immediately before error occurred.</td>
<td></td>
</tr>
<tr>
<td>AL. 35 P. HI</td>
<td>Input pressure exceeds specified threshold.</td>
<td>Continues to operate and output.</td>
<td>Check input.</td>
</tr>
<tr>
<td>AL. 36 P. LO</td>
<td>Input static pressure exceeds specified threshold.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 37 SP. HI</td>
<td>Detected temperature exceeds specified threshold.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 38 SP. LO</td>
<td>Specified value is outside of setting range.</td>
<td>Holds output immediately before error occurred.</td>
<td>Check setting and change them as needed.</td>
</tr>
<tr>
<td>AL. 40 TMP. HI</td>
<td>Specified values or settings to define signal characterizer function do not satisfy the condition.</td>
<td></td>
<td>Check setting and change them as needed.</td>
</tr>
<tr>
<td>AL. 40 TMP. LO</td>
<td>Specified values or settings to define signal characterizer function do not satisfy the condition.</td>
<td></td>
<td>Check setting and change them as needed.</td>
</tr>
</tbody>
</table>

*1: These alarms may appear only when process alarm function is activated.
Table 7.2 Alarm Message Summary (For EJX910A and EJX930A, HART protocol type)

<table>
<thead>
<tr>
<th>Integral indicator</th>
<th>Cause</th>
<th>4-20mA Output operation during error</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL. 01 CAP. ERR</td>
<td>Sensor problem.</td>
<td>Outputs the signal (High or Low) set with burnout direction switch. [status output: undefined]</td>
<td>Replace capsule if the error recurs after the transmitter is restarted.</td>
</tr>
<tr>
<td></td>
<td>Capsule temperature sensor problem.</td>
<td></td>
<td>Replace capsule.</td>
</tr>
<tr>
<td>AL. 02 AMP. ERR</td>
<td>Amplifier temperature sensor problem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amplifier EEPROM problem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amplifier problem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/D Converter problem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 03 ET. ERR</td>
<td>External temperature sensor disconnection.</td>
<td></td>
<td>Check external temperature sensor.</td>
</tr>
<tr>
<td>AL. 10 PRESS</td>
<td>No device ID is found.</td>
<td>Continues to operate and output.</td>
<td>Replace amplifier.</td>
</tr>
<tr>
<td>AL. 11 ST. PRSS</td>
<td>Differential pressure is outside measurement range limit of capsule.</td>
<td>When PV is Pres Output AO upper limit or AO Lower limit.</td>
<td>Check input or replace capsule when necessary.</td>
</tr>
<tr>
<td>AL. 12 CAP. TMP</td>
<td>Static pressure exceeds limit.</td>
<td>When PV is SP Output AO upper limit or AO Lower limit.</td>
<td></td>
</tr>
<tr>
<td>AL. 13 AMP. TMP</td>
<td>Capsule temperature is outside range (~50 to 130°C).</td>
<td>Continues to operate and output.</td>
<td>Use heat insulation or make lagging to keep temperature within range.</td>
</tr>
<tr>
<td>AL. 14 EXT. TMP</td>
<td>Amplifier temperature is outside range (~50 to 95°C).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 15 EXT. TMP</td>
<td>External temperature exceeds limit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 16 PLS</td>
<td>Pulse output is out specification.</td>
<td>Continues to operate and output.</td>
<td>Check settings and change them.</td>
</tr>
<tr>
<td>AL. 30 PRS. RNG</td>
<td>Differential pressure exceeds specified range.</td>
<td>When PV is Pres Output AO upper limit or lower limit.</td>
<td>Check input and range setting, and change them as needed.</td>
</tr>
<tr>
<td>AL. 31 SP. RNG</td>
<td>Static pressure exceeds specified range.</td>
<td>When PV is SP Output AO upper limit or lower limit.</td>
<td></td>
</tr>
<tr>
<td>AL. 32 F. RNG</td>
<td>Flow exceeds specified range.</td>
<td>When PV is Flow Output AO upper limit or lower limit.</td>
<td></td>
</tr>
<tr>
<td>AL. 33 ET. RNG</td>
<td>External temperature exceeds specified range.</td>
<td>When PV is ET Output AO upper limit or lower limit.</td>
<td></td>
</tr>
<tr>
<td>AL. 35 P. HI</td>
<td>Input pressure exceeds specified threshold.</td>
<td>Continues to operate and output.</td>
<td>Check input.</td>
</tr>
<tr>
<td>AL. 36 P. LO</td>
<td>Input static pressure exceeds specified threshold.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 37 SP. HI</td>
<td>Input flow exceeds specified threshold.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 38 SP. LO</td>
<td>Input external temperature exceeds specified threshold.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 41 F. HI</td>
<td>Specified value is outside of setting range.</td>
