User's Manual

Ladder Communication Modules

IM 34M06H22-02E

vigilantplant.

Applicable Modules:

Model Code Model Name

F3RZ81-0F Ladder Communication Module F3RZ82-0F Ladder Communication Module F3RZ91-0F Ladder Communication Module

Applicable Product

• Range-free Multi-controller FA-M3

Model: F3RZ81-0F, F3RZ82-0F, F3RZ91-0FName: Ladder Communication Module

The document number for this manual is given below.

Refer to the document number in all communications, including when purchasing additional copies of this manual.

Document No.: IM 34M06H22-02E

Important

■ About This Manual

- This Manual should be passed on to the end user.
- Before using the controller, read this manual thoroughly to have a clear understanding of the controller.
- This manual explains the functions of this product, but there is no guarantee that they will suit the particular purpose of the user.
- Under absolutely no circumstances may the contents of this manual be transcribed or copied, in part or in whole, without permission.
- The contents of this manual are subject to change without prior notice.
- Every effort has been made to ensure accuracy in the preparation of this manual. However, should any errors or omissions come to the attention of the user, please contact the nearest Yokogawa Electric representative or sales office.

■ Safety Symbols

Danger. This symbol on the product indicates that the operator must follow the
instructions laid out in this user's manual to avoid the risk of personnel injuries,
fatalities, or damage to the instrument. Where indicated by this symbol, the manual
describes what special care the operator must exercise to prevent electrical shock
or other dangers that may result in injury or the loss of life.

Protective Conductor Terminal

This terminal is to prevent electric shock. Before using the instrument, connect to the Protective earth (Comply with the regulation of each country.), and route the line through the shortest path possible.

- Functional Earth Terminal

This terminal is for stable operation. Before using the instrument, be sure to ground this terminal.

Alternating current. Indicates alternating current.

- Direct current. Indicates direct current.

The following symbols are used only in the user's manual.

WARNING

- Indicates a "Warning".

Draws attention to information essential to prevent hardware damage, software damage or system failure.

(AUTION

- Indicates a "Caution"

Draws attention to information essential to the understanding of operation and functions.

TIP

Indicates a "TIP"

Gives information that complements the present topic.

SEE ALSO

Indicates a "SEE ALSO" reference.

Identifies a source to which to refer.

■ Safety Precautions when Using/Maintaining the Product

- For the protection and safe use of the product and the system controlled by it, be sure to follow the instructions and precautions on safety stated in this manual whenever handling the product. Take special note that if you handle the product in a manner other than prescribed in these instructions, the protection feature of the product may be damaged or impaired. In such cases, Yokogawa cannot guarantee the quality, performance, function and safety of the product.
- When installing protection and/or safety circuits such as lightning protection devices and equipment for the product and control system as well as designing or installing separate protection and/or safety circuits for fool-proof design and fail-safe design of processes and lines using the product and the system controlled by it, the user should implement it using devices and equipment, additional to this product.
- If component parts or consumable are to be replaced, be sure to use parts specified by the company.
- This product is not designed or manufactured to be used in critical applications which directly affect or threaten human lives and safety such as nuclear power equipment, devices using radioactivity, railway facilities, aviation equipment, shipboard equipment, aviation facilities or medical equipment. If so used, it is the user's responsibility to include in the system additional equipment and devices that ensure personnel safety.
- Do not attempt to modify the product.
- To avoid electrical shock, turn off the power before wiring.
- This product is classified as Class A for use in industrial environments. If used in a residential environment, it may cause electromagnetic interference (EMI).

In such situations, it is the user's responsibility to adopt the necessary measures against EMI.

■ Exemption from Responsibility

- Yokogawa Electric Corporation (hereinafter simply referred to as Yokogawa Electric) makes no warranties regarding the product except those stated in the WARRANTY that is provided separately.
- Yokogawa Electric assumes no liability to any party for any loss or damage, direct or indirect, caused by the use or any unpredictable defect of the product.

■ Software Supplied by the Company

- Yokogawa Electric makes no other warranties expressed or implied except as provided in its warranty clause for software supplied by the company.
- Use the software with one computer only. You must purchase another copy of the software for use with each additional computer.
- Copying the software for any purposes other than backup is strictly prohibited.
- Store the original media that contain the software in a safe place.
- Reverse engineering, such as decompiling of the software, is strictly prohibited.
- Under absolutely no circumstances may the software supplied by Yokogawa Electric be transferred, exchanged, or sublet or leased, in part or as a whole, for use by any third party without prior permission by Yokogawa Electric.

General Requirements for Using the FA-M3 / e-RT3 Controller

• Set the product in a location that fulfills the following requirements:

- Where the product will not be exposed to direct sunlight, and where the operating surrounding air temperature is from 0°C to 55°C (32°F to 131°F).
 - There are modules that must be used in an environment where the operating surrounding air temperature is in a range smaller than 0°C to 55°C (32°F to 131°F). Refer to "Hardware Manual" (IM 34M06C11-01E) or the applicable user's manual. In case of attaching such a module, the entire system's operating surrounding air temperature is limited to the module's individual operating surrounding air temperature.
- Where the relative humidity is from 10 to 90%.
 - In places where there is a chance of condensation, use a space heater or the like to constantly keep the product warm and prevent condensation.
- For use in Pollution Degree 2 Environment.
- Where there are no corrosive or flammable gases.
- Where the product will not be exposed to mechanical vibration or shock that exceed specifications.
- Where there is no chance the product may be exposed to radioactivity.

Use the correct types of wire for external wiring:

- USE COPPER CONDUCTORS ONLY.
- Use conductors with temperature rating above 75°C.

Securely tighten screws:

- Securely tighten module mounting screws and terminal screws to avoid problems such as faulty operation.
- Tighten terminal block screws with the correct tightening torque as given in this manual. Refer to the "Hardware Manual" (IM 34M06C11-01E) or the applicable user's manual for the appropriate tightening torque.

Securely lock connecting cables:

- Securely lock the connectors of cables, and check them thoroughly before turning on the power.

• Interlock with emergency-stop circuitry using external relays:

- Equipment incorporating the FA-M3 / e-RT3 controller must be furnished with emergency-stop circuitry that uses external relays. This circuitry should be set up to interlock correctly with controller status (stop/run).

• Ground for low impedance:

- For safety reasons, connect the [FG] grounding terminal to a protective earth (Comply with the regulation of each country.). For compliance to CE Marking, use braided or other wires that can ensure low impedance even at high frequencies for grounding.

Configure and route cables with noise control considerations:

 Perform installation and wiring that segregates system parts that may likely become noise sources and system parts that are susceptible to noise. Segregation can be achieved by measures such as segregating by distance, installing a filter or segregating the grounding system.

• Configure for CE Marking Conformance:

- For compliance to CE Marking, perform installation and cable routing according to the description on compliance to CE Marking in the "Hardware Manual" (IM 34M06C11-01E).
- The list of CE conforming models is available in Appendix A2. of "Hardware Manual".

• Keep spare parts on hand:

- We recommend that you stock up on maintenance parts, including spare modules, in advance.
- Preventive maintenance (replacement of the module) is required for using the module beyond 10 years.

• Discharge static electricity before touching the system:

- Because static charge can accumulate in dry conditions, first touch grounded metal to discharge any static electricity before touching the system.

• Wipe off dirt with a soft cloth:

- Gently wipe off dirt on the product's surfaces with a soft cloth.
- If you soak the cloth in water or a neutral detergent, tightly wring it out before wiping the product. Letting water enter the module interior can cause malfunctions.
- Do not use volatile solvents such as benzine or paint thinner or chemicals for cleaning, as they may cause deformity, discoloration, or malfunctioning.

Avoid storing the FA-M3 /e-RT3 controller in places with high temperature or humidity:

- Since the CPU module has a built-in battery, avoid storage in places with high temperature or humidity.
- Since the service life of the battery is drastically reduced by exposure to high temperatures, take special care (storage surrounding air temperature should be from -20°C to 75°C).
- There is a built-in lithium battery in a Sequence CPU module which serves as backup power supply for programs, device information and configuration information.

The service life of this battery is more than 10 years in standby mode at room temperature. Take note that the service life of the battery may be shortened when installed or stored at locations of extreme low or high temperatures. Therefore, we recommend that modules with built-in batteries be stored at room temperature.

• Always turn off the power before installing or removing modules:

- Failing to turn off the power supply when installing or removing modules, may result in damage.

Do not touch components in the module:

 In some modules you can remove the right-side cover and install ROM packs or change switch settings. While doing this, do not touch any components on the printed-circuit board, otherwise components may be damaged and modules may fail to work.

Do not use unused terminals:

- Do not connect wires to unused terminals on a terminal block or in a connector. Doing so may adversely affect the functions of the module.

• Use the following power source:

- Use only F3PU□□-□□ as the power supply module.
- If using this product as a UL-approved product, for the external power supply, use a limited voltage / current circuit power source or a Class 2 power source.

Refer to the user's manual before connecting wires:

- Refer to the "Hardware Manual" (IM 34M06C11-01E) or the applicable user's manual for the external wiring drawing.
- Refer to "A3.6.5 Connecting Output Devices" in the "Hardware Manual" before connecting the wiring for the output signal.
- Refer to "A3.5.4 Grounding Procedure" in the "Hardware Manual" for attaching the grounding wiring.

• Authorized Representative:

- The Authorized Representative for this product in the EEA is:

Yokogawa Europe B. V.

Euroweg 2, 3825 HD Amersfoort, The Netherlands

■ General Requirements for Using the FA-M3 Slave Units (TAH Series)

• Connect YHLS cable to SHIELD terminal:

 Connect the DRAIN line of the YHLS cable to the SHIELD terminal of the YHLS master module securely. Failing to do so may affect the performance of the YHLS system.

Do not touch components in the unit:

- Do not remove the back cover of the unit. Doing so may cause a failure.

How to dispose the batteries

This is an explanation about the new EU Battery Directive. This directive is only valid in the EU.

Batteries are included in some modules of this product. The procedure is different when the user can remove or cannot remove.

①Batteries the user can remove

The battery of F3RP6□ can be removed by yourself.

When you remove the battery from F3RP6 and dispose it, discard them in accordance with domestic law concerning disposal. See the User's Manual of F3RP6 for the removal procedure. Take a right action on waste batteries, because the collection system in the EU on waste batteries are regulated. If you don't remove the battery from this product, please see ②.

②Batteries the user cannot remove

Dispose the battery together with this product.

When you dispose this product in the EU, contact your local Yokogawa Europe B.V.office.

Do not dispose them as domestic household waste.

Battery category: Lithium battery

Note: With reference to Annex II of the new EU Battery Directive, the above symbol indicates obligatory separate collection.

Introduction

Overview of the Manual

This manual describes the specifications, operations, and communications protocol of the ladder communication modules F3RZ81-0F, F3RZ82-0F, and F3RZ91-0F.

■ Related Instruction Manuals

The manuals to be referred are depends on the CPU module used. Read the following manuals as required.

F3SP71, F3SP76

For Functions:

- Sequence CPU Instruction Manual Functions (for F3SP71-4N/4S, F3SP76-7N/7S) (IM34M06P15-01E)
- Sequence CPU Network Functions (for F3SP71-4N/4S, F3SP76-7N/7S) (IM34M06P15-02E)

• For ladder programming:

- FA-M3 Programming Tool WideField3 (IM34M06Q16-01E, -02E, -03E, -04E)

F3SP66, F3SP67

For Functions:

- Sequence CPU Functions (for F3SP66-4S, F3SP67-6S) (IM34M06P14-01E)
- Sequence CPU Network Functions (for F3SP66-4S, F3SP67-6S) (IM34M06P14-02E)

For ladder programming:

- FA-M3 Programming Tool WideField3 (IM34M06Q16-01E, -02E, -03E, -04E)

F3SP22, F3SP28, F3SP38, F3SP53, F3SP58, F3SP59

• For Functions:

- Sequence CPU Modules - Functions (for F3SP22-0S, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S) (IM34M06P13-01E)

For ladder programming:

- FA-M3 Programming Tool WideField2 (IM34M06Q15-01E)
- FA-M3 Programming Tool WideField3 (IM34M06Q16-01E, -02E, -03E, -04E)

F3BP20, F3BP30

• For Functions:

- BASIC CPU Module and YM-BASIC/FA Programming Language (IM34M06Q22-01E)

For BASIC programming:

- BASIC Programming Tool M3 for Windows (IM 34M06Q22-02E)

Common for all Sequence CPU Modules

For information on the specifications and configuration^{*1}, installation and wiring, test runs, maintenance and inspection of the FA-M3, and system-wide restrictions on module installation, see:

- *1: For product specifications of products other than power supply modules, base modules, I/O modules, cables and terminal block units, see their respective manuals.
- Hardware Manual (IM 34M06C11-01E)

IM 34M06H22-02E 3rd Edition : Apr.11, 2016-00

Copyrights and Trademarks

Copyrights

The copyright of the programs and online manuals contained in the software medium of the Software Product shall remain in YOKOGAWA.

You are allowed to print the required pages of the online manuals for the purposes of using or operating the Product; however, reprinting or reproducing the entire document is strictly prohibited by the Copyright Law.

Except as stated above, no part of the online manuals may be reproduced, transferred, sold, or distributed to a third party in any manner (either in electronic or written form including, without limitation, in the forms of paper documents, electronic media, and transmission via the network). Nor it may be registered or recorded in the media such as films without permission.

■ Trademarks

The trade names and company names referred to in this manual are either trademarks or registered trademarks of their respective companies.

