Security Standards Overview

Name: Graham Speake
Position: Vice President and Chief Product Architect
Company: NexDefense
BSc Electrical and Electronics Engineer

20 years experience in computer security

14 Years experience in automation security

Worked as an independent consultant on financial security

Member of ISA, ISCI, ISC²

Worked for Ford Motor Company, ICS, ATOS-Origin, BP and Yokogawa

Vice President and Chief Product Architect at NexDefense
Background
And History
Language difficulties

I am not in the office at the moment. Send any work to be translated.
Early days

- Man has always invented machinery to ease the burden
- IBM minicomputers used in 1960s
- First industrial control computer
 - Texaco Port Arthur (Ramo-Wooldridge)
- First DCS : 1975
 - Yokogawa Centum
 - Honeywell TDC 2000
Hardwired systems

- Processes originally controlled by hardwired systems
- Completely stand-alone
- Relay-based
 - Really hard to hack into
Relay systems

- Large footprint
- Lots of wiring
- Configuration changes
 - Difficult
 - Expensive

Testing a challenge
Early computerization

- 70s and 80s show an explosion in systems
- PLCs, multiple DCS manufacturers
- End users rushed in to deploy
 - Configuration and modification simplification
 - Enhanced control functions
- Vendors came (and went)
Vendors

- Metso
- Bailey Controls
- Taylor Instrument
- Foxboro
- Varian Data Machines
- Valmet
- Bristol
- Fisher and Porter
- Midac
- DEC
Major evolution of DCS during 1980s
- More powerful operator stations (HMIs)
- Fully distributed control
- Proprietary hardware and software
- Little / no standardization
 - Between vendors
 - Within a company (vendor or end user)
- Growth in oil and gas exploration
Rise of the DCS

New DCS models and upgrades proliferate
- I/O boards
- Number of different devices
- Control software increases in sophistication
- Security?
Proprietary systems

- Proliferation of systems
 - Many disparate vendors
 - Multiple vendor mergers and acquisitions
 - Well known names of 70s and 80s disappear
 - Users think about standardization
 - Custom made hardware and software
- Rise of Microsoft and IBM PCs in IT world
Vendor Systems Development

- Often non-computer orientated design team
 - Systems designed by engineers

- Computer Science seen as an corporate IT function
 - Based on mainframes / minicomputers
 - Punched cards
 - 8” floppy disks

- DEC PDP-11 often used
 - Used and taught in engineering degrees
Rise of Personal Computing

● Personal computers proliferate in 1980s and 1990s
 – Atari
 – Sinclair
 – BBC (Acorn)

● Cost of computers came down
 – (but why do they always seem to be the same?)

● Networking became the norm (but not standardized)
 – Token ring
Internet and TCP/IP

- Growth of TCP/IP in late 80s
- Internet starting becoming popular
 - CompuServe
 - AOL
 - BBS
- Microsoft Windows gained popularity
 - Added games!
Rise of Microsoft

Microsoft Windows NT
- Stable (ish) platform
- Used extensively in IT
- Large pool of expertise

OPC (1996)
- Object Linking and Embedding for Process Control
- Now Open Platform Communication Foundation
- Communication of real-time plant data between different vendors
Cost equation

- HMI can cost $50000
- PC can cost $2000
 - Do more
 - Better display
 - Easily extensible
 - Buy from multiple sources

End users
 - Question cost
 - Standardization

Vendors pushed towards Windows
Typical deployment
Where we are today
2001

- 9/11 changed the thought process
- Companies looked at security
- Industrial security woefully lacking
- Control systems compromised
Accidental incidents

- PLCs crashed by IT security audit
- Duplicate IP address prevents machine startup
- IP address change shuts down chemical plant
- Accidental programming of a remote PLC
- AV software prevents boiler safety shutdown
- Multiple USB infections
Malware infections

- Sasser infects chemical plant
- Blaster infects chemical plant
- Slammer infects power company control centre
- Nachi and Sasser infect baggage handling systems
- Sobig virus shuts down train signalling system
- Slammer infects nuclear power plant
- Virus shuts down flight planning computer
Internal hackers

- Disgruntled employee changes PLC passwords to obscenity
- Maroochy Shire Sewage Spill
- White hat takeover of DCS consoles
- Venezuela Oil striking PLC hacker sabotage
 External hackers

→ APT attacks against oil and gas companies
→ Stuxnet
→ Shamoon
 – Up to 30000 computers wiped
→ Zombies ahead

CAUTION! ZOMBIES! AHEAD!!!
Advances since 2001

- Slow progress
 - Vendors, asset owners, consultants
- Public – private initiatives
 - Lots of paper
 - Roadmaps
- Standards coming out
 - ISA 99 / ISA 62443 / IEC 62443
- Certifications
 - Process / systems / people
Reasons for inaction – I’ve got a firewall!
Reason 2 – I’ve got a Windows firewall!
Reasons for inaction

Asset owners
- Skills not available
- Cost of deployment (and opex)
- Not a target
- No management buy-in
- Shareholders
- Not regulated

Vendors
- Skills not available
- No management buy-in
- Not seen as saleable
Consultants

I like to con people. And I like to insult people.

If you combine con and insult, you get “consult.”

I’m here to consult you.