<td>Holds at the output value that existed immediately before the error occurred.</td>
<td>Check settings and change them as needed.</td>
</tr>
<tr>
<td>AL. 42 F. LO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 43 ET. HI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 44 ET. LO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 50 P. LRV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 51 P. URV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 52 P. SPN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 53 P. ADJ</td>
<td>Specified value is outside of setting range.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 54 SP. RNG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 55 SP. ADJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 56 ET. RNG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 57 ET. ADJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 58 FL. ADJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 59 PLS. ADJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>Under Temperature Fix Mode. PV is ET</td>
<td>Temp. Output Fix at 4mA.</td>
<td>Leave from Temperature Fix Mode.</td>
</tr>
<tr>
<td>Integral indicator</td>
<td>Cause</td>
<td>4-20mA Output operation during error</td>
<td>Countermeasure</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>--------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>AL. 79 O.V. DISP</td>
<td>Displayed value exceeds limit.</td>
<td>Continues to operate and output.</td>
<td>Check settings and change them as needed.</td>
</tr>
<tr>
<td>AL. 87 FLG. HI</td>
<td>Flange temperature exceeds a preset upper limit.</td>
<td>It depends on the Diag Out Option setting.</td>
<td>Check the heater failure.</td>
</tr>
<tr>
<td>AL. 87 FLG. LO</td>
<td>Flange temperature is below a preset lower limit.</td>
<td>Off: Continue to operate and output. Burnout: Outputs AO upper limit or AO lower limit. Fall back: Outputs Diag Out Fixed Val.</td>
<td>Check the capsule temp. and Amplifier temp.</td>
</tr>
<tr>
<td>AL.88 INVR.DP</td>
<td>Differential pressure/pressure fluctuation does not reach the reference level required to blockage detection so that no blockage detection is carried out.</td>
<td>Continue to operate and output.</td>
<td>Check process condition.</td>
</tr>
<tr>
<td>AL.88 INVR.SL</td>
<td>Low-pressure-side fluctuation does not reach the reference fluctuation level required to blockage detection.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL.88 INVR.SH</td>
<td>High-pressure-side fluctuation does not reach the reference fluctuation level required to blockage detection.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL.88 INVR.F</td>
<td>BlkF can not be used for blockage detection for some reasons.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL.89 ILBD.OV</td>
<td>Appointed the diagnosis range outside.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL.89 B BLK</td>
<td>B Blocking (both-side blockage) is detected.</td>
<td>It depends on the Diag Out Option setting.</td>
<td>Check process condition.</td>
</tr>
<tr>
<td>AL.89 H BLK</td>
<td>High-pressure-side blockage is detected.</td>
<td>Off: Continue to operate and output. Burnout: Outputs AO upper limit or AO lower limit. Fall back: Outputs Diag Out Fixed Val.</td>
<td>Check process condition.</td>
</tr>
<tr>
<td>AL.89 L BLK</td>
<td>Low-pressure-side blockage is detected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL.89 H LRG</td>
<td>Pressure fluctuation amplitude of high-pressure side is large.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL.89 L LRG</td>
<td>Pressure fluctuation amplitude of low-pressure side is large.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL.89 A BLK</td>
<td>A Blocking (single-side blockage) is detected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 90 SIM</td>
<td>Under Simulation Mode for flow.</td>
<td>Simulate input output.</td>
<td>Check Simulation Mode.</td>
</tr>
<tr>
<td>AL. 91 F. SIM</td>
<td>Under Simulation Mode for device variables.</td>
<td>Output the setting value of Simulate-Value</td>
<td>Check Simulation Mode</td>
</tr>
<tr>
<td>AL. 91 P. SIM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL.91 SP. SIM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 91 ET. SIM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 91 TF. SIM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 91 PCT. SIM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL. 91 AO. SIM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Menu Tree for HART Protocol Revision 5 (Except EJX910A and EJX930A)