IM 34M06H22-02E 3rd Edition : Apr.11, 2016-00

FA-M3

Ladder Communication Module

Part A: F3RZ81-0F/F3RZ82-0F

IM 34M06H22-02E 3rd Edition

CONTENTS

	App	licabl	e Product	i
	lmp	ortant		ii
	•		on	
	Cop	yright	ts and Trademarks	xii
Part A:	: F 3F	RZ81	-0F/F3RZ82-0F	
	A1.	Over	view	A1-1
	A2.	. Specifications		A2-1
	, .	A2.1	Standard Specifications	
			■ Model and Suffix Codes	
			Operating Environment	
			General Specifications	
			■ Physical Specifications	A2-1
			■ Function Specifications	A2-1
			■ Components and Functions	A2-2
			■ External Dimensions	
		A2.2	Switch Setup	
			Switches on the Module	
		A2.3	External Wiring	
			■ Connector Pin Assignment	A2-6
			■ Directly Connecting to an RS-232-C Device, or DTE (data terminal equipment)	A2-7
			■ Connecting to a Modem, or DCE (data communications equipment)	Δ2 - 8
		A2.4	Attaching/Detaching the Module	
	A3.	List	of I/O Relays	A3-1
	,	A3.1	Output Relays	
		A3.2	Input Relays	
	A4.	List	of Data Areas	A4-1
		A4.1	Communications Mode Areas	A4-2
			■ Communications Mode Setup Area	A4-2
			■ Communications Mode Status Area	A4-3
		A4.2	Send and Receive Data Areas	A4-6
	۸5	Start	un Proparation	۸5_1

A6.	Data	Communications	A6-1
	A6.1	Format of Received Text	A6-1
	A6.2	Break Signal	A6-3
A7.	Prog	ramming	A7-1
	A7.1	Communications Mode Areas	A7-1
	A7.2	Initializing Receive Buffer	A7-4
	A7.3	Sending Data	A7-5
	A7.4	Receiving Data	A7-7
A8.	Trou	bleshooting	A8-1
	A8.1	RDY LED is not Lit	A8-2
	A8.2	Send Failure	A8-3
	A8.3	Receive Failure	A8-4
App	endix	A1. ASCII Code Table	Appx. A1-1
Inde	ex		Index A-1
Rev	ision	Information	xiii

A1. Overview

The Ladder Communication module can be used with an FA-M3 CPU module for RS-232-C communications. The F3RZ81-0F has one and the F3RZ82-0F has two D-sub 9-pin connectors, or ports, which support a maximum transmission distance of 15 m. Each port operates independently and a communications error at one port does not affect the operation of the other port.

Any input relay of the Ladder Communication module may be used to raise an interrupt.

Table A1.1 Models of Ladder Communication Module

Model	Description
F3RZ81-0F	RS-232-C ladder communication module, one port
F3RZ82-0F	RS-232-C ladder communication module, two ports

A2. Specifications

A2.1 Standard Specifications

■ Model and Suffix Codes

Model	Suffix Code	Style Code	Option Code	Description
F3RZ81	-0F			Max 115.2 kbps, one RS-232-C port
F3RZ82	-0F			Max 115.2 kbps, two RS-232-C ports

■ Operating Environment

The F3RZ81-0F and F3RZ82-0F may be used with all CPU modules.

■ General Specifications

Item	Specifications	Item	Specifications
Operating temperature	0 to 55°C	Storage temperature	-20 to 75°C
Operating humidity	10 to 90% RH (non-condensing)	Storage humidity	10 to 90% RH (non-condensing)
Operating environment	Must of free of corrosive gases, flammable gases and heavy dust		

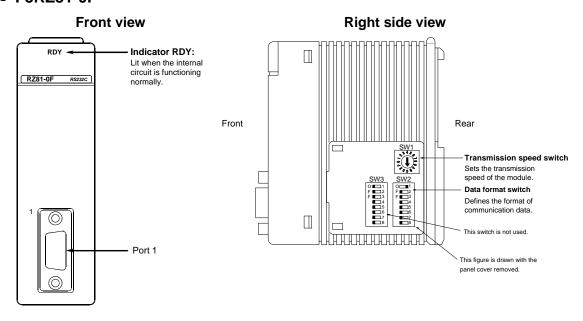
■ Physical Specifications

Item	Specifications		Item	Specifications	
Interface	EIA RS-232-C compliant		Current consumption	F3RZ81-0F	320 mA
IIILEIIACE				F3RZ82-0F	350 mA
Number of parts	F3RZ81-0F	1 (not isolated)	External dimensions 28.9 (W) x 100 (H) x 83.2 (D)		1) v 93 3 (D) mm*
Number of ports	F3RZ82-0F	2 (not isolated)	External dimensions	20.9 (VV) X 100 (H) X 63.2 (D)	
Transmission	15 m max.		Weight	F3RZ81-0F	120 g
distance				F3RZ82-0F	120 g
Connector	D-Sub 9-pin (fer	nale), M2.6 (mm)			

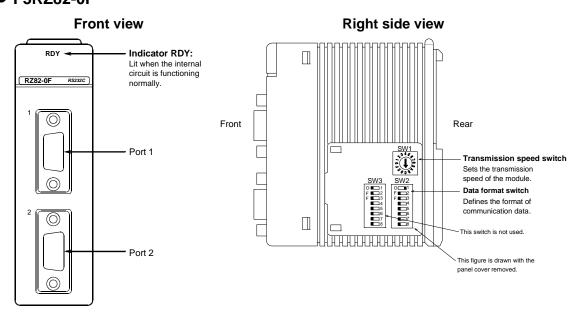
^{*:} Dimensions excluding protrusions. For details, see the External Dimensions drawing.

■ Function Specifications

Item		Specifications	Default
Connection method		Point to point	_
Transmission mo	de	Full-duplex/half-duplex	_
Synchronization		Start-stop synchronization	_
Communication p	rotocol	No protocol	_
	Character length	7 or 8 bits	*1 (see next page)
Data format	Stop bits	1 or 2 bits	*1 (see next page)
Ì	Parity bit	None, even or odd	*1 (see next page)
Transmission spe	eed	300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, or 115200 bps	*2
	RS control	(1) Always on. (2) Turn on before sending.	(1)
Control lines	DR check	(1) Ignore DR when sending. (2) Send only when DR is on.	(1)
Control lines	CD check	(1) Ignore CD when sending. (2) Send only when CD is off.	(1)
	ER control	(1) On (ready) (2) Off (not ready)	(1)
Communication	Send buffer	Text buffer (3584 bytes max.)*3	_
buffer	Receive buffer	8192-byte rotary buffer (FIFO buffer)	_
Format of	Start character	- Yes or no - Any single character	No
received text	End character (terminator)	- Yes or no - Up to 2 characters long, any characters	\$0D and \$0A (CR-LF)

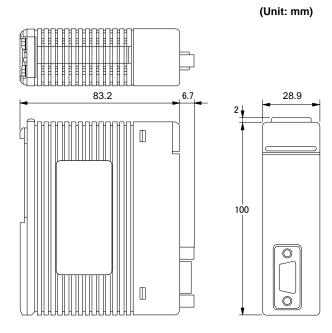

IM 34M06H22-02E 3rd Edition : Apr.11, 2016-00

Item		Specifications	Default	
Format of	Text length	Can be specified as any number between 1 and 3584 ^{*3} .	1024	
received text	Character-to-character	0 to 32760 ms in 1 ms increments,	1.5 s	
received text	timeuot interval	accurate to 1 ms (0 means not monitored)		
I (lear-to-send timeout interval		0 to 32760 ms in 1 ms increments,	Monitored	
		accurate to 1 ms (0 means not monitored)	(30 s)	
Break transmission interval		1 to 32760 ms in 1 ms increments, accurate to 1 ms	400 ms	

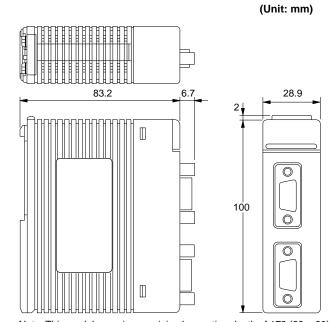

- *1: Default values are set with the data format switch (SW2).
- *2: Default values are set with the transmission speed switch (SW1).
 *3: The send/receive data register size can be changed to accommodate up to 3584 bytes.

■ Components and Functions

• F3RZ81-0F



• F3RZ82-0F



■ External Dimensions

• F3RZ81-0F

• F3RZ82-0F

Note: This module requires a minimal mounting depth of 173 (83 + 90) mm so that it can be comfortably installed on the base module and attached with an external RS-232-C connector and cable, with adequate space to accommodate the bending radius of the cable.

A2.2 Switch Setup

■ Switches on the Module

Always set the three switches on the side of the F3RZ81-0F/F3RZ82-0F module before installing it on the FA-M3 base module. See Figure A2.1 for the switch names and locations.

● Right side view (F3RZ82-0F)

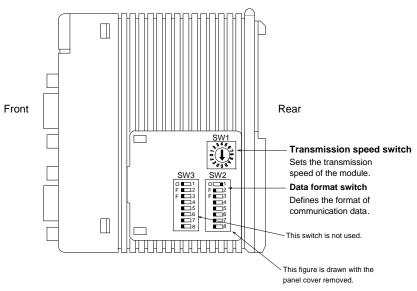


Figure A2.1 F3RZ81-0F/F3RZ82-0F Switches

Transmission speed switch (SW1)

This is a hexadecimal rotary switch for setting up the transmission speed of the module. You can set the switch by inserting a small flat-blade screwdriver in its arrow-shaped slit and rotating it to a desired position between 1 and C (positions D to F are not available). The factory setting is 'C' (= 115.2 kbps).

SW1	Transmission	Remarks
Position	speed (bps)	Kellidiks
0	300	
1	600	
2	1200	
3	2400	
4	4800	
5	9600	
6	14400	
7	19200	
8	22800	
9	38400	
Α	57.6K	
В	76.8K	
С	115.2K	Factory setting
D-F		Not available

⁻ The setting with SW1 applies to both port 1 and port 2.

Figure A2.2 F3RZ81-0F/F3RZ82-0F Transmission speed Switch

The SW1 setting may be changed by software for an individual port.

Data format switch (SW2)

This is an 8-element DIP switch for defining a character frame. Elements 1-4 may be set to either the ON or OFF position to define character length, parity and stop bits. The factory setting has element 1 set to ON and elements 2-8 set to OFF.

SW2 Elements Function		OFF	ON
1	Character length	7 bits	8 bits
2	Dority	No	Yes
3	Parity	Odd	Even
4	Stop bits	1 bit	2 bits
5	Not used		
6	Not used		
7	Not used		
8	Not used		

8 bits ON

No parity OFF

---- OFF

1 bit OFF

---- OFF

---- OFF

---- OFF

---- OFF


Default

- The SW2 setting applies to both port 1 and port 2.
- The SW2 setting may be changed by software for an individual port.
- SW2-3 is available only when SW2-2 is set to ON (= using parity).
- Always set SW2-5 to SW2-8 to OFF.

Figure A2.3 F3RZ81-0F/F3RZ82-0F Data Format Switch

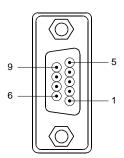
Reserved switch (SW3)

The F3RZ81-0F/F3RZ82-0F does not use the SW3 switch. The module must be used with all elements of this switch set to OFF (factory setting).

SW3 Elements	Function	OFF	ON
1	Not used		
2	Not used		
3	Not used		
4	Not used		
5	Not used		
6	Not used		
7	Not used		
8	Not used		

Default	
	OFF
·	OFF
	OFF

Figure A2.4 F3RZ81-0F/F3RZ82-0F Reserved Switch


CAUTION

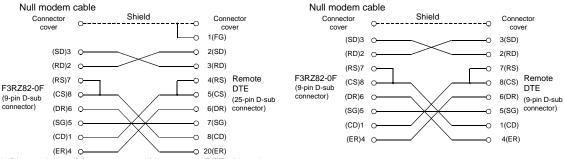
Ensure that all unused switch elements are set to OFF.

A2.3 External Wiring

■ Connector Pin Assignment

Front view of the connector on the module

9-pin D-sub connector (female)


Pin No.	Symbol	Signal	Direction FA-M3 Remote	Signal Monitored	Description
1	CD	Data carrier detect	←	Yes	Sends data as follows: (1) Ignore CD when sending (default), or (2) Send only when CD is off.
2	RD	Receive data	←	No	
3	SD	Send data	\rightarrow	No	
4	ER	Data terminal ready	\rightarrow	No	(1) On when powered (default), or(2) On or off by software.
5	SG	Signal ground	\longleftrightarrow	No	
6	DR	Data set ready	+	Yes	Used to check whether the remote station is ready to receive data. (1) Ignore DR when sending (default), or (2) Send only when DR is on.
7	RS	Request to send	\rightarrow	No	Used when sending data to the remote station. (1) Always on (default), or (2) Turn on before sending data.
8	CS	Clear to send	←	Yes	Clear-to-send signal from a remote device. The module can send data only when this signal is on.
9	_	Not used	_	No	

^{*:} Option (1) or (2) can be selected using a program.

IM 34M06H22-02E

3rd Edition : Apr.11, 2016-00

Directly Connecting to an RS-232-C Device, or DTE (data terminal equipment)

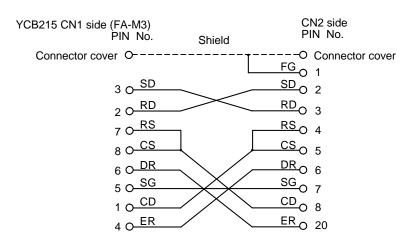
^{*:} Pin numbers of the connector of the remote DTE shown in this diagram assumes a 25-pin D-sub connector. An example of such a cable is YOKOGAWA's YCB cable.

Figure A2.5 Wiring to 25-pin D-sub Connector

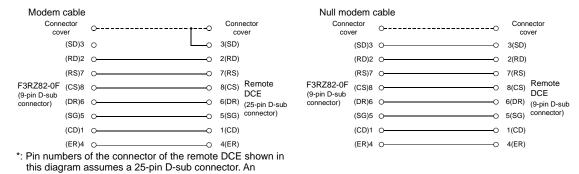
Figure A2.6 Wiring to 9-pin D-sub Connector

How to treat the shield

- 1. Ensure that the connector for the connection cable has a metal or metal-clad cover. Connect the shield directly to the cover.
- 2. The connector shell of the F3RZ81-0F/F3RZ82-0F is internally connected to the Frame Ground terminal (FG) of the FA-M3 power supply module.


Recommended connection cable

YOKOGAWA's null-modem cable is recommended for this purpose.


