AXG, AXW

Please change the corresponding pages of the user's manuals to the contents below.

1. Applicable Users' Manuals

Document No. (Edition No.) Product ModeI, Document Name	Page	Chapter	Changed Description
IM 01E22A01-01EN(12) ADMAG TI Series AXG Magnetic Flowmeter Installation Manual	11	3.1 Piping Design Precautions	Add "(10) Counter Flange Material".
IM 01E24A01-01EN(8) ADMAG TI Series AXW Magnetic Flowmeter [Size: 25 to 400 mm (1 to 16 in.)] Installation Manual	78	6. Operation	Add "6.4 Setting the correction factor".

2. Contents of change

3.1 Piping Design Precautions (10) Counter Flange Material NOTE

For wafer type with a diameter of 40 to 125 mm , measurements may be affected if the flange connecting the flowmeter is made of carbon steel. In such cases, the effect can be reduced by setting the correction factor. For details on setting the correction factor, refer to section 6.4. For products manufactured after January 2024, perform this procedure only on devices with correction factor written on the nameplate in Figure 6.4.1. There is no need to perform this procedure for devices that do not have correction factor written. In addition, most products manufactured before December 2023 do not have correction factor written on their nameplates. For those products, the correction factor is posted on our website. Please see Figure 6.4.2 for the manufacturing date.
URL : https://flowmeter.yokogawa.com/csn2303/cf-search
Note 1: Do not apply correction if the flange connecting the flowmeter is not carbon steel.

6.4 Setting the correction factor

When applying the correction in Section 3.1(10), set the correction factor written as CFL, CFH on the nameplate in Figure 6.4.1. For the correction factor parameter setting, please refer to Table 6.4.1 for the parameters for setting the correction factor. For the setting method, refer to Section 5.3, 5.4 and the manual for each communication type.

IMPORTANT

- Setting the correction factor should be carried out before actual operation.

NOTE

- To cancel correction, set the meter factor in the parameters in Table 6.4.1. The meter factor is written in the METER FACTOR column on the nameplate.

Figure 6.4.1 Correction Factor

Integral Flowmeter

Remote Sensor

Figure 6.4.2 Manufacturing date

Table 6.4.1 Method for correction setting

Display/ Communication	Parameter Menu Path	Parameter Name	Correction Value
Display	Device settings - Detailed setting - Sensors -	Low MF	CFL
		High MF	CFH
BRAIN	C:BASIC SETUP -	C20: LOW MF	CFL
		C21: HIGH MF	CFH
HART	Device root menu - Basic setup - Sensor -	Low MF	CFL
		High MF	CFH
Modbus (Note 1)	Device root menu - Detailed setup - Sensor -	Low MF	CFL
		High MF	CFH
FOUNDATION Fieldbus (Note 2)	Device Configuration - STB - Device Configuration Configuration - Sensor -	Low MF	CFL
		High MF	CFH
PROFIBUS PA (Note 2)	Device - Input - Flow Transducer Block - Flow Tube	CALIBR_FACTOR	CFL
		High MF	CFH
EtherNet/IP	Device root menu - Detailed setup - Sensor -	Low MF	CFL
		High MF	CFH

(Note 1) Modbus Address:

Modbus				
Parameter	Rel. add	Reg. add	Type	Size
Low MF	320	40321	Float	2
High MF	322	40323	Float	2

(Note 2) FOUNDATION Fieldbus, PROFIBUS PA communication specification devices: Set the mode to "O/S" before changing Parameter settings. After setting, please return to the previous mode.