<table>
<thead>
<tr>
<th>Device setup</th>
<th>Process variables</th>
<th>(Detail) setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 Device setup</td>
<td>Pre</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

For HART protocol revision 7, FOUNDATION Fieldbus and PROFIBUS PA communication types, and EJX910A/EJX930A, please refer to manuals in the attached CD-ROM.

IMPORTANT

If the transmitter is turned off within 30 seconds after parameters have been set, the set data will not be stored and the terminal returns to previous settings.
BRAIN Communication Parameter List

Instruments to which applicable:

F: Differential pressure transmitters
P: Absolute and gauge pressure transmitters
L: Flange mounted differential pressure transmitters

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter name</th>
<th>Item</th>
<th>R/W</th>
<th>Content</th>
<th>Default value</th>
<th>Applicable model</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>01</td>
<td>MODEL</td>
<td>Model</td>
<td>R</td>
<td></td>
<td>EJX (for EJX series)</td>
<td>o o o</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>TAG No.</td>
<td>Tag number</td>
<td>R</td>
<td></td>
<td>As specified</td>
<td>o o o</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>SELF CHECK</td>
<td>Self-diagnostics</td>
<td>R</td>
<td></td>
<td>GOOD</td>
<td>o o o</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DISPLAY</td>
<td>Measured data display</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>OUTPUT</td>
<td>Output (in %)</td>
<td>R</td>
<td></td>
<td>-2.5 to 110%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>PRES</td>
<td>Measured pressure after zero adjustment</td>
<td>R</td>
<td></td>
<td>Unit specified in C20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A15</td>
<td>OUTPUT mA</td>
<td>Output current</td>
<td>R</td>
<td></td>
<td>3.6000 to 21.600 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>ENGR. OUTPUT</td>
<td>User scaled value</td>
<td>R</td>
<td></td>
<td>Unit specified in I30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A17</td>
<td>ENGR. EXP</td>
<td>Exponents</td>
<td>R</td>
<td></td>
<td>Unit specified in I32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A20</td>
<td>SP %</td>
<td>Static pressure (in %)</td>
<td>R</td>
<td></td>
<td>-10 to 110%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A21</td>
<td>SP</td>
<td>Static pressure after zero adjustment</td>
<td>R</td>
<td></td>
<td>Unit specified in D30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A30</td>
<td>CAPSULE TEMP</td>
<td>Capsule temperature</td>
<td>R</td>
<td></td>
<td>Unit specified in D40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A60</td>
<td>SELF CHECK</td>
<td>Self-diagnostics</td>
<td>R</td>
<td></td>
<td>Refer to Table 4.1 Alarm Message Summary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>SENSOR TYPE</td>
<td>Sensor type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>MODEL</td>
<td>Model and capsule type</td>
<td>R</td>
<td></td>
<td>Model and capsule type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>STYLE NO.</td>
<td>Style number</td>
<td>R</td>
<td></td>
<td>Style number of product</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B20</td>
<td>PRES LRL</td>
<td>Lower range limit</td>
<td>R</td>
<td></td>
<td>Unit specified in C20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B21</td>
<td>PRES URL</td>
<td>Upper range limit</td>
<td>R</td>
<td></td>
<td>Unit specified in C20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B22</td>
<td>P MIN SPAN</td>
<td>Minimum span</td>
<td>R</td>
<td></td>
<td>Unit specified in C20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B30</td>
<td>SP LRL</td>
<td>Lower range limit for static pressure</td>
<td>R</td>
<td></td>
<td>Unit specified in D30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B31</td>
<td>SP URL</td>
<td>Upper range limit for static pressure</td>
<td>R</td>
<td></td>
<td>Unit specified in D30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B32</td>
<td>SP MIN SPAN</td>
<td>Minimum span for static pressure</td>
<td>R</td>
<td></td>
<td>Unit specified in D30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B60</td>
<td>SELF CHECK</td>
<td>Self-diagnostics</td>
<td>R</td>
<td></td>
<td>See A60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>BASIC SETUP</td>
<td>Setting data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>TAG NO.</td>
<td>Tag number</td>
<td>W</td>
<td>16 alphanumeric characters</td>
<td>As specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRES UNIT</td>
<td>Measurement range unit</td>
<td>W</td>
<td>mmH2O, mmHg, mbar, bar, gf/cm², kgf/cm², inH2O, inHg, ftH2O, psi, atm, Pa, hPa</td>
<td>kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>PRES LRV</td>
<td>Lower range value</td>
<td>W</td>
<td>-32000 to 32000 within measurement range</td>
<td>As specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>PRES URV</td>
<td>Upper range value</td>
<td>W</td>
<td>-32000 to 32000 within measurement range</td>
<td>As specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>PRES POINT</td>