Model Name	Suffix Code	Description
YCB215		RS-232-C null-modem cable with control lines between 9-pin connector (on CP7 ML gateway card) and 25-pin connector (on RS-232-C equipment)
-KM01		1 m cable
	-KM05	5 m cable
	-KM15	15 m cable

Note: This cable is for indoor use only. The wires are termination-treated.

Internal connection diagram for YCB215 cable

■ Connecting to a Modem, or DCE (data communications equipment)

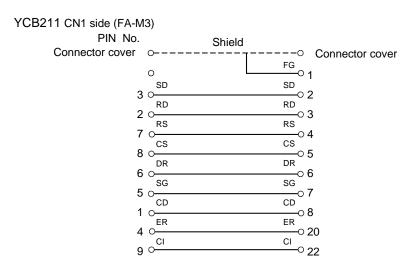
example of such a cable is YOKOGAWA's YCB211 cable.

Figure A2.7 Wiring to 25-pin D-sub Connector

Figure A2.8 Wiring to 9-pin D-sub Connector

How to treat the shield

- Ensure that the connector for the connection cable has a metal or metal-clad cover.
 Connect the shield directly to the cover.
- 2. The connector shell of the F3RZ81-0F/F3RZ82-0F is internally connected to the Frame Ground terminal (FG) of the FA-M3 power supply module.


Recommended connection cable

YOKOGAWA's modem cable is recommended for this purpose

Model Name	Suffix Code	Description
YCB211		RS-232-C modem cable between 9-pin connector (on CP7 ML gateway card) and 25-pin connector (on modem)
	-KM01	1-m cable
	-KM05	5-m cable
	-KM15	15-m cable

Note: This cable is for indoor use only. The wires are termination-treated.

• Internal connection diagram for YCB211 cable

A2.4 Attaching/Detaching the Module

■ Attaching the Module

Figure A2.9 shows how to attach this module to the base module. First hook the anchor slot at the bottom of the module to be attached onto the anchor pin on the bottom of the base module. Push the top of the module toward the base module until the anchor/release button (yellow button) clicks into place.

CAUTION

Always switch off the power before attaching or detaching the module.

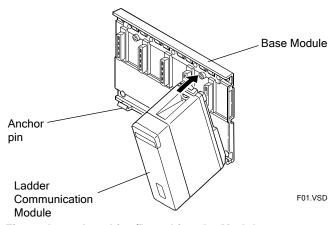


Figure A2.9 Attaching/Detaching the Module

CAUTION

Do not bend the connector on the rear of the module by force during the above operation. If the module is pushed with improper force, the connector may bend, causing an error.

■ Detaching the Module

To remove this module from the base module, reverse the above operation.

Press the anchor/release button (yellow button) on the top of this module to unlock it and tilt the module away from the base module.

■ Attaching the Module in Intense Vibration Environments

If the module is used in intense vibration environments, fasten the module with a screw. Use screws of type listed in the table below.

Insert these screws into the screw holes on top of the module and tighten them with a Phillips screwdriver.

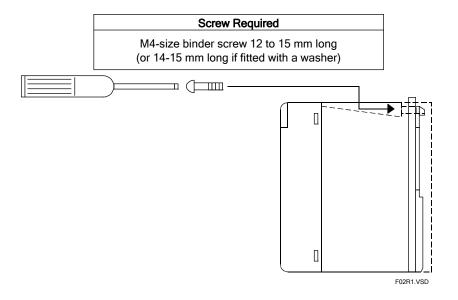


Figure A2.10 Securing Module Using Screws

A3. List of I/O Relays

The ladder communication module has 32 input and 32 output relays for interfacing with the FA-M3 CPU module. Each of the input relays can be configured to raise an interrupt.

A3.1 **Output Relays**

Table A3.1 Output Relays

Output Relay Number	Output Relay Name	Description	
Y□□□33	Read Received Data Completed 1	Turn on this relay after reading data from the receive data area. Turning on this relay turns off X□□□01 (receive completed normally) and X□□□07 (receive error), and the module is ready to receive new data into the receive data area.	
Y□□□34	Request to Send*1	Turn on this relay after having stored send data size and send data to the registers. If data is sent successfully following this request, XDDD02 turns on, and if an error occurs, XDDD08 turns on.	
Y□□□35	Request to Set Communications Mode ^{*1}	Turn on this relay after having stored communications mode setting in the communications mode area. If setup is successful following this request, XDDD03 turns on, and if an error occurs, XDDD09 turns on.	
Y□□□36	Request to Read Communications Mode Status ^{*1}	Turn on this relay to read the contents of the communications mode area and the control line status. If the request is completed successfully, X□□□04 turns on.	
Y□□□37	Request to Initialize Receive Buffer*1	Turn on this relay to initialize the receive buffer and the communications controller. X□□□05 turns on after successful initialization.	
У□□□38	Request to Send Break *1	Turn on this relay to send a break signal. If a break is sent successfully following this request, XDDD06 turns on, and if an error occurs, XDDD08 turns on.	
Y□□□39 to Y□□□48		Reserved	
Y□□□49	Read Received Data Completed ^{*2}	Turn on this relay after having read all data from the receive data area. Turning on this relay turns off XDDD17 (receive completed normally) and XDDD23 (receive error), and the module is ready to receive new data in the receive data area.	
Y□□□50	Request to Send ^{*2}	Turn on this relay after having stored send data size and send data to the registers. If data is sent successfully following this request, X□□□18 turns on, and if an error occurs, X□□□24 turns on.	
Y□□□51	Request to Set Communications Mode ^{*2}	Turn on this relay after having stored communications mode setting in the communications mode area. If setup is successful following this request, XDDD19 turns on, and if an error occurs, XDDD25 turns on.	
Y□□□52	Request to Read Communications Mode Status ^{*2}	Turn on this relay to read the contents of the communications mode area and the control line status. If the request is completed successfully, X□□□20 is turns on.	
Y□□□53	Request to Initialize Receive Buffer*2	Turn on this relay to initialize the receive buffer and the communications controller. X□□□21 turns on after successful initialization.	
Y□□□54	Request to Send Break ^{*2}	Turn on this relay to send a break signal. If a break is	
Y□□□55 to Y□□□64		Reserved	

*1 : Applies to F3RZ81-0F or port 1 of F3RZ82-0F.
*2 : Applies to port 2 of F3RZ82-0F only. Reserved for system use in F3RZ81-0F.

□□□ : Slot number

A3.2 **Input Relays**

Table A3.2 Input Relays

Input Relay Number	Input Relay Name	Description	
X□□□01	Receive Completed ^{*1}	This relay turns on when received data is transferred from the receive buffer to the receive data area. Turning on Y□□□33 turns off this relay.	
X□□□02	Send Completed*1	This relay turns on when data is successfully sent following a request to send. Turning off Y□□□34 turns off this relay.	
X□□□03	Set Communications Mode Completed ¹¹	This relay turns on when a request to set communications mode is successfully completed. Turning off Y□□□35 turns off this relay.	
X□□□04	Read Communications Mode Status Completed*1	This relay turns on when the communications mode status has been successfully read out and stored. Turning off Y□□□36 turns off this relay.	
X□□□05	Initialize Receive Buffer Completed*1	This relay turns on when the receive buffer and the communications controller have been successfully initialized. Turning off YDDD37 turns off this relay.	
X□□□06	Send Break Completed*1	This relay turns on when a break signal has been sent successfully. Turning off YDDD38 turns off this relay.	
ХППП07	Receive Error*1	This relay turns on if error is detected during data receiving. Turning on Y□□□33 turns off this relay.	
X□□□08	Send Error ^{*1}	This relay turns on if error is detected when processing a request to send or a request to send break. Turning off YDDD34 or YDDD38 turns off this relay.	
ХППП09	Set Communications Mode Error ^{*1}	This relay turns on if error is detected during communications mode setup. Turning off Y□□□35 turns off this relay.	
X□□□10 to X□□□16		Reserved	
X00017	Receive Completed*2	This relay turns on when received data is transferred from the receive buffer to the receive data area. Turning on YDDD49 turns off this relay.	
X□□□18	Send Completed ^{*2}	This relay turns on when data is successfully sent following a request to send. Turning off YDDD50 turns off this relay.	
XDDD19	Set Communications Mode Completed ^{*2}	This relay turns on when a request to set communications mode is successfully completed. Turning off Y□□□51 turns off this relay.	
X□□□20	Read Communications Mode Status Completed*2	This relay turns on when the communications mode status has been successfully read out and stored. Turning off YDDD52 turns off this relay.	
X□□□21	Initialize Receive Buffer Completed 2	This relay turns on when the receive buffer and the communications controller have been successfully initialized. Turning off YDDD53 turns off this relay.	
X00022	Send Break Completed*2	This relay turns on when a break signal has been sent successfully. Turning off Y□□□54 turns off this relay.	
ХППП23	Receive Error*2	This relay turns on if error is detected during data receiving. Turning on YDDD49 turns off this relay.	
X□□□24	Send Error ^{*2}	This relay turns on if error is detected when processing a request to send or a request to send break. Turning off YDDD50 or YDDD54 turns off this relay.	
X□□□25	Set Communications Mode Error*2	This relay turns on if error is detected during	
X□□□26 to X□□□32		Reserved	

*1 : Applies to F3RZ81-0F or port 1 of F3RZ82-0F.
*2 : Applies to port 2 of F3RZ82 only. Reserved for system use in F3RZ81-0F.
□□□ : Slot number

A4. List of Data Areas

The ladder communication module has send and receive data areas and communications mode areas for interfacing with the FA-M3 CPU module. The communications mode areas are used to store communications mode settings, and the send and receive data areas are used to store data to be sent and data received respectively.

Data Position No.	F3RZ81-0F	
1 384	Send data area	(port 1)
385 896	Receive data area	(port 1)
897 1792	Extended send/receive	data area
1792	Cond data buta count	(nort 1)
	Send data byte count	(port 1)
1794	Send status	(port 1)
1795	Receive data status	(port 1)
1796	Receive data byte count	(port 1)
1797	Reserved	
1798	Reserved	
1799	Reserved	
1800	Reserved	
1857	Communications mode area	(port 1)
1920		
1921	Reserved	
1984		

Data Position No.	F3RZ82-0F	
1 384	Send data area	(port 1)
385 896	Receive data area	(port 1)
897 1280	Send data area	(port 2)
1281 1792	Receive data area	(port 2)
1793	Send data byte count	(port 1)
1794	Send status	(port 1)
1795	Receive data status	(port 1)
1796	Receive data byte count	(port 1)
1797	Send data byte count	(port 2)
1798	Send status (part 2)	
1799	Receive data status	(port 2)
1800	Receive data byte count	(port 2)
1857 1920	Communications mode area	(port 1)
1921	Communications mode area	(port 2)

CAUTION

- You may customize the send data area size and receive data area size to use data positions between 1 and 1792.
- Data positions above 1792 are fixed and cannot be customized.

A4.1 Communications Mode Areas

Data Position No.		
1857 1888	Setup area	Communications mode area
1889 1920	Status area	(port 1)
1921 1952	Setup area	Communications mode area
1953 1984	Status area	(port 2)*

^{*} Reserved area for F3RZ81-0F.

Each communications mode area is divided into two sub-areas: setup area and status area. A user program writes communications mode settings to the setup area before issuing a request to set communications mode. It reads the status area to check the internal communications mode parameters of the module.

■ Communications Mode Setup Area

Data Position No Port 1 Port 2*4		Description*2		
1857	1921	Character-to-character timeout processing	0: receive successful; 1: receive error	0
1858	1922	Character length	0: 7 bits; 1: 8 bits	*1
1859	1923	Stop bits	0: 1 bit; 1: 2 bits	*1
1860	1924	Parity	0: none; 1: odd; 2: even	*1
1861	1925	Transmission speed (in bps)	0: 300	*2
1862	1926	Clear-to-send timeout interval	0 to 32760 (ms); 0 means not monitored	30000 (= 30s
1863	1927	Break transmission interval	1 to 32760 (ms)	400
1864	1928	Start character of receive text	15 8 7 0 0 Start character - All 0's if no start character is used	0
1865	1929	End character (terminator) of receive text	15 8 7 0 First terminator Second terminator - All 0's for the first terminator if only one end character is used. - All 0's for the first and second terminators if no end character is used.	\$0D · \$0A (CR · LF)
1866	1930	Receive text length	0 to 1024 (number of characters on the line) ⁵ 0 means no receiving.	1024
1867	1931	Character-to-character timeout interval	0 to 32760 (ms) 0 means not monitored	1500
1868	1932			•
1869	1933	Reserved		
1870	1934	RS control	0: Always On 1: Turn on before sending	0
1871	1935	ER control	0: Off 1: On	1
1872	1936	DR check	0: Ignore DR when sending 1: Send only when DR is on	0
1873	1937	CD check	0: Ignore CD when sending 1: Send only when CD is off	0
1874 to 1886	1938 to 1950	Reserved		
1887	1951	Send data area size	- In units of words	384
1888	1952	Receive data area size	- Total size for send and receive data areas must not exceed 1792 words (3584 bytes)	512

^{*1:} The default value is set with the SW2 switch.

^{*2:} The default value is set with the SW1 switch.

^{*3:} Depends on receive data area size.

^{*4:} Reserved area for F3RZ81-0F.

The clear-to-send timeout interval, break transmission interval and receive character-to-character timeout interval have an error of 1 ms so the actual duration may be up to1 ms shorter than the specified value.