<td>Decimal place</td>
<td>W</td>
<td>0 to 4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30</td>
<td>AMP DAMPING</td>
<td>Damping time constant at amplifier</td>
<td>W</td>
<td>0.50 (0.00) to 100.00 sec, see D50</td>
<td>2.00 sec or as specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C40</td>
<td>OUTPUT MODE</td>
<td>Output mode</td>
<td>W</td>
<td>LINEAR or SQUARE ROOT</td>
<td>LINEAR or as specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C60</td>
<td>SELF CHECK</td>
<td>Self-diagnostics</td>
<td>R</td>
<td></td>
<td>See A60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1: R/W: R = Read only, W = Read & Write
2: The default value shows MWP (Maximum working pressure) of the capsule.
Since the working pressure limit varies according to the Model, refer to the General Specifications section in each user’s manual.
<8. Parameter Summary>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter name</th>
<th>Item</th>
<th>R/W</th>
<th>Content</th>
<th>Default value</th>
<th>Applicable model</th>
<th>F</th>
<th>P</th>
<th>L</th>
<th>Upload data</th>
</tr>
</thead>
<tbody>
<tr>
<td>D10</td>
<td>LOW CUT</td>
<td>Low cut</td>
<td>W</td>
<td>0.00 to 20.00%</td>
<td>10.00%</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>LOW CUT MODE</td>
<td>Low cut mode</td>
<td>W</td>
<td>LINEAR or ZERO</td>
<td>LINEAR</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>H/L SWAP</td>
<td>Impulse piping accessing direction</td>
<td>W</td>
<td>NORMAL or REVERSE</td>
<td>NORMAL</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D16</td>
<td>H2O UNIT SEL</td>
<td>H2O unit select</td>
<td>W</td>
<td>@4degC or @20degC</td>
<td>@4degC</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D20</td>
<td>OUT LIMIT (L)</td>
<td>Low side output limiter</td>
<td>W</td>
<td>-2.50 to 110.00%</td>
<td>-2.50%</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D21</td>
<td>OUT LIMIT (H)</td>
<td>High side output limiter</td>
<td>W</td>
<td>-2.50 to 110.00%</td>
<td>110%</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D22</td>
<td>REV OUTPUT</td>
<td>Output reversal</td>
<td>W</td>
<td>NORMAL or REVERSE</td>
<td>NORMAL</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D25</td>
<td>BURNOUT</td>
<td>CPU error</td>
<td>R</td>
<td>HIGH or LOW</td>
<td></td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D26</td>
<td>ERROR OUT</td>
<td>Hardware error</td>
<td>W</td>
<td>BURNOUT/DIR or HOLD</td>
<td>BURNOUT/DIR</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D30</td>
<td>SP UNIT</td>
<td>Static pressure unit</td>
<td>W</td>
<td>See C20</td>
<td>MPa</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D31</td>
<td>SP A/G SLCT</td>
<td>Gauge/ABS select for static pressure</td>
<td>W</td>
<td>GAUGE or ABSOLUTE</td>
<td>ABSOLUTE</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D32</td>
<td>ATM. PRESS</td>
<td>Coefficient for given gauge pressure</td>
<td>W</td>
<td>Unit specified in D30</td>
<td>0.10133 MPa</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D33</td>
<td>SP LRV</td>
<td>Lower limit of static pressure</td>
<td>W</td>
<td>-32000 to 32000 within measurement range</td>
<td>0.0 MPa</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D34</td>
<td>SP URV</td>
<td>Upper limit of static pressure</td>
<td>W</td>
<td>-32000 to 32000 within measurement range</td>
<td></td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D35</td>
<td>SP POINT</td>
<td>Decimal place of static pressure</td>
<td>W</td>
<td>0 to 4</td>
<td>1</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D36</td>
<td>SP DAMPING</td>
<td>Damping time constant of SP</td>
<td>W</td>
<td>0.00 to 100.00 sec</td>
<td>2.00 sec</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D37</td>
<td>SP SELECT</td>
<td>H/L select for static pressure</td>
<td>W</td>
<td>HIGH or LOW</td>
<td>HIGH</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D40</td>
<td>TEMP UNIT</td>
<td>Temperature setting unit</td>
<td>W</td>
<td>degC, degF, or K</td>
<td>degC</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D50</td>
<td>QUICK RESP</td>
<td>Quick response</td>
<td>W</td>
<td>OFF or ON (enable 0.00 to 0.50 sec at C30)</td>
<td>OFF</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D55</td>
<td>WRT PROTECT</td>
<td>Write protect indicator</td>
<td>R</td>
<td>NO or YES</td>
<td>NO</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D56</td>
<td>WRT ENABLE</td>
<td>Write protect release</td>
<td>W</td>
<td>8 alphanumeric characters</td>
<td>None</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D57</td>
<td>NEW PASSWORD</td>
<td>User set password for write protect</td>
<td>W</td>
<td>8 alphanumeric characters</td>
<td>None</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D58</td>
<td>SOFTWR SEAL</td>
<td>Software seal</td>
<td>R</td>
<td>BREAK or KEEP</td>
<td>KEEP</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D60</td>
<td>SELF CHECK</td>
<td>Self-diagnostics</td>
<td>R</td>
<td>See A60</td>
<td></td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. **R/W**: R = Read only, W = Read & Write
2. **Applicable model**: F = Field, P = Panel, L = Local

Since the working pressure limit varies according to the Model, refer to the General Specifications section in each user’s manual.
<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter name</th>
<th>Item</th>
<th>R/W</th>
<th>Content</th>
<th>Default value</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>ALARM SET</td>
<td>Alarm setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G10</td>
<td>P AL MODE</td>
<td>Alert mode</td>
<td>W</td>
<td>INHIBIT, HI. AL DETECT, LO. AL DETECT, or HI/LO. AL DETECT</td>
<td>INHIBIT</td>
<td>F</td>
</tr>
<tr>
<td>G11</td>
<td>P HI. AL VAL</td>
<td>High side alert value</td>
<td>W</td>
<td>-32000 to 32000, unit specified in C20</td>
<td>100.000 kPa</td>
<td>O</td>
</tr>
<tr>
<td>G12</td>
<td>P LO. AL VAL</td>
<td>Low side alert value</td>
<td>W</td>
<td>-32000 to 32000, unit specified in C20</td>
<td>-100.000 kPa</td>
<td>O</td>
</tr>
<tr>
<td>G20</td>
<td>SP AL MODE</td>
<td>Static pressure alert mode</td>
<td>W</td>
<td>INHIBIT, HI. AL DETECT, LO. AL DETECT, or HI/LO. AL DETECT</td>
<td>INHIBIT</td>
<td>O</td>
</tr>
<tr>
<td>G21</td>
<td>SP HI. AL VAL</td>
<td>High side alert value of SP</td>
<td>W</td>
<td>-32000 to 32000, unit specified in D30</td>
<td>0.00000 MPa</td>
<td>O</td>
</tr>
<tr>
<td>G22</td>
<td>SP LO. AL VAL</td>
<td>Low side alert value of SP</td>
<td>W</td>
<td>-32000 to 32000, unit specified in D30</td>
<td>0.00000 MPa</td>
<td>O</td>
</tr>
<tr>
<td>G30</td>
<td>T AL MODE</td>
<td>Temperature alert mode</td>
<td>W</td>
<td>INHIBIT, HI. AL DETECT, LO. AL DETECT, or HI/LO. AL DETECT</td>
<td>INHIBIT</td>
<td>O</td>
</tr>
<tr>
<td>G31</td>
<td>T HI. AL VAL</td>
<td>High side alert value of temperature</td>
<td>W</td>
<td>-50 to 130</td>
<td>120 degC</td>
<td>O</td>
</tr>
<tr>
<td>G32</td>
<td>T LO. AL VAL</td>
<td>Low side alert value of temperature</td>
<td>W</td>
<td>-50 to 130</td>
<td>-40 degC</td>
<td>O</td>
</tr>
<tr>
<td>G50</td>
<td>AUTO RECOVER</td>
<td>Auto-recover from sensor error</td>
<td>W</td>
<td>OFF or ON</td>
<td>ON</td>
<td>O</td>
</tr>
<tr>
<td>G60</td>
<td>SELF CHECK</td>
<td>Self-diagnostics</td>
<td>R</td>
<td>See A60</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>H</td>
<td>AUTO SET</td>
<td>Automatic setup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H10</td>
<td>AUTO P LRV</td>
<td>Lower range value auto setup</td>
<td>W</td>
<td>-32000 to 32000, unit specified in C20</td>
<td>As specified</td>
<td>O</td>
</tr>
<tr>
<td>H11</td>
<td>AUTO P URV</td>
<td>Upper range value auto setup</td>
<td>W</td>
<td>-32000 to 32000, unit specified in C20</td>
<td>As specified</td>
<td>O</td>
</tr>
<tr>
<td>H20</td>
<td>AUTO SP LRV</td>
<td>SP lower range value auto setup</td>
<td>W</td>
<td>-32000 to 32000, unit specified in D30</td>
<td>0.00000 MPa</td>
<td>O</td>
</tr>
<tr>
<td>H21</td>
<td>AUTO SP URV</td>
<td>SP upper range value auto setup*2</td>
<td>W</td>
<td>-32000 to 32000, unit specified in D30</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>H60</td>
<td>SELF CHECK</td>
<td>Self-diagnostics</td>
<td>R</td>
<td>See A60</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>I</td>
<td>DISP SET</td>
<td>Display setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I10</td>
<td>DISP OUT1</td>
<td>LCD output 1</td>
<td>W</td>
<td>PRES, PRES %, ENGR. PRES, SP, or SP %</td>
<td>PRES %</td>
<td>O</td>
</tr>
<tr>
<td>I11</td>
<td>DISP OUT2</td>
<td>LCD output 2</td>
<td>W</td>
<td>PRES, PRES %, ENGR. PRES, SP, SP %, or ---</td>
<td>---</td>
<td>O</td>
</tr>
<tr>
<td>I12</td>
<td>DISP OUT3</td>
<td>LCD output 3</td>
<td>W</td>
<td>See I11</td>
<td>---</td>
<td>O</td>
</tr>
<tr>
<td>I13</td>
<td>DISP OUT4</td>
<td>LCD output 4</td>
<td>W</td>
<td>See I11</td>
<td>---</td>
<td>O</td>
</tr>
<tr>
<td>I20</td>
<td>P DISP MODE</td>
<td>% display mode</td>
<td>W</td>
<td>LINEAR or SQUARE ROOT</td>
<td>LINEAR</td>
<td>O</td>
</tr>
<tr>
<td>I21</td>
<td>PRES % RESO</td>
<td>% display resolution</td>
<td>W</td>
<td>NORMAL or HIGH RESOLUTION</td>
<td>NORMAL</td>
<td>O</td>
</tr>
<tr>
<td>I30</td>
<td>ENGR. UNIT</td>
<td>User set engineering unit</td>
<td>W</td>
<td>8 alphanumeric characters</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>I31</td>
<td>EASY EU SET</td>
<td>Engineering unit select</td>
<td>W</td>
<td></td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>I32</td>
<td>ENGR. EXP</td>
<td>Exponents</td>
<td>W</td>
<td>---, ×10, ×100, ×1000</td>
<td>---</td>
<td>O</td>
</tr>
<tr>
<td>I33</td>
<td>ENGR. LRV</td>
<td>User set lower range limit</td>
<td>W</td>
<td>-32000 to 32000, unit specified in I30</td>
<td>0.00</td>
<td>O</td>
</tr>
<tr>
<td>I34</td>
<td>ENGR. URV</td>
<td>User set upper range limit</td>
<td>W</td>
<td>-32000 to 32000, unit specified in I30</td>
<td>100.00</td>
<td>O</td>
</tr>
<tr>
<td>I35</td>
<td>ENGR. POINT</td>
<td>Decimal place of user set</td>
<td>W</td>
<td>0 to 4</td>
<td>1</td>
<td>O</td>
</tr>
<tr>
<td>I40</td>
<td>BAR INDICATR</td>
<td>Bar indicator</td>
<td>W</td>
<td>OFF or ON</td>
<td>ON</td>
<td>O</td>
</tr>
<tr>
<td>I41</td>
<td>POWER ON INF</td>
<td>Display when powering on</td>
<td>W</td>
<td>OFF or ON</td>
<td>ON</td>
<td>O</td>
</tr>
<tr>
<td>I60</td>
<td>SELF CHECK</td>
<td>Self-diagnostics</td>
<td>R</td>
<td>See A60</td>
<td></td>
<td>O</td>
</tr>
</tbody>
</table>