■ Communications Mode Status Area

Data Position No		Description			
Port 1 Port 2*		Description			
1889	1953	Character-to-character timeout	0: receive successful		
1009	1955	processing	1: receive error		
1890	1954	Character length	0: 7 bits; 1: 8 bits		
1891	1955	Stop bits	0: 1 bit; 1: 2 bits		
1892	1956	Parity	0: none; 1: odd; 2: even		
1893	1957	Transmission speed (in bps)	0: 300		
1894	1958	Clear-to-send timeout interval	0 to 32760 (ms); 0 means not monitored		
1895	1959	Break transmission interval	1 to 32760 (ms)		
1896	1960	Start character of receive text	15 8 7 0 0 Start character • All 0's if no start character is used		
1897	1961	End character (terminator) of receive text	15 8 7 0 First terminator Second terminator All 0's for the first terminator if only one end character is used All 0's for the first and second terminators if no end character is used		
1898	1962	Receive text length	0 to 1024 (number of characters on the line) ^{*3} 0 means no receiving		
1899	1963	Character-to-character timeout interval	0 to 32760 (ms); 0 means not monitored		
1900	1964				
1901	1965	Reserved			
1902	1966	RS control	0: Always On 1: Turn on before sending		
1903	1967	ER control	0: Off 1: On		
1904	1968	DR check	0: Ignore DR when sending 1: Send only when DR is on		
1905	1969	CD check	0: Ignore CD when sending 1: Send only when CD is off		
1906-1916	1906-1916 1970-1980 Reserved				
1917	1981	Send data area size			
1918	1982	Receive data area size			
1919	1983	Control line status	15 5 4 3 2 1 0 0 R E C D C S R S R D		
1920	1984	Setup error information	15 8 7 0 Data position no.		

^{*} Reserved area for F3RZ81-0F.

Character-to-character timeout processing

Character-to-character receive timeout is always monitored. When timeout occurs, it is considered either a receive error (the Receive Error input relay turns on) or the normal completion of receive data (the Receive Completed input relay turns on) according to this setting.

If this setting is 0, a character-to-character receive timeout is always considered the normal completion of receive data and the Receive Completed input relay turns on. This setting is useful when the receive text length or the end character cannot be specified. When a character-to-character receive timeout occurs, the character-to-character

receive timeout bit of the Receive data Status register turns on irrespective of this setting.

Character length

This setting is used to specify how many bits make up one character.

Stop bits

This setting is used to specify how many bits are used to signify the end of a character.

Parity

This setting is used to define the parity bit, which is used for error detection.

Transmission speed

This setting is used to specify the transmission speed.

Clear-to-send timeout interval

This setting is used to specify the maximum time allowed for starting and completing a transmission before timeout occurs. Sending cannot start if the send condition specified by the DR Check or CD Check setting is not satisfied, or if the communications cable is loose or not connected. If a timeout occurs, a send error is generated. If this setting is 0, timeout will never occur.

Break transmission interval

This setting is used to specify the duration of a break signal. It cannot be set to 0 ms.

Start character of receive text

This setting is used to define the start character that signifies the beginning of receive text. No start character is attached to send text.

End character of receive text

This setting is used to define the end character that signifies the end of receive text. No end character is attached to send text.

Receive text length

This setting is used to specify the number of characters for delimiting receive text. This setting may not exceed a user-defined receive data area size.

CAUTION

- If the receive text length is set to a value larger than the receive data area size, the receive data area size is used. If the receive text length is set to a value larger than 3584, however, a Set Communications Mode Error is generated.
- The receive text length is ignored if the receive data area size is set to 0.
- If the receive text length is set to 0, the module can receive no data.

Character-to-character timeout interval

This setting is used to define the character-to-character receive timeout interval, which is the maximum allowable lapse between two successive characters in the same text. When a timeout occurs, whether it is considered a receive error or the normal completion of receive text depends on the character-to-character timeout processing setting.

RS (Request to Send) control

The RS control signal is used to notify remote data equipment that the module has data to send.

This setting is used to specify whether the module should always turn on the RS signal or should turn on the RS signal only when it has data to send.

• ER (Data Terminal Ready) control

The ER control signal is used to notify remote data equipment that the module is ready to receive data. This control signal can be turned on or turned off by a user program.

DR (Data Set Ready) check

When connecting the module to remote DTE (data terminal equipment), the DR terminal of the module is normally connected to the ER terminal of the remote DTE to monitor whether the remote DTE is ready to receive data from the module.

This setting is used to specify whether the module should check that the DR signal is on before sending data.

CD (Data Carrier Detect) check

When connecting the module to remote DTE (data terminal equipment), the CD terminal of the module is normally connected to the RS terminal of the remote DTE to monitor whether the remote DTE has data to send.

This setting is used to specify whether the module should check that the CD signal is off before sending data.

Control line status

A user program may read the control line status to monitor the status of each control signal.

Send data area size, receive data area size

Use these settings to specify the size of the send and receive data areas respectively.

A total space of 1792 words (3584 bytes) may be freely shared among the send and receive data areas. If a send or receive data area size is set to 0, however, that area is disabled and the related function is no longer available.

CAUTION

- If the send data area size of a port is set to 0, the send error is generated when the request to send is issued for that port.
- If the receive data area size of a port is set to 0, it will not be available for receiving.
- Do not change the setting of the send data area size or the receive data area size during communication.
- If the setting of the send or receive data area size is changed during communication, beware that there may be old data remaining in the data areas.

A4.2 Send and Receive Data Areas

Allocation of send and receive data areas

Data	F3RZ81-0F	
Position No.		
1	Send data area	(port 1)
204	(768 bytes)	,
384 385		
300	Receive data area	(port 1)
896	(1024 bytes)	
897		
• • • • • • • • • • • • • • • • • • • •		
	Extended send/receive of	lata area
1792		
1793	Send data byte count	(port 1)
1794	Send status	(port 1)
1795	Receive data status	(port 1)
1796	Receive data byte count	(port 1)
1797	Reserved	
1798	Reserved	
1799	Reserved	
1800	Reserved	

Data	F3RZ82-0F	
Position No.		
1	Send data area (768 bytes)	(port 1)
384	(766 Dytes)	
385		(, , ,
	Receive data area	(port 1)
896	(1024 bytes)	
897	0 111	(, , o)
	Send data area	(port 2)
1280	(768 bytes)	
1281	Descher data area	(t-0)
	Receive data area (1024 bytes)	(port 2)
1792	(1024 bytes)	
1793	Send data byte count	(port 1)
1794	Send status	(port 1)
1795	Receive data status	(port 1)
1796	Receive data byte count	(port 1)
1797	Send data byte count	(port 2)
1798	Send status	(port 2)
1799	Receive data status	(port 2)
1800	Receive data byte count	(port 2)

CAUTION

- You may customize the send data area size and receive data area size for using data positions between 1 and 1792.
- Data positions above 1792 are fixed and cannot be customized.

Send data area

This area is used to store data to be sent.

Receive data area

This area is used to store data received.

Extended send/receive data area

For F3RZ81-0F, this is extra data space, which can be used by modifying the send data area size and/or the receive data area size from their respective default setting values of 384 and 512 words.

Send data byte count

This area is used to store the number of bytes to be sent. Following a request to send, data is sent until the specified number of bytes is reached.

Send status

This area is used to store the completion status after transmission.

Status	Error Code (Decimal)	Description
Send successful	0000	
Send data size error	0100	
	0201	Cable connection failure
Send timeout	0202	DR check error
	0203	CD check error

Receive data status

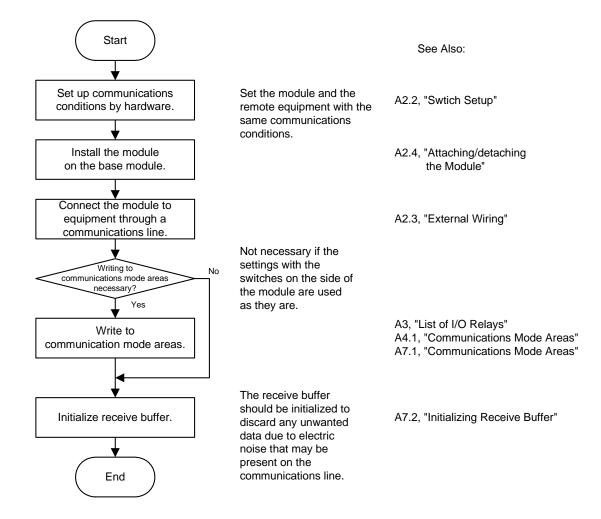
This area stores the status of the received text stored in the receive data area. The status is a combination of error bits (see the table below). An error bit is turned on if the corresponding error is detected for any byte of the received text. If an error bit is turned on, there is no way to tell which byte is the cause.

15 to 06	05	04	03	02	01	00
Reserved	ORER	FER	PER	IBOF	RCTO	BREAK

ORER : Overrun error FER : Framing error PER : Parity error

IBOF : Receive buffer overflow

RCTO: Character-to-character receive timeout


BREAK: Break signal received

Receive data byte count

This area stores the number of bytes of data received. By reading the value stored in this area, a program can determine the size of received data. The end character in received data is automatically deleted when the received data is stored in the receive data area.

A5. Startup Preparation

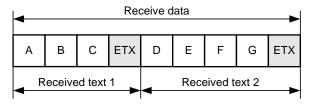
The flowchart below shows the things to be done to prepare for communications.

A6. Data Communications

A6.1 Format of Received Text

The F3RZ81-0F/F3RZ82-0F ladder communication module may recognize a block of received text by any of the following three means:

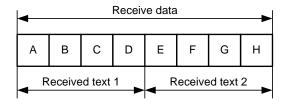
- By receiving a terminator
- By receiving the number of characters designated by the Receive Text Length setting in the communications mode area
- By detecting a character-to-character receive timeout


CAUTION

- A block of received text is recognized when any of the above three conditions is met.
- You may explicitly disable individual conditions if so desired.
- However, you may not disable the condition defined by the Receive Text Length setting.

Receiving a terminator

A block of text is recognized when a terminator (end characters) is received. The default terminator is the CR-LF character pair.

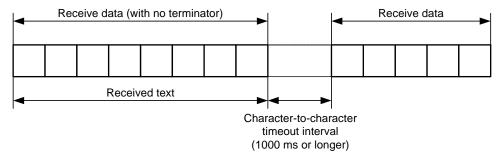

Example: If ETX (\$03) is used as a terminator

Receive Text Length setting

A block of text is recognized when the number of bytes designated by the Receive Text Length setting (between 1 and 1024) is received. If a start character of receive text is specified, bytes for received text are counted starting from the character following the start character. The default value for the Receive Text Length setting is 1024 (bytes).

Example 1: Receive Text Length is set to 4 (bytes)

Example 2: Receive Text Length is set to 6 (bytes) with the use of start character STX (\$02) and terminator ETX (\$03)


Any data arriving after the end of text 1 and before the start of text 2 is discarded.

Detecting a character-to-character receive timeout

A block of text is recognized when the next character is not received after a specified timeout interval. This is especially useful for receiving binary data or text with no terminator.

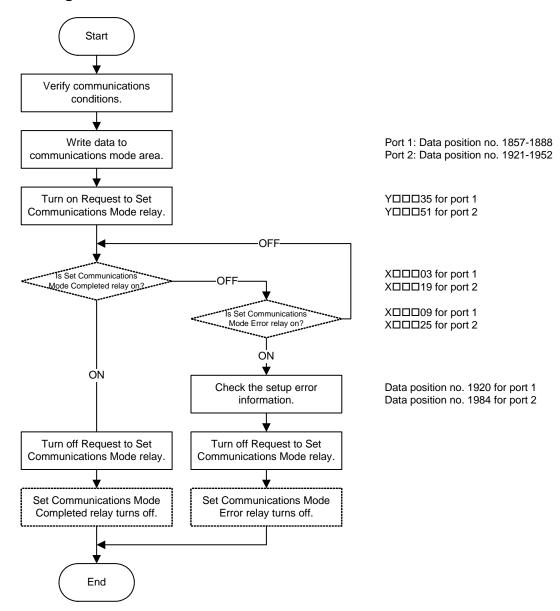
The default character-to-character timeout interval is 1500 ms

Example: Character-to-character timeout interval is set to 1000 ms and no terminator is used in receive data

When a character-to-character receive timeout occurs, it is either considered the normal end of received text as discussed above or a receive error depending on the Character-to-Character Timeout Processing setting.

A6.2 Break Signal

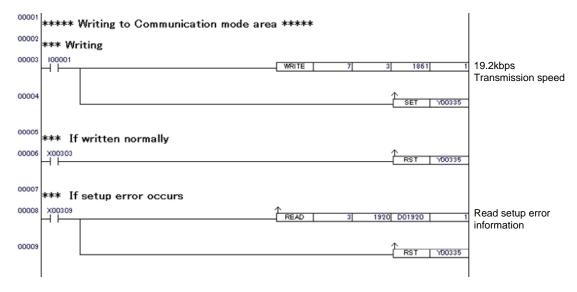
The break signal is a special signal consisting of all '1' bits, which is sent to generate a framing error. The ladder communication module is capable of sending a break signal, as well as recognizing a break signal.

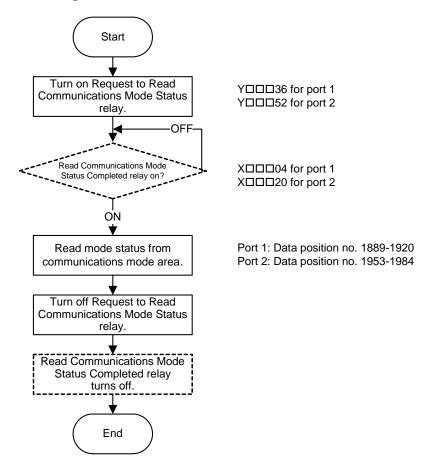

A7. Programming

A7.1 Communications Mode Areas

Before data can be sent to remote equipment, communications conditions must be set up. To support a variety of communications protocols, the F3RZ81-0F/F3RZ82-0F ladder communication module allows many functions to be configured using the communications mode areas.

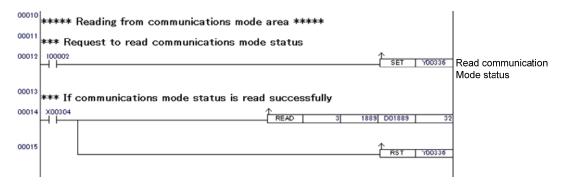
For instance, while the transmission speed and the data format definition can be specified using the SW1 rotary switch and the SW2 DIP switch on the right side of the module respectively, they can also be set by software, by writing to the communications mode areas from the FA-M3 CPU module using a program. This means that the settings can be changed even after the ladder communication module is installed on the base unit. For F3RZ82-0F, the SW1 and SW2 settings apply to both ports 1 and 2, but the settings can be changed by software for individual ports.