*1: R/W: R = Read only, W = Read & Write
*2: The default value shows MWPH (Maximum working pressure) of the capsule. Since the working pressure limit varies according to the Model, refer to the General Specifications section in each user's manual.
<8. Parameter Summary>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter name</th>
<th>Item</th>
<th>R/W*</th>
<th>Content</th>
<th>Default value</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>ADJUST</td>
<td>Adjusting data</td>
<td></td>
<td></td>
<td></td>
<td>F P L</td>
</tr>
<tr>
<td>J09</td>
<td>ADJ UNIT</td>
<td>Pressure adjusting unit select</td>
<td>W</td>
<td>% or PRES UNIT</td>
<td>PRES UNIT</td>
<td>O O O</td>
</tr>
<tr>
<td>J10</td>
<td>ADJ PRES</td>
<td>Adjustment reference pressure</td>
<td>R</td>
<td>Unit specified in J09</td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>J11</td>
<td>P ZERO ADJ</td>
<td>Automatic zero adjustment</td>
<td>W</td>
<td>-32000 to 32000, unit specified in J09</td>
<td>0.00000 kPa</td>
<td>O O O</td>
</tr>
<tr>
<td>J12</td>
<td>P SPAN ADJ</td>
<td>Automatic span adjustment</td>
<td>W</td>
<td>-32000 to 32000, unit specified in J09</td>
<td>100.000 kPa</td>
<td>O O O</td>
</tr>
<tr>
<td>J15</td>
<td>P ZERO DEV</td>
<td>Manual zero adjustment</td>
<td>W</td>
<td>-32000 to 32000, unit specified in J09</td>
<td>100.000 kPa</td>
<td>O O O</td>
</tr>
<tr>
<td>J16</td>
<td>P SPAN DEV</td>
<td>Manual span adjustment</td>
<td>W</td>
<td>-32000 to 32000, unit specified in J09</td>
<td>100.000 kPa</td>
<td>O O O</td>
</tr>
<tr>
<td>J20</td>
<td>ADJ SP</td>
<td>Adjustment reference pressure of SP</td>
<td>R</td>
<td>Unit specified in J09</td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>J21</td>
<td>SP ZERO ADJ</td>
<td>Automatic SP zero adjustment</td>
<td>W</td>
<td>-32000 to 32000, unit specified in J09</td>
<td>0.00000 MPa</td>
<td>O O O</td>
</tr>
<tr>
<td>J22</td>
<td>SP SPAN ADJ</td>
<td>Automatic SP span adjustment*2</td>
<td>W</td>
<td>-32000 to 32000, unit specified in J09</td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>J25</td>
<td>SP ZERO DEV</td>
<td>Manual SP zero adjustment</td>
<td>W</td>
<td>-32000 to 32000, unit specified in J09</td>
<td>0.00000 MPa</td>
<td>O O O</td>
</tr>
<tr>
<td>J26</td>
<td>SP SPAN DEV</td>
<td>Manual SP span adjustment</td>
<td>W</td>
<td>-32000 to 32000, unit specified in J09</td>
<td>0.00000 MPa</td>
<td>O O O</td>
</tr>
<tr>
<td>J40</td>
<td>OUTPUT 4mA</td>
<td>4 mA adjustment</td>
<td>W</td>
<td>-10.000 to 10.000%</td>
<td>0.000%</td>
<td>O O O</td>
</tr>
<tr>
<td>J41</td>
<td>OUTPUT 20mA</td>
<td>20 mA adjustment</td>
<td>W</td>
<td>-10.000 to 10.000%</td>
<td>0.000%</td>
<td>O O O</td>
</tr>
<tr>
<td>J45</td>
<td>AMP TEMP</td>
<td>Amplifier temperature</td>
<td>R</td>
<td>Unit specified D40</td>
<td>0 degC</td>
<td>O O O</td>
</tr>
<tr>
<td>J50</td>
<td>ADJ WHO</td>
<td>Adjustment information</td>
<td>W</td>
<td>8 alphanumeric characters</td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>J51</td>
<td>ADJ DATE</td>
<td>Adjustment information</td>
<td>W</td>
<td>16 alphanumeric characters</td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>J52</td>
<td>ADJ LOC</td>
<td>Adjustment information</td>
<td>W</td>
<td>8 alphanumeric characters</td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>J53</td>
<td>ADJ DESC</td>
<td>Adjustment information</td>
<td>W</td>
<td>16 alphanumeric characters</td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>J55</td>
<td>EXT ZERO ADJ</td>
<td>External zeroing permission</td>
<td>W</td>
<td>INHIBIT or ENABLE</td>
<td>ENABLE</td>
<td>O O O</td>
</tr>
<tr>
<td>J56</td>
<td>CLEAR ADJ</td>
<td>Clear adjustment</td>
<td>W</td>
<td>---, PRES, SP, 4-20mA, or ALL</td>
<td>---</td>
<td>O O O</td>
</tr>
<tr>
<td>J60</td>
<td>SELF CHECK</td>
<td>Self-diagnostics</td>
<td>R</td>
<td>See A60</td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>K10</td>
<td>OUTPUT X %</td>
<td>Test output % setting</td>
<td>W</td>
<td>Within a range between D20 and D21</td>
<td>0.00%</td>
<td>O O O</td>
</tr>
<tr>
<td>K40</td>
<td>DO TEST</td>
<td>Test contact output</td>
<td>W</td>
<td>OFF or ON</td>
<td>OFF</td>
<td>O O O</td>
</tr>
<tr>
<td>K45</td>
<td>TEST TIME</td>
<td>“OUTPUT X %” and “DO TEST” duration time selection</td>
<td>W</td>
<td>10 min, 30 min, 60 min, 3 hour, 6 hour, 12 hour</td>
<td>10 min</td>
<td>O O O</td>
</tr>
<tr>
<td>K50</td>
<td>TEST KEY1</td>
<td>Special maintenance parameter</td>
<td>W</td>
<td></td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>K51</td>
<td>TEST KEY2</td>
<td>Special maintenance parameter</td>
<td>W</td>
<td></td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>K52</td>
<td>TEST KEY3</td>
<td>Special maintenance parameter</td>
<td>W</td>
<td></td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>K53</td>
<td>TEST KEY4</td>
<td>Special maintenance parameter</td>
<td>W</td>
<td></td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>K60</td>
<td>SELF CHECK</td>
<td>Self-diagnostics</td>
<td>R</td>
<td>See A60</td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>M</td>
<td>DEVICE INFO</td>
<td>Device information</td>
<td></td>
<td></td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>M10</td>
<td>SERIAL NO.</td>
<td>Serial number</td>
<td>R</td>
<td></td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>M11</td>
<td>MFTR. DATE</td>
<td>Manufactured date</td>
<td>R</td>
<td></td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>M12</td>
<td>EXTRA NO.</td>
<td>Customization number</td>
<td>R</td>
<td></td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>M15</td>
<td>SOFT REV</td>
<td>Software revision</td>
<td>R</td>
<td></td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>M16</td>
<td>BRAIN REV</td>
<td>BRAIN protocol revision</td>
<td>R</td>
<td></td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>M17</td>
<td>MEMO1</td>
<td>Memo</td>
<td>W</td>
<td>16 alphanumeric characters</td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>M18</td>
<td>MEMO2</td>
<td>Memo</td>
<td>W</td>
<td>16 alphanumeric characters</td>
<td></td>
<td>O O O</td>
</tr>
<tr>
<td>M19</td>
<td>MEMO3</td>
<td>Memo</td>
<td>W</td>
<td>16 alphanumeric characters</td>
<td></td>
<td>O O O</td>
</tr>
</tbody>
</table>