Writing to communications mode area


• Sample program

This sample program assumes the following conditions:

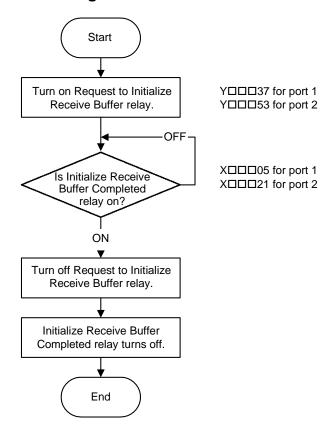
- The module is installed in slot 3.
- Port 1 is used for communications.
- Transmission speed is 19200 bps.


Reading from communications mode area

Sample program

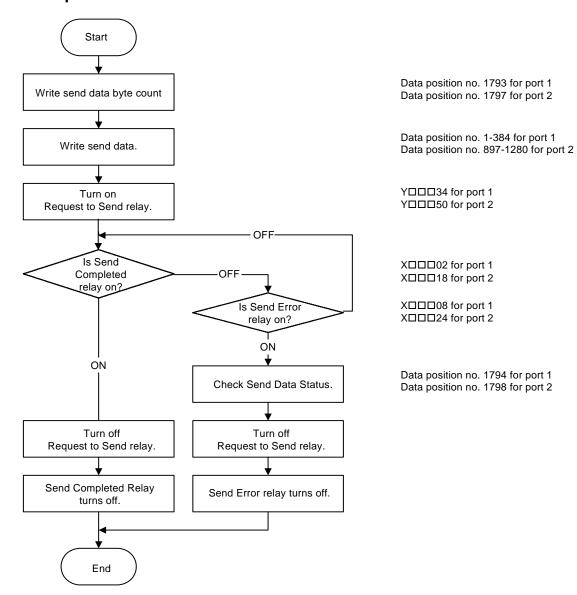
This sample program assumes the following conditions:

- The module is installed in slot 3.
- All the contents of the communications mode area for port 1 are to be read.


A7.2 Initializing Receive Buffer

When the module establishes connection with a remote device or when a remote device is switched on, noise (or unwanted data) may arise and propagate through the communications line. To avoid receiving unwanted data inadvertently, it is advisable to initialize the receive buffer before starting communications, in addition to setting up the communications conditions.

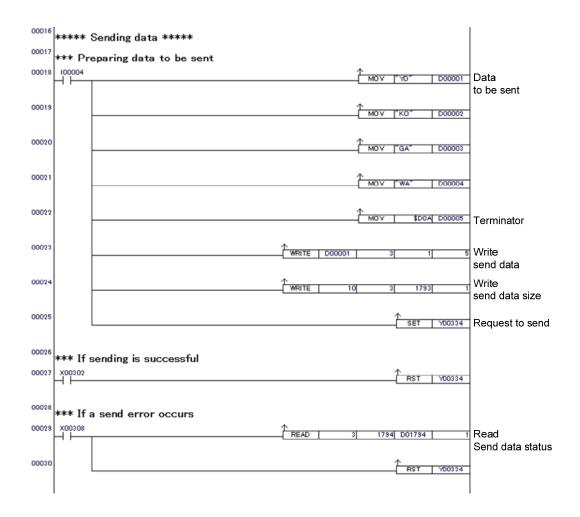
The receive buffer initialization function performs the following actions:


- Clears the receive buffer (rotary buffer). Beware that the receive data area is different from the receive buffer and is not initialized by this function.
- Resets the communications controller.

Initializing receive buffer

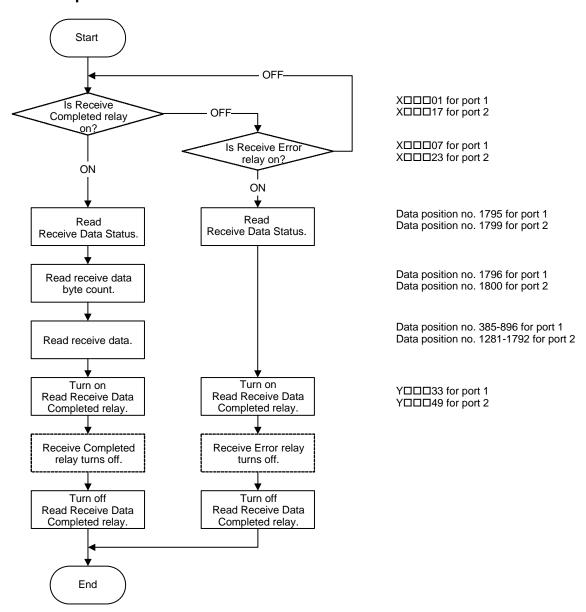
A7.3 Sending Data

Send procedure


CAUTION

- This procedure assumes that default data position numbers are used for the send data area.
- The data position numbers will be different if the size of the send or receive data area is redefined by a user.

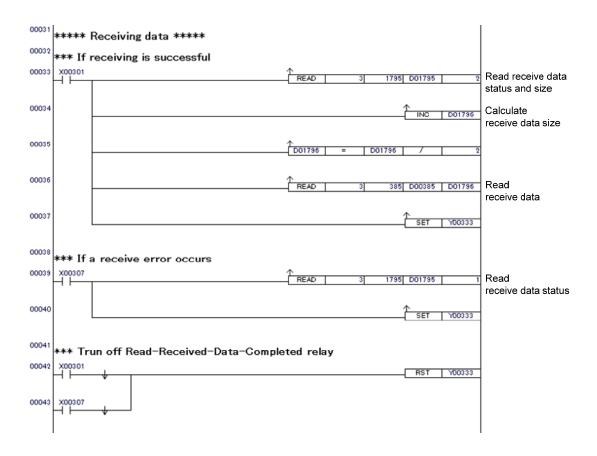
• Sample program


This sample program assumes the following conditions:

- The module is installed in slot 3.
- Port 1 is used for communications.
- Text to be sent is "YOKOGAWA ".
- End characters are a pair of CR and LF (\$0D and \$0A) characters.

A7.4 Receiving Data

• Receive procedure

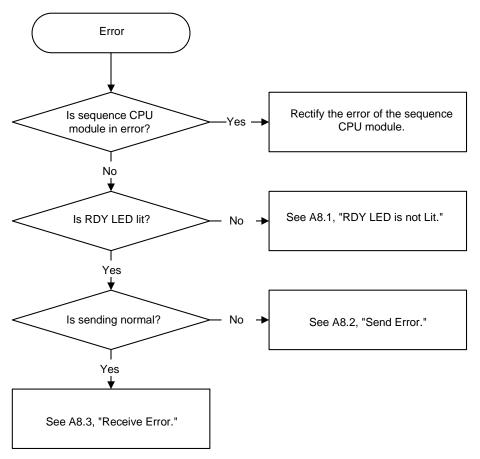

CAUTION

- This procedure assumes that default data position numbers are used for the receive data area.
- The data position numbers will be different if the size of the send or receive data area is re-defined by a user.

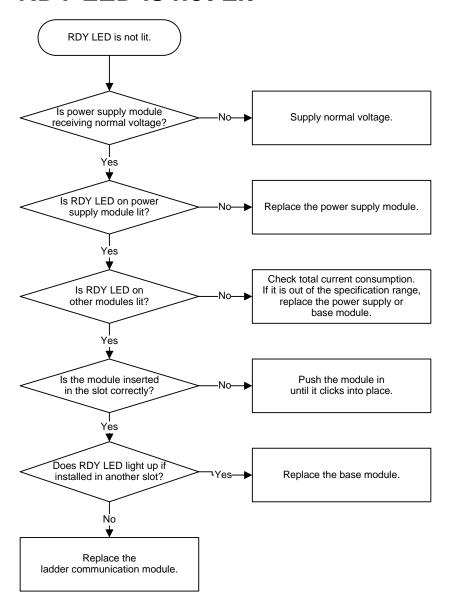
Sample program

This sample program assumes the following conditions:

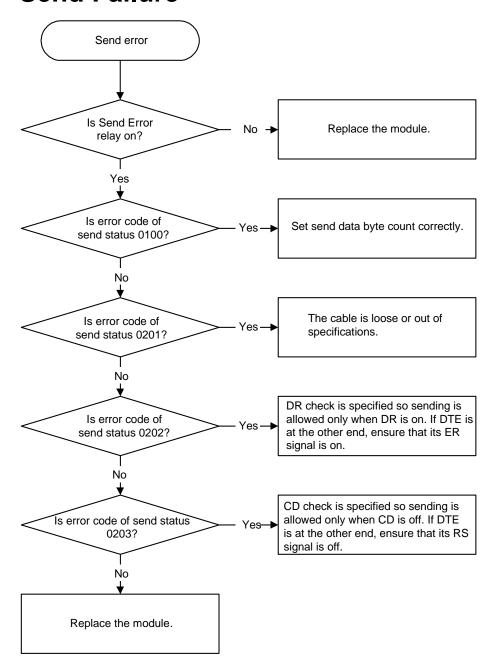
- The module is installed in slot 3.
- Port 1 is used for communications.

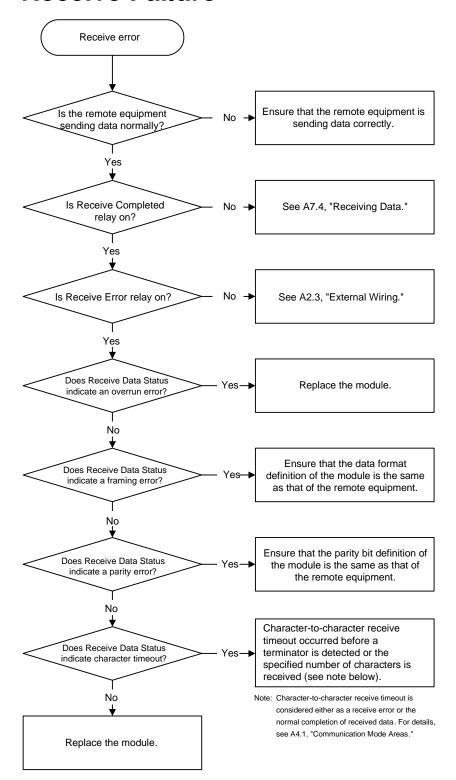


CAUTION


The receive data size is stored in units of bytes in the module. You must convert the size in bytes into size in words when reading the received data into the CPU module using the READ instruction.

A8. Troubleshooting


These are troubleshooting flowcharts for common errors involving the module.


A8.1 RDY LED is not Lit

A8.2 Send Failure

A8.3 Receive Failure

Appendix A1. ASCII Code Table

High Low	0	1	2	3	4	5	6	7
0	NUL	DLE	SP	0	@	Р	`	р
1	SOH	DC1	!	1	Α	Q	а	q
2	STX	DC2	"	2	В	R	b	r
3	ETX	DC3	#	3	С	S	С	S
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	Е	U	е	u
6	ACK	SYN	&	6	F	٧	f	٧
7	BEL	ETB	•	7	G	W	g	W
8	BS	CAN	(8	Н	Х	h	Х
9	HT	EM)	9	I	Υ	i	у
Α	LF	SUB	*	:	J	Ζ	j	Z
В	VT	ESC	+	;	K	Ī.	k	{
С	FF	FS	,	<	L	¥	ı	
D	CR	GS	-	=	M]	m	}
Е	SO	RS		>	N	۸	n	~
F	SI	US	1	?	0		0	DEL

FA-M3

Ladder Communication Module Part A: F3RZ81-0F/F3RZ82-0F

IM 34M06H22-02E 3rd Edition

INDEX

В
break signalA4-4, A6-3
break transmission interval
C
CD check
character length A2-1, A2-5, A4-2, A4-3, A4-4
character-to-character
receive timeout, detecting A6-3
character-to-character
timeout interval A4-2, A4-3, A4-5
character-to-character
timeout processingA4-2, A4-3
clear-to-send
timeout interval
communications condition setup
communications mode area
communications mode area, reading from A7-3
communications mode area, reading from
communications mode setup area
communications mode status areaA4-3
connecting to a modem
connecting to an RS-232-C deviceA2-7
connector pin assignment
control line status
D
data format switch (SW2) A2-2, A2-4, A2-5
DR check
DR CHECK
E
end character of
receive textA4-2, A4-3, A4-4,A6-2
ER control
error code
extended send/receive data areaA4-1, A4-6
exteriued seria/receive data area
Ī
input relays A3-2
0
output relays A3-1
P
•
parity A2-1, A2-5, A4-2, A4-3, A4-4
R RDY LED

receive buffer, initializing
receive procedure
receive text lengthA4-4
received text, format ofA2-1, A6-1
RS controlA2-1, A4-2, A4-3, A4-5
S send and receive data areasA4-1, A4-6 send data areaA4-1, A4-2, A4-3, A4-6
send data area size
send data byte count A4-1, A4-6 send error A3-1, A3-2, A4-4, A4-5, A7-5, A8-3 send procedure A7-5 send status A4-1, A4-7 start character of receive text A4-2, A4-4

FA-M3

Ladder Communication Module

Part B: F3RZ91-0F

IM 34M06H22-02E 3rd Edition

CONTENTS

	App	licabl	e Product	i
	Imp	ortant	t	ii
	_		ion	
			ts and Trademarks	
				XII
Part B	: F 3I	RZ91	I-0F	
	B1.	Over	rview	B1-1
	B2.	Spec	cifications	B2-1
		B2.1	Standard Specifications	B2-1
			■ Model and Suffix Codes	B2-1
			Operating Environment	B2-1
			■ General Specifications	B2-1
			■ Physical Specifications	B2-1
			■ Function Specifications	B2-1
			■ Components and Functions	B2-2
			■ External Dimensions	B2-2
		B2.2	Switch Setup	B2-3
			Switches on the Module	B2-3
		B2.3	External Wiring	B2-5
			■ RS-422-A/RS-485 Terminal Block	B2-5
			■ Connecting Master and Slave	B2-5
			■ Terminating Resistor	B2-6
		B2.4	Attaching/Detaching the Module	B2-7
	B3.	List	of I/O Relays	B3-1
		B3.1	Output Relays	B3-1
		B3.2	Input Relays	B3-2
	B4.	List	of Data Areas	B4-1
		B4.1	Communications Mode Areas	B4-2
			■ Communications Mode Setup Area	B4-2
			■ Communications Mode Status Area	
		B4.2	Send and Receive Data Areas	B4-5
	B5.	Start	tup Preparation	B5-1
	B6.		Communications	
	_ •.	B6.1	Format of Received Text	
		B6.2	Break Signal	
				

B7.	Prog	ramming	B7-1
	B7.1	Communications Mode Areas	B7-1
	B7.2	Initializing Receive Buffer	B7-4
	B7.3	Sending Data	B7-5
	B7.4	Receiving Data	B7-7
B8.	Trou	bleshooting	B8-1
	B8.1	RDY LED is not Lit	B8-2
	B8.2	Send Failure	B8-3
	B8.3	Receive Failure	B8-4
App	endix	B1. ASCII Code Table	Appx. B1-1
Inde	X		Index B-1
Rev	ision	Information	xiii

B1. Overview

The F3RZ91-0F Ladder Communication Module can be used with an FA-M3 CPU module for RS-422/485 communications. It has one terminal block, or port, which supports a maximum transmission distance of 1200 m.

Any input relay of the F3RZ91-0F may be used to raise an interrupt.

Table B1.1 Models of Ladder Communication Module

Model	Description
F3RZ91-0F	RS-422/485 ladder communication module

B2. Specifications

B2.1 Standard Specifications

■ Model and Suffix Codes

Model	Suffix Code	Style Code	Option Code	Description
F3RZ91	-0F	•••••		Max 115.2 kbps, one RS-422/485 port

■ Operating Environment

The F3RZ91-0F may be used with all CPU modules.

■ General Specifications

Item	Specifications	Item	Specifications
Operating temperature	0 to 55°C	Storage temperature	-20 to 75°C
Operating humidity	10 to 90% RH (non-condensing)	Storage humidity	10 to 90% RH (non-condensing
Operating environment	Must of free of corrosive gases, flammable gases and heavy dust		

■ Physical Specifications

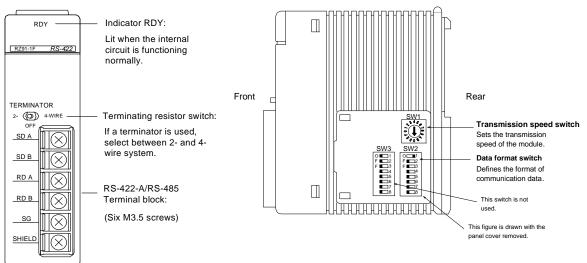
Item	Specifications	Item	Specifications
Interface	EIA RS-232-C compliant	Current consumption	350 mA
Number of ports	1 (isolated)	External dimensions	28.9 (W) x 100 (H) x 83.2 (D) mm*
Transmission distance	1200 m max.	Weight	120 g
Connector	Terminal block		

^{*:} Dimensions excluding protrusions. For details, see the External Dimensions drawing.

■ Function Specifications

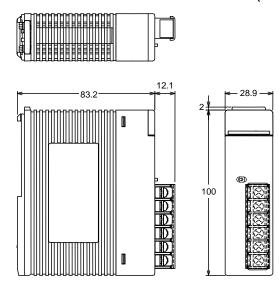
	Item	Specifications	Default
Connection method	od	Point to point	_
Transmission mode		Full-duplex/half-duplex	_
Synchronization		Start-stop synchronization	
Communication p	rotocol	No protocol	_
	Character length	7 or 8 bits	*1
Data format	Stop bits	1 or 2 bits	*1
	Parity bit	None, even, or odd	*1
Transmission spe	ed	300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, or 115200 bps	*2
Communication	Send buffer Text buffer (1792 bytes max.*3)		
buffer	Receive buffer	8192-byte rotary buffer (FIFO buffer)	
	Start character	- Yes or no - Any single character	No
Format of received text	End character (terminator)	- Yes or no - Up to 2 characters long, any characters	\$0D and \$0A (CR-LF)
	Text length	Can be specified as any number between 1 and 1792 ^{*3} .	1024
		0 to 32760 ms in 1 ms increments, accurate to 1 ms (0 means not monitored)	1.5 s
Break transmission	on interval	1 to 32760 ms in 1 ms increments, accurate to 1 ms	400 ms

^{*1:} Default values are set with the data format switch (SW2).


^{*2:} Default values are set with the transmission speed switch (SW1).

^{*3:} May be increased up to 1792 bytes using the Send Data Area Size and Receive Data Area Size data registers.

■ Components and Functions


• Front view

• Right side view

■ External Dimensions

(Unit: mm)

B2.2 Switch Setup

■ Switches on the Module

Always set the three switches on the side of the F3RZ91-0F module before installing it on the FA-M3 base module. See Figure B2.1 for the switch names and locations.

Right side view

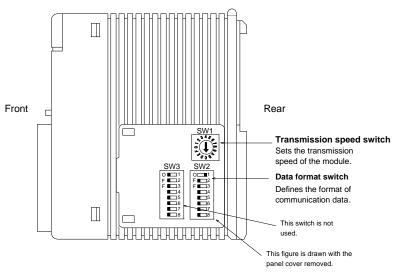
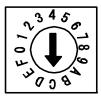
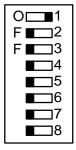



Figure B2.1 F3RZ91-0F Switches

• Transmission speed switch (SW1)

This is a hexadecimal rotary switch for setting up the transmission speed of the module. You can set the switch by inserting a small flat-blade screwdriver in its arrow-shaped slit and rotating it to a desired position between 1 and C (positions D to F are not available). The factory setting is 'C' (= 115.2 kbps).



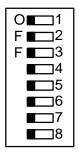
SW1 Position	Transmission Speed (bps)	Remarks	
0	300		
1	600		
2	1200		
3	2400		
4	4800		
5	9600		
6	14400		
7	19200		
8	22800		
9	38400		
Α	57.6K		
В	76.8K		
С	115.2K	Factory setting	
D-F		Not available	

Figure B2.2 F3RZ91-0F Transmission speed Switch

Data format switch (SW2)

This is an 8-element DIP switch for defining a character frame. Elements 1-4 may be set to either the ON or OFF position to define character length, parity and stop bits. The factory setting has element 1 set to ON and elements 2-8 set to OFF.

SW2 Elements	Function	OFF	ON
1	Character length	7 bits	8 bits
2	Parity	No	Yes
3		Odd	Even
4	Stop bits	1 bit	2 bits
5	Not used		
6	Not used		
7	Not used		
8	Not used		


Default	
8 bits	ON
No parity	OFF
	OFF
1 bit	OFF
	OFF
	OFF
	OFF
	OFF

⁻ SW2-3 is available only when SW2-2 is set to ON (= using parity).

Figure B2.3 F3RZ91-0F Data format Switch

Reserved switch (SW3)

The F3RZ91-0F does not use the SW3 switch. The module must be used with all elements of this switch set to OFF (factory setting).

SW3 Elements	Function	OFF	ON
1	Not used		
2	Not used		
3	Not used		
4	Not used		
5	Not used		
6	Not used		
7	Not used		
8	Not used		

Default	
	OFF

Figure B2.4 F3RZ91-0F Reserved Switch

CAUTION

Ensure that all unused switch elements are set to OFF.

⁻ Always set SW2-5 to SW2-8 to OFF.

B2.3 External Wiring

■ RS-422-A/RS-485 Terminal Block

The terminal block of the F3RZ91-0F has six terminals (with M3.5 screws) as follows:

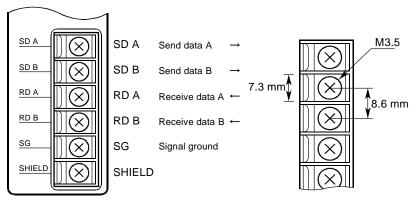


Figure B2.5 F3RZ91-0F Terminal Block

Table B2.1 Compatible Wires and Crimp-on Terminals

Cable type	Shielded twist-pair cable
Rated temperature	75°C or higher
Connection method	Using crimp-on terminals

	Vendor	Model	Compatible Wire	
Compatible crimp-on terminals and wires	Japan Solderless Terminal Mfg	V1.25-M3		
	Co., Ltd.		AWG22 to 18 (0.33 to 0.82 mm²) (copper wire)	
	Nippon Tanshi Co., Ltd.	RAV1.25-3.5		
	Japan Solderless Terminal Mfg	V1.25-M4		
	Co., Ltd.			
	Japan Solderless Terminal Mfg	V2-M4	AWG16 to 14 (1.3 to 2.1 mm ²)	
	Co., Ltd.	V Z-1VI -1	(copper wire)	
Tightening torque	0.8 N-m (7.1 lbf•in)			

■ Connecting Master and Slave

• 4-wire system

Supposing the F3RZ91-0F is a master, send and receive lines must be crossed between the F3RZ91-0F and the slave equipment.

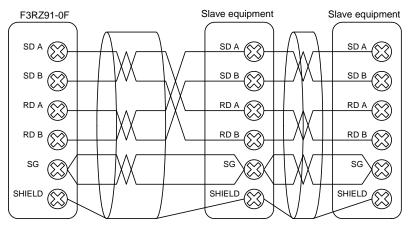


Figure B2.6 4-wire System Connection

• 2-wire system

At the F3RZ91-0F terminal block, short SD A with RD A, and SD B with RD B, using a jumper wire.

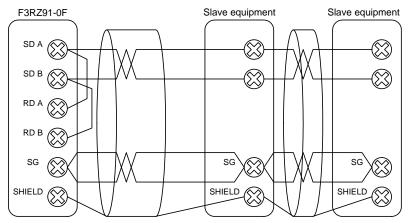


Figure B2.7 2-wire System Connection

CAUTION

If the 2-wire system connection is used, also set the 2-wire/4-wire selection parameter (data position No.: 918) of the communications mode area to 2-wire.

■ Terminating Resistor

If the F3RZ91-0F is at one end of the communication line, it must use the internal terminating resistor, or terminator, according to the wiring system used.

Set the terminating resistor switch to 4-WIRE for 4-wire system, or 2-WIRE for 2-wire system. Set the switch to OFF if the F3RZ91-0F is not at an end of the line.

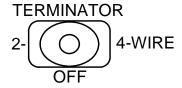


Figure B2.8 F3RZ91-0F Terminating Resistor Switch

B2.4 Attaching/Detaching the Module

■ Attaching the Module

Figure B2.9 shows how to attach this module to the base module. First hook the anchor slot at the bottom of the module to be attached onto the anchor pin on the bottom of the base module. Push the top of the module toward the base module until the anchor/release button (yellow button) clicks into place.

CAUTION

Always switch off the power before attaching or detaching the module.

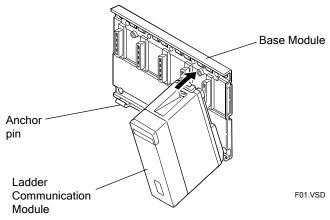


Figure B2.9 Attaching/Detaching the Module

CAUTION

Do not bend the connector on the rear of the module by force during the above operation. If the module is pushed with improper force, the connector may bend, causing an error.

■ Detaching the Module

To remove this module from the base module, reverse the above operation.

Press the anchor/release button (yellow button) on the top of this module to unlock it and tilt the module away from the base module.

■ Attaching the Module in Intense Vibration Environments

If the module is used in intense vibration environments, fasten the module with a screw. Use screws of type listed in the table below.

Insert these screws into the screw holes on top of the module and tighten them with a Phillips screwdriver.

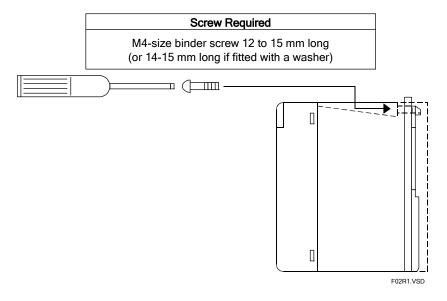


Figure B2.10 Securing Module Using Screws

B3. List of I/O Relays

The ladder communication module has 32 input and 32 output relays for interfacing with the FA-M3 CPU module. Each of the input relays can be configured to raise an interrupt.

B3.1 Output Relays

Table B3.1 Output Relays

Output Relay Number	Output Relay Name	Description
Y□□□33	Read Received Data Completed	Turn on this relay after reading data from the receive data area. Turning on this relay turns off XDDD01 (receive completed normally) and XDDD07 (receive error), and the module is ready to receive new data into the receive data area.
Y□□□34	Request to Send	Turn on this relay after having stored send data size and send data to the registers. If data is sent successfully following this request, XDDD02 turns on, and if an error occurs, XDDD08 turns on.
Y□□□35	Request to Set Communications Mode	Turn on this relay after having stored communications mode setting in the communications mode area. If setup is successful following this request, X□□□03 turns on, and if an error occurs, X□□□09 turns on.
Y□□□36	Request to Read Communications Mode Status	Turn on this relay to read the contents of the communications mode area and the control line status. If the request is completed successfully, XDDD04 turns on.
Y□□□37	Request to Initialize Receive Buffer	Turn on this relay to initialize the receive buffer and the communications controller. X□□□05 turns on after successful initialization.
Y□□□38	Request to Send Break	Turn on this relay to send a break signal. If a break is sent successfully following this request, XDDD06 turns on, and if an error occurs, XDDD08 turns on.
Y□□□39 to Y□□□64		Reserved

B3.2 Input Relays

Table B3.2 Input Relays

Input Relay Number	Input Relay Name	Description		
X□□□01	Receive Completed	This relay turns on when received data is transferred from the receive buffer to the receive data area. Turning on YDDD33 turns off this relay.		
X□□□02	Send Completed	This relay turns on when data is successfully sent following a request to send. Turning off Y□□□34 turns off this relay.		
X□□□03	Set Communications Mode Completed	This relay turns on when a request to set communications mode is successfully completed. Turning off Y□□□35 turns off this relay.		
X□□□04	Read Communications Mode Status Completed	This relay turns on when the communications mode status has been successfully read out and stored. Turning off Y□□□36 turns off this relay.		
X□□□05	Initialize Receive Buffer Completed	This relay turns on when the receive buffer and the communications controller have been successfully initialized. Turning off YDDD37 turns off this relay.		
ХППП06	Send Break Completed	This relay turns on when a break signal has been sent successfully. Turning off YDDD38 turns off this relay.		
X0007	Receive Error	This relay turns on if error is detected during data receiving. Turning on Y□□□33 turns off this relay.		
X□□□08	Send Error	This relay turns on if error is detected when processing a request to send or a request to send break. Turning off YDDD34 or YDDD38 turns off this relay.		
X□□□09	Set Communications Mode Error	This relay turns on if error is detected during communications mode setup. Turning off Y□□□35 turns off this relay.		
X□□□10 to X□□□32		Reserved		

B4. List of Data Areas

The ladder communication module has send and receive data areas and communications mode areas for interfacing with the FA-M3 CPU module. The communications mode areas are used to store communications mode settings, and the send and receive data areas are used to store data to be sent and data received respectively.