*1: R/W: R = Read only, W = Read & Write
*2: The default value shows MWP (Maximum working pressure) of the capsule. Since the working pressure limit varies according to the Model, refer to the General Specifications section in each user’s manual.
<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter name</th>
<th>Item</th>
<th>R/W</th>
<th>Content</th>
<th>Default value</th>
<th>Applicable model</th>
<th>Updated date</th>
</tr>
</thead>
<tbody>
<tr>
<td>M20</td>
<td>ISOL MATL</td>
<td>Capsule material</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M21</td>
<td>FILL FLUID</td>
<td>Fill fluid</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M22</td>
<td>GASKET MATL</td>
<td>Gasket material</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M23</td>
<td>PRO CON MATL</td>
<td>Flange material</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M24</td>
<td>D-VENT MATL</td>
<td>Vent plug material</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M25</td>
<td>PRO CON TYPE</td>
<td>Process connection type</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M26</td>
<td>RS ISOL MATL</td>
<td>Remote seal material</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M27</td>
<td>PRO CON SIZE</td>
<td>Flange size</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M28</td>
<td>NUM RS</td>
<td>Number of remote seal</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M29</td>
<td>RS FILL FLUID</td>
<td>Fill fluid of remote seal</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M30</td>
<td>RS TYPE</td>
<td>Remote seal type</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M50</td>
<td>MS CODE 1</td>
<td>Model and suffix code 1</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M51</td>
<td>MS CODE 2</td>
<td>Model and suffix code 2</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M52</td>
<td>MS CODE 3</td>
<td>Model and suffix code 3</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M53</td>
<td>MS CODE 4</td>
<td>Model and suffix code 4</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M54</td>
<td>MS CODE 5</td>
<td>Model and suffix code 5</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M55</td>
<td>MS CODE 6</td>
<td>Model and suffix code 6</td>
<td>W</td>
<td></td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>M60</td>
<td>SELF CHECK</td>
<td>Self-diagnostics</td>
<td>R</td>
<td>See A60</td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
</tbody>
</table>