Data Position No.		
1 384	Send data area	(port 1)
385		
896	Receive data area	(port 1)
897	Send data byte count	(nort 1)
***	,	(port 1)
898	Send status	(port 1)
899	Receive data status	(port 1)
900	Receive data byte count	(port 1)
905		
	Communications mode area	(port 1)
968		

- You may customize the send data area size and receive data area size to use data positions between 1 and 896.
- Data positions above 896 are fixed and cannot be customized.

Communications Mode Areas B4.1

Data Position No. Setup area 936 Communications mode area 937 Status area 968

The communications mode area is divided into two sub-areas: setup area and status area. A user program writes communications mode settings to the setup area before issuing a request to set communications mode. It reads the status area to check the internal communications mode parameters of the module.

■ Communications Mode Setup Area

Data Position No		Default	
905	Character-to-character timeout processing	0: receive successful; 1: receive error	0
906	Character length	0: 7 bits; 1: 8 bits	*1
907	Stop bits	0: 1 bit; 1: 2 bits	*1
908	Parity	0: none; 1: odd; 2: even	*1
909	Transmission speed (in bps)	0: 300 7: 19200 1: 600 8: 28800 2: 1200 9: 38400 3: 2400 10: 57600 4: 4800 11: 76800 5: 9600 12: 115200 6: 14400	*2
910	Reserved		
911	Break transmission interval	1 to 32760 (ms)	400
912	Start character of receive text	15 8 7 0 0 Start character - All 0's if no start character is used	0
913	End character (terminator) of receive text	15 8 7 0 First terminator Second terminator - All 0's for the first terminator if only one end character is used All 0's for the first and second terminators if no end character is used.	\$0D · \$0A (CR · LF)
914	Receive text length	0 to 1024 (number of characters on the line) ³ 0 means no receiving.	1024
915	Character-to-character timeout interval	0 to 32760 (ms) 0 means not monitored	1500
916	Reserved		
917	1/6961v8u		
918	2-wire/4-wire selection	0 for 4-wire system, 1 for 2-wire system	0
919 to 934	Reserved		
935	Send data area size (port 1)	- In units of words	384
936	Receive data area size (port 1)	- Total size for send and receive data areas must not exceed 896 words (1792 bytes)	512

^{*1:} The default value is set with the SW2 switch.

CAUTION

Both the break transmission interval and receive character-to-character timeout interval have an error of 1 ms so the actual duration may be up to1 ms shorter than the specified value.

^{*2:} The default value is set with the SW1 switch. *3: Depends on receive data area size.

■ Communications Mode Status Area

Data Position No	Description					
937	Character-to-character timeout 0: receive successful					
	processing	1: receive error				
938	Character length	0: 7 bits; 1: 8 bits				
939	Stop bits	0: 1 bit; 1: 2 bits				
940	Parity	0: none; 1: odd; 2: even				
941	Transmission speed (in bps)	0: 300				
942	Reserved					
943	Break transmission interval	1 to 32760 (ms)				
944	Start character of receive text	15 8 7 0 Start character - All 0's if no start character is used				
945	End character (terminator) of receive text	15 8 7 0 First terminator Second terminator • All 0's for the first terminator if only one end character is used • All 0's for the first and second terminators if no end character is used				
946	Receive text length	0 to 1024 (number of characters on the line)*3 0 means no receiving				
947	Character-to-character timeout interval	0 to 32760 (ms); 0 means not monitored				
948	Reserved					
949	Reserved					
950	2-wire/4-wire selection	0 for 4-wire system, 1 for 2-wire system				
951-964	Reserved					
965	Send data area size					
966	Receive data area size					
967	Reserved					
968	Setup error information	15 8 7 0 Data position no.				

Character-to-character timeout processing

Character-to-character receive timeout is always monitored. When timeout occurs, it is considered either a receive error (the Receive Error input relay turns on) or the normal completion of receive data (the Receive Completed input relay turns on) according to this setting.

If this setting is 0, a character-to-character receive timeout is always considered the normal completion of receive data and the Receive Completed input relay turns on. This setting is useful when the receive text length or the end character cannot be specified. When a character-to-character receive timeout occurs, the character-to-character receive timeout bit of the Receive data Status register turns on irrespective of this setting.

Character length

This setting is used to specify how many bits make up one character.

Stop bits

This setting is used to specify how many bits are used to signify the end of a character.

Parity

This setting is used to define the parity bit, which is used for error detection.

Transmission speed

This setting is used to specify the transmission speed.

Break transmission interval

This setting is used to specify the duration of a break signal. It cannot be set to 0 ms.

Start character of receive text

This setting is used to define the start character that signifies the beginning of receive text. No start character is attached to send text.

End character of receive text

This setting is used to define the end character that signifies the end of receive text. No end character is attached to send text.

Receive text length

This setting is used to specify the number of characters for delimiting receive text. This setting may not exceed a user-defined receive data area size.

CAUTION

- If the receive text length is set to a value larger than the receive data area size, the receive data area size is used. If the receive text length is set to a value larger than 1792, however, a Set Communications Mode Error is generated.
- The receive text length is ignored if the receive data area size is set to 0.
- If the receive text length is set to 0, the module can receive no data.

Character-to-character timeout interval

This setting is used to define the character-to-character receive timeout interval, which is the maximum allowable lapse between two successive characters in the same text. When a timeout occurs, whether it is considered a receive error or the normal completion of receive text depends on the character-to-character timeout processing setting.

Send data area size, receive data area size

Use these settings to specify the size of the send and receive data areas respectively. A total space of 896 words (1792 bytes) may be freely shared among the send and receive data areas. Specify the size in word (two bytes) units.

CAUTION

- A send error is generated if the send data area size of a port is set to 0, but a request to send is issued for that port.
- If the receive data area size of a port is set to 0, it will not be available for receiving.
- Do not change the setting of the send data area size or the receive data area size during communication.
- If the setting of the send or receive data area size is changed during communication, beware that there may be old data remaining in the data areas.

B4.2 Send and Receive Data Areas

Allocation of send and receive data areas

Data position No. Send data area (port 1) 384 385 Receive data area (port 1) 896 897 Send data byte count (port 1) 898 Send status (port 1) 899 Receive data status (port 1) 900 Receive data byte count (port 1) 905 Communications mode area (port 1) 968

CAUTION

- You may customize the send data area size and receive data area size for using data positions between 1 and 896.
- Data positions above 896 are fixed and cannot be customized.

Send data area

This area is used to store data to be sent.

Receive data area

This area is used to store data received.

Send data byte count

This area is used to store the number of bytes to be sent. Following a request to send, data is sent until the specified number of bytes is reached.

Send status

This area is used to store the completion status after transmission.

Status	Error Code (Decimal)	Description
Send successful	0000	
Send data size error	0100	

Receive data status

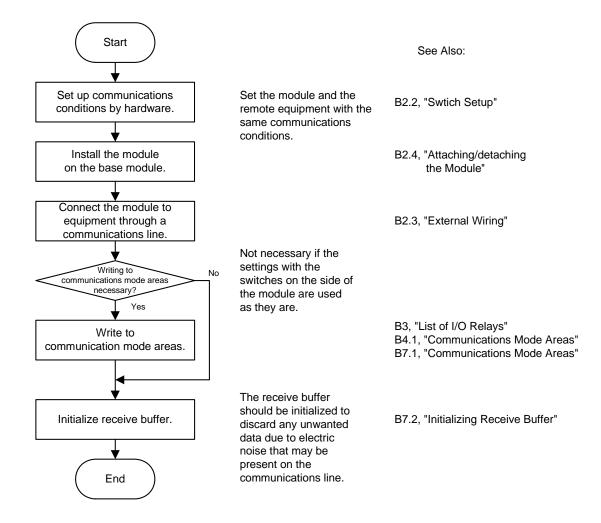
This area stores the status of the received text stored in the receive data area. The status is a combination of error bits (see the table below). An error bit is turned on if the corresponding error is detected for any byte of the received text. If an error bit is turned on, there is no way to tell which byte is the cause.

15 to 06	05	04	03	02	01	00
Reserved	ORER	FER	PER	IBOF	RCTO	BREAK

ORER: Overrun error FER: Framing error PER: Parity error

IBOF : Receive buffer overflow

RCTO: Character-to-character receive timeout


BREAK: Break signal received

Receive data byte count

This area stores the number of bytes of data received. By reading the value stored in this area, a program can determine the size of received data. The end character in received data is automatically deleted when the received data is stored in the receive data area.

B5. Startup Preparation

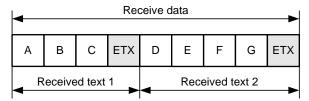
The flowchart below shows the things to be done to prepare for communications.

B6. Data Communications

B6.1 Format of Received Text

The F3RZ91-0F ladder communication module may recognize a block of received text by any of the following three means:

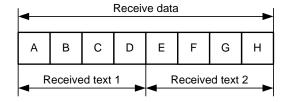
- By receiving a terminator
- By receiving the number of characters designated by the Receive Text Length setting in the communications mode area
- By detecting a character-to-character receive timeout

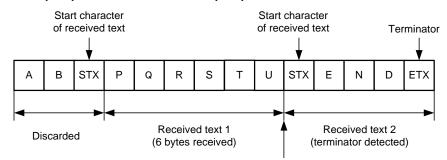

CAUTION

- A block of received text is recognized when any of the above three conditions is met.
- You may explicitly disable individual conditions if so desired.
- However, you may not disable the condition defined by the Receive Text Length setting.

Receiving a terminator

A block of text is recognized when a terminator (end characters) is received. The default terminator is the CR-LF character pair.

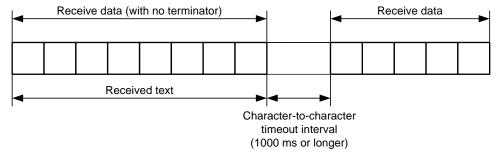

Example: If ETX (\$03) is used as a terminator


Receive Text Length setting

A block of text is recognized when the number of bytes designated by the Receive Text Length setting (between 1 and 1024) is received. If a start character of receive text is specified, bytes for received text are counted starting from the character following the start character. The default value for the Receive Text Length setting is 1024 (bytes).

Example 1: Receive Text Length is set to 4 (bytes)

Example 2: Receive Text Length is set to 6 (bytes) with the use of start character STX (\$02) and terminator ETX (\$03)


Any data arriving after the end of text 1 and before the start of text 2 is discarded.

Detecting a character-to-character receive timeout

A block of text is recognized when the next character is not received after a specified timeout interval. This is especially useful for receiving binary data or text with no terminator.

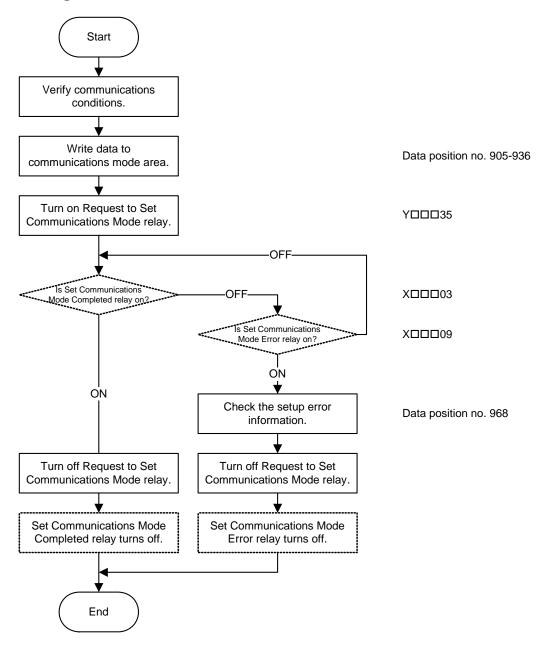
The default character-to-character timeout interval is 1500 ms

Example: Character-to-character timeout interval is set to 1000 ms and no terminator is used in receive data

When a character-to-character receive timeout occurs, it is either considered the normal end of received text as discussed above or a receive error depending on the Character-to-Character Timeout Processing setting.

B6.2 Break Signal

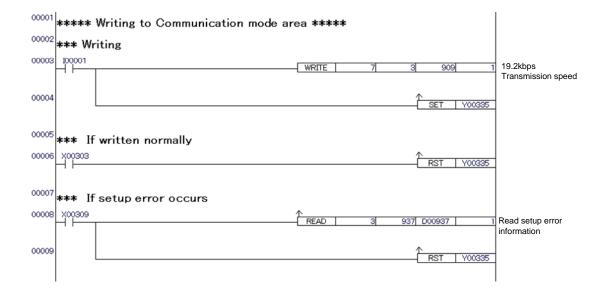
The break signal is a special signal consisting of all '1' bits, which is sent to generate a framing error. The ladder communication module is capable of sending a break signal, as well as recognizing a break signal.

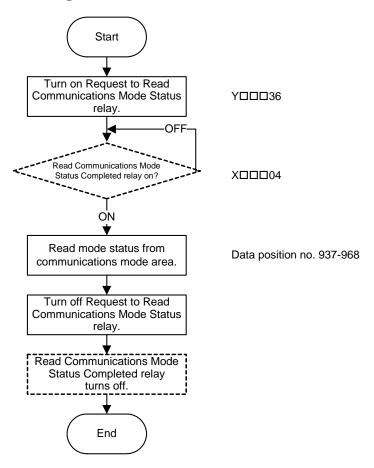

B7. Programming

B7.1 Communications Mode Areas

Before data can be sent to remote equipment, communications conditions must be set up. To support a variety of communications protocols, the F3RZ91-0F ladder communication module allows many functions to be configured using the communications mode areas.

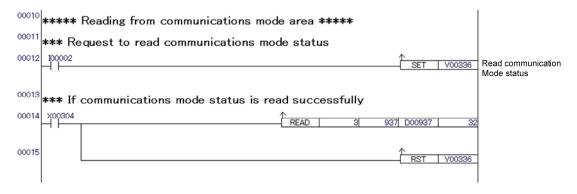
For instance, while the transmission speed and the data format definition can be specified using the SW1 rotary switch and the SW2 DIP switch on the right side of the module respectively, they can also be set by software, by writing to the communications mode areas from the FA-M3 CPU module using a program. This means that the settings can be changed even after the ladder communication module is installed on the base unit.


Writing to communications mode area


• Sample program

This sample program assumes the following conditions:

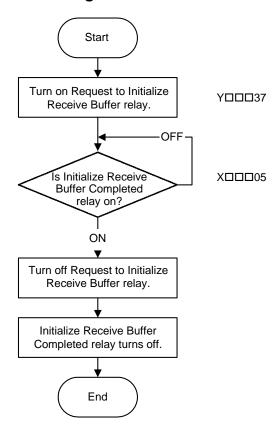
- The module is installed in slot 3.
- Transmission speed is 19200 bps.


• Reading from communications mode area

Sample program

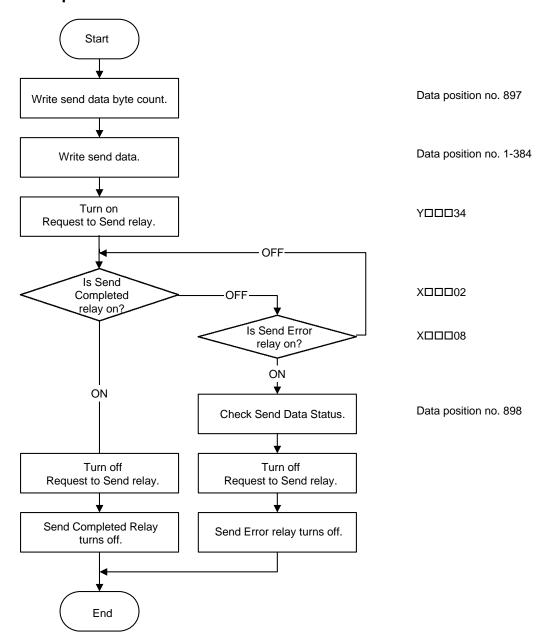
This sample program assumes the following conditions:

- The module is installed in slot 3.
- All the contents of the communications mode area for port 1 are to be read.


B7.2 Initializing Receive Buffer

When the module establishes connection with a remote device or when a remote device is switched on, noise (or unwanted data) may arise and propagate through the communications line. To avoid receiving unwanted data inadvertently, it is advisable to initialize the receive buffer before starting communications, in addition to setting up the communications conditions.

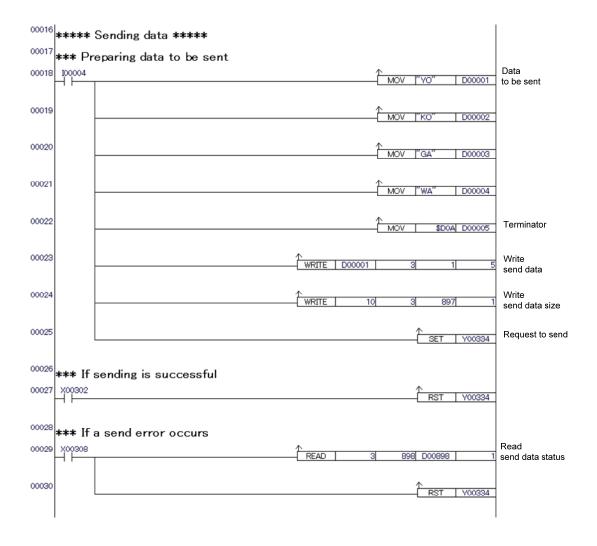
The receive buffer initialization function performs the following actions:


- Clears the receive buffer (rotary buffer). Beware that the receive data area is different from the receive buffer and is not initialized by this function.
- Resets the communications controller.

• Initializing receive buffer

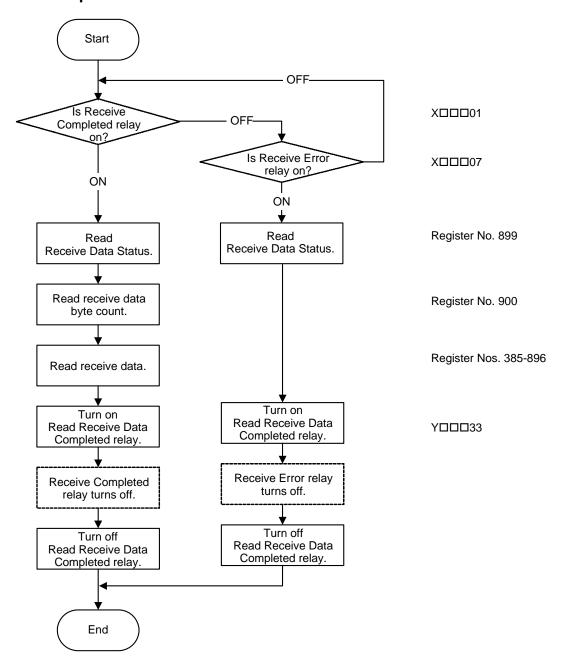
B7.3 Sending Data

Send procedure


CAUTION

- This procedure assumes that default data position numbers are used for the send data area.
- The data position numbers will be different if the size of the send or receive data area is redefined by a user.

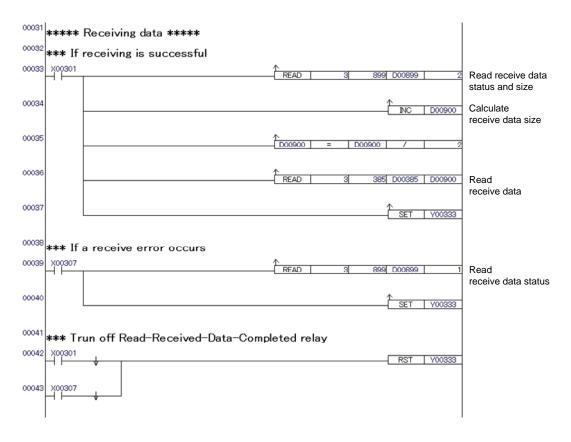
• Sample program


This sample program assumes the following conditions:

- The module is installed in slot 3.
- Text to be sent is "YOKOGAWA ".
- End characters are a pair of CR and LF (\$0D and \$0A) characters.

B7.4 Receiving Data

• Receive procedure

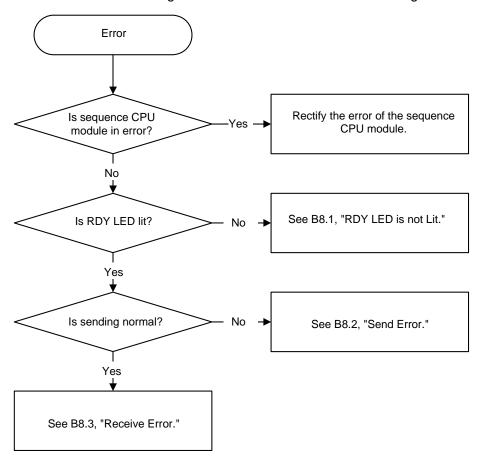

CAUTION

- This procedure assumes that default data position numbers are used for the receive data area.
- The data position numbers will be different if the size of the send or receive data area is re-defined by a user.

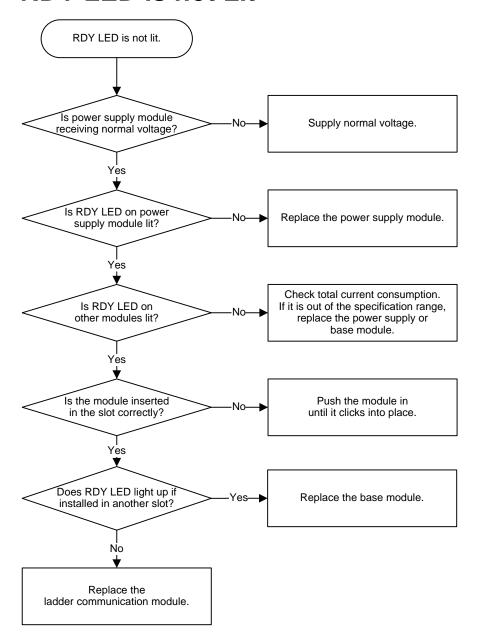
Sample program

This sample program assumes the following conditions:

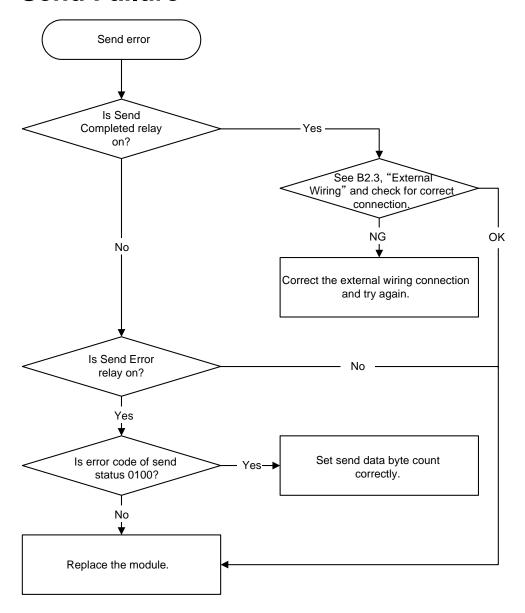
- The module is installed in slot 3.

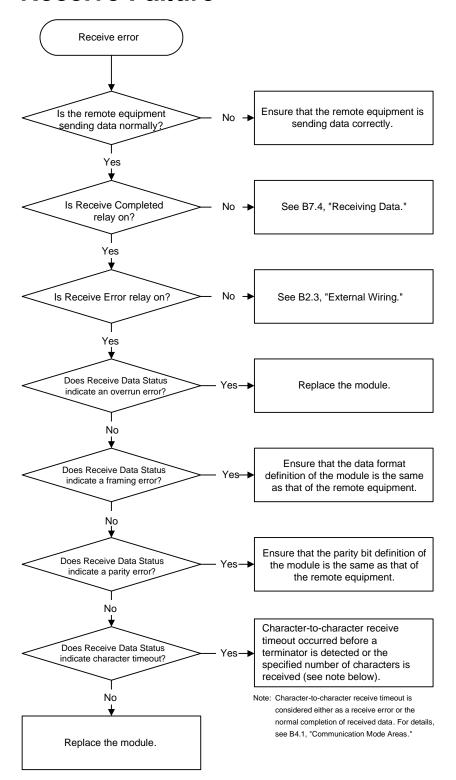


CAUTION


The receive data size is stored in units of bytes in the module. You must convert the size in bytes into size in words when reading the received data into the CPU module using the READ instruction.

B8. Troubleshooting


These are troubleshooting flowcharts for common errors involving the module.


B8.1 RDY LED is not Lit

B8.2 Send Failure

B8.3 Receive Failure

Appendix B1. ASCII Code Table

High Low	0	1	2	3	4	5	6	7
0	NUL	DLE	SP	0	@	Р	`	р
1	SOH	DC1	!	1	Α	Q	Α	q
2	STX	DC2	"	2	В	R	В	r
3	ETX	DC3	#	3	С	S	С	S
4	EOT	DC4	\$	4	D	Т	D	t
5	ENQ	NAK	%	5	Е	U	Е	u
6	ACK	SYN	&	6	F	V	F	٧
7	BEL	ETB	•	7	G	W	g	W
8	BS	CAN	(8	Н	X	h	Х
9	HT	EM)	9	I	Υ	i	у
Α	LF	SUB	*	:	J	Z	j	Z
В	VT	ESC	+	;	K	[k	{
С	FF	FS	,	<	L	¥	I	
D	CR	GS	-	=	M]	m	}
Е	SO	RS		>	N	۸	n	~
F	SI	US	1	?	0	_	0	DEL

FA-M3

Ladder Communication Module Part B: F3RZ91-0F

IM 34M06H22-02E 3rd Edition

INDEX

Numeric 2-wire system......B2-6 4-wire system......B2-5 В break signal B6-2 break transmission interval......B4-4 C character length......B4-3 character-to-character receive timeout, detecting......B6-2 character-to-character timeout interval...... B4-4 character-to-character timeout processing...... B4-3 communications mode area B4-2 communications mode area, reading from B7-3 communications mode area, writing to B7-1 communications mode setup area......B4-2 communications mode status area..... B4-3 D data format switch (SW2) B2-4 Ε end character of receive text B4-4 input relaysB3-2 output relaysB3-1 Ρ parity B4-3 receive buffer, initializing......B7-4 receive data area B4-5 receive data byte count......B4-6 receive data status......B4-6 receive procedure B7-7 receive text length......B4-4 received text, format ofB6-1

S	
send and receive data areas	B4-5
send data area	B4-5
send data byte count	B4-5
send procedure	B7-5
send status	B4-5
start character of receive text	B4-4
stop bits	B4-3
т	
terminating resistor	B2-6
terminator, receiving a	
transmission speed switch (SW1)	

Revision Information

Document Name: Ladder Communication Module

Document No.: IM 34M06H22-02E

Edition	Date	Revised Item
1st	Jan. 2006	New publication
2nd	Jan. 2008	Addition of F3RZ81-0F
3rd	Apr. 2016	Correction of errors

■ For Questions and More Information

If you have any questions, you can send an E-mail to the following address.

E-mail: plc_message@csv.yokogawa.co.jp

■Written by

Yokogawa Electric Corporation

■ Published by

Yokogawa Electric Corporation

2-9-32 Nakacho, Musashino-shi, Tokyo, 180-8750, JAPAN

■ Printed by Kohoku Publishing & Printing Inc.