P Record History of errors

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter name</th>
<th>Item</th>
<th>R/W</th>
<th>Content</th>
<th>Default value</th>
<th>Applicable model</th>
<th>Updated date</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10</td>
<td>ERROR REC 1</td>
<td>Last error</td>
<td>W</td>
<td>See A60</td>
<td>GOOD</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>P12</td>
<td>ERROR REC 2</td>
<td>Second recent error</td>
<td>W</td>
<td>See A60</td>
<td>GOOD</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>ERROR REC 3</td>
<td>Third recent error</td>
<td>W</td>
<td>See A60</td>
<td>GOOD</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>P16</td>
<td>ERROR REC 4</td>
<td>Forth recent error</td>
<td>W</td>
<td>See A60</td>
<td>GOOD</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>P60</td>
<td>SELF CHECK</td>
<td>Self-diagnostics</td>
<td>R</td>
<td>See A60</td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
</tbody>
</table>

T CHARACTERIZR Signal characterizer setting

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter name</th>
<th>Item</th>
<th>R/W</th>
<th>Content</th>
<th>Default value</th>
<th>Applicable model</th>
<th>Updated date</th>
</tr>
</thead>
<tbody>
<tr>
<td>T10</td>
<td>S. C. ENABLE</td>
<td>Signal characterizer permission</td>
<td>W</td>
<td>INHIBIT or ENABLE</td>
<td>INHIBIT</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T11</td>
<td>NUM OF POINT</td>
<td>Number of coordinates</td>
<td>W</td>
<td>0 to 9</td>
<td>0</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T20</td>
<td>X START (FIX)</td>
<td>Start point of X</td>
<td>R</td>
<td>0.00%</td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T21</td>
<td>Y START (FIX)</td>
<td>Start point of Y</td>
<td>R</td>
<td>0.00%</td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T22</td>
<td>X1</td>
<td>Coordinate 1 of X</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>10.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T23</td>
<td>Y1</td>
<td>Coordinate 1 of Y</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>10.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T24</td>
<td>X2</td>
<td>Coordinate 2 of X</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>20.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T25</td>
<td>Y2</td>
<td>Coordinate 2 of Y</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>20.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T26</td>
<td>X3</td>
<td>Coordinate 3 of X</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>30.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T27</td>
<td>Y3</td>
<td>Coordinate 3 of Y</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>30.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T28</td>
<td>X4</td>
<td>Coordinate 4 of X</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>40.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T29</td>
<td>Y4</td>
<td>Coordinate 4 of Y</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>40.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T30</td>
<td>X5</td>
<td>Coordinate 5 of X</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>50.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T31</td>
<td>Y5</td>
<td>Coordinate 5 of Y</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>50.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T32</td>
<td>X6</td>
<td>Coordinate 6 of X</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>60.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T33</td>
<td>Y6</td>
<td>Coordinate 6 of Y</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>60.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T34</td>
<td>X7</td>
<td>Coordinate 7 of X</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>70.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T35</td>
<td>Y7</td>
<td>Coordinate 7 of Y</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>70.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T36</td>
<td>X8</td>
<td>Coordinate 8 of X</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>80.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T37</td>
<td>Y8</td>
<td>Coordinate 8 of Y</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>80.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T38</td>
<td>X9</td>
<td>Coordinate 9 of X</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>90.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T39</td>
<td>Y9</td>
<td>Coordinate 9 of Y</td>
<td>W</td>
<td>0.00 to 100.00%</td>
<td>90.00</td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T40</td>
<td>X END (FIX)</td>
<td>End point of X</td>
<td>R</td>
<td>100.00%</td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T41</td>
<td>Y END (FIX)</td>
<td>End point of Y</td>
<td>R</td>
<td>100.00%</td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
<tr>
<td>T60</td>
<td>SELF CHECK</td>
<td>Self-diagnostics</td>
<td>R</td>
<td>See A60</td>
<td></td>
<td>F P L</td>
<td></td>
</tr>
</tbody>
</table>

*1: R/W: R = Read only, W = Read & Write
*2: The default value shows MWP (Maximum working pressure) of the capsule.
Since the working pressure limit varies according to the Model, refer to the General Specifications section in each user’s manual.
Revision Information

- **Title**: EJX and EJA-E Series
 Differential Pressure and Pressure Transmitters Installation Manual
- **Manual No.**: IM 01C25A01-01E

<table>
<thead>
<tr>
<th>Edition</th>
<th>Date</th>
<th>Page</th>
<th>Revised Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Aug. 2009</td>
<td>New publication</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Apr. 2010</td>
<td>7 to 14</td>
<td>2.4 Add limitation of ambient temperature for HE.</td>
</tr>
</tbody>
</table>
| 3rd | Oct. 2010 | 1, 5 and 15 | 1. Add EJX610A and EJX630A.
 | 1. Add HART 7 manual.
 | 3. Add EJX630A.
 | 4. Modify pictures of cable gland.
 | 5. Add parameters for EJX900A (Dev.rev.2). |
| 4th | Aug. 2011 | 1 | 1. Modify Table 1.1.
 | 2.4.3 Alter the note (*1) for name plate.
 | 5.2.2 Change the picture of configuration tool.
 | 5.2.4 Add note (*3).
 | 7. Add HART protocol revision 7 to NOTE.
 | 7. Modify Table 7.2.
 | 8. Add HART protocol revision 7 and EJX910A/EJX930A to NOTE.
 | Delete the Menu Tree for EJX910A/EJX930A. |
 | Add table for EJA to Table 1.1. Add note for representation of model name.
 | Revise ATEX approval.
 | Add models to PED table.
 | Add parameters and notes. |
| 7th | Jun. 2013 | — | Add PROFIBUS PA.
 | Add note for multiple approval option.
 | Replace ATEX type n by ATEX Ex ic.
 | Add EJA110E with /HG to PED table.
 | Modify note for installation height. |
| 8th | June 2014 | 2 | 1. Add note for symbols.
 | 2.4.2 Revise category for CSA Nonincendive.
 | 2.7 Update safety requirement standard.
 | 5. Revise drawings and symbols for terminal.
 | 5.2.1 Add note for power supply.
 | 6.3 Add local parameter setting function. |
[System Requirements]
OS : Microsoft Windows XP (Professional), Microsoft Windows 7
CPU : Pentium 300 MHz or higher
RAM : 128 MB or more
Display : 800 x 600 SVGA or higher, 256 colors

[Contents]
This CD-R contains information in PDF format that is necessary for safe and effective operation of the product.

[Trademarks]
Microsoft, MS-DOS, Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Other company and product names are trademarks or registered trademarks of their respective holders.

YOKOGAWA

www.yokogawa.com/fld/

WARNING: This CD contains software, and is for use in a computer only. Do not play this on an audio CD player, as the high volume may damage your hearing or audio speakers.

Copyright © 2009 Yokogawa Electric Corporation. All Rights Reserved.