It sounds expensive and demeaning. ... okay.
Wurldtech

- WIB certification scheme
- Now becoming 62443-2-4
- Processes and systems
- Mainly vendors
- Take-up very slow

Wurldtech

- Achilles
Threats
Cybersecurity threat history (2010 – today)

- Stuxnet
- Duqu
- Nitro
- Night Dragon
- Shamoon
- Anonymous
- Dragonfly / Energetic Bear
Stuxnet (2010)

Stuxnet
- Very targeted attack
- Air gapped system
- Not a game changer
Software Sabotage
How Stuxnet disrupted Iran's uranium enrichment program

1. The malicious computer worm probably entered the computer system - which is normally cut off from the outside world - at the uranium enrichment facility in Natanz via a removable USB memory stick.

2. The virus is controlled from servers in Denmark and Malaysia with the help of two Internet addresses, both registered to false names. The virus infects some 100,000 computers around the world.

3. Stuxnet spreads through the system until it finds computers running the Siemens control software Step 7, which is responsible for regulating the rotational speed of the centrifuges.

4. The computer worm varies the rotational speed of the centrifuges. This can destroy the centrifuges and impair uranium enrichment.

5. The Stuxnet attacks start in June 2009. From this point on, the number of inoperative centrifuges increases sharply.

Source: IAEA, ISIS, FAS, World Nuclear Association, FT research
Duqu (2011)

- Based on Stuxnet code
- No ICS specific attacks
- Stolen digital certificate to aid installation
- Information gathering

Source:
NGOs -> motor industry -> chemicals
30 chemical companies infected
Phishing and spear-phishing attacks
Poison-ivy RAT
Target : intellectual property

Source :
Night Dragon (2009 - 2011)

- Targeted many oil and gas companies
- Primary purpose data extraction
- Attacker IP addresses resolve to China
Night Dragon (2009 - 2011)

Shamoon (2012)

- Infected ~30000 Saudi Aramco computers
- Self-replicating worm
- Destructive - wiped the hard drives
- Purpose – stop the flow of oil
- Spread to RasGas and others
Anonymous (ongoing)

- Hacktivist group
- OpPetrol
Heartbleed (2014)

- SSL/TSL bug
- Code used in critical infrastructure components
- Discovered by Codenomicon
Dragonfly Group (Symantec) / Energetic Bear (Crowdstrike)

– Active since 2011
– Appears to be Russian origin
– HAVEX RAT and SYSMain RAT
– Initial targets:
 • US / Canada defense and aviation
– Lately
 • European energy firms
Initially spear phishing executives

Watering hole attacks
 – Mainly ICS vendors

Infected software packages
 – VPN into PLC equipment
 • 250 downloads
 – PLC manufacturer
 • Software available 6 weeks
 – Alternative energy manufacturer
 • Software available for 10 days

Active scanning for OPC

No active component (yet)

Mitigation strategies

- Defense in depth
- Network and control system knowledge
Don’t just rely on one very strong protection measure.

- No single security measure is perfect – any small vulnerability could render a single protection measure ineffective
- Good security frameworks rely on a combination of protection measures
- Also this provides advanced notice of attack

Defence in Depth

Keep
Outer
Mural
Portcullis
Drawbridge
Moat
Rewind to the 1980’s

Industry-wide focus on Safety due to some significant events

Safety Instrumented Systems (SIS) technology changing from electrical relays to programmable electronic systems (PES)

Limited skillset in asset owner organizations to assess SIS safety integrity

Solution:

– IEC 61508/61511 international standards
– Independent 3rd party safety integrity assessment
Fast Forward to Today

Industry-wide focus on Security due to many significant events

Industrial Automation and Control Systems (IACS) technology changing from vendor proprietary to IP networking and COTS hardware/OS

Limited skillset in asset owner organizations to assess IACS cybersecurity capabilities

Solution:
 – ISA/IEC 62443 international standards
 – Independent 3rd party security assessment - ISASecure
Overview of ISA/IEC standards
Overview

- The Situation
- Chlorine Truck Loading Use Case
- Design & Risk Management Process
- Systems vs. Zones & Conduits
- Design Considerations
- Security Level Vector Discussion
The Problem
- With so many standards out there, how do you pick the best one?
- Once you’ve picked a set of standards, how do you apply them?

Security Standards
- ISA/IEC 62443 (13)
- ISO/IEC 2700x (10+)
- NIST FIPS and SP800 (7+)
- NERC CIP (8)
- Smart Grid (?)

And that’s just the security standards, then take into account the functional standards
- Wireless = ISA 100.11a, WirelessHART, Zigbee, WiFi, Bluetooth...
- Safety = ISA 84, IEC 61508/61511, DO-254, OSHA...
- Management = ISO 9000, 14000, 31000, 50001, Six-Sigma...
- And plenty of others...
ISA/IEC 62443 Series (Proposed)

General
- ISA-62443-1-1: Terminology, concepts and models
- ISA-TR62443-1-2: Master glossary of terms and abbreviations
- ISA-62443-1-3: System security compliance metrics
- ISA-TR62443-1-4: IACS security lifecycle and use-case

Published as ISA-99.00.01-2007

Policies & procedures
- ISA-62443-2-1: Requirements for an IACS security management system
- ISA-TR62443-2-2: Implementation guidance for an IACS security management system
- ISA-TR62443-2-3: Patch management in the IACS environment
- ISA-62443-2-4: Installation and maintenance requirements for IACS suppliers

Published as ISA-99.02.01-2009

System
- ISA-TR62443-3-1: Security technologies for IACS
- ISA-62443-3-2: Security levels for zones and conduits
- ISA-62443-3-3: System security requirements and security levels

Published as ISA-TR99.00.01-2007

Component
- ISA-62443-4-1: Product development requirements
- ISA-62443-4-2: Technical security requirements for IACS components
Security Standards

- Security standards generally tell you what has to be done or specified, but don’t tell you how to go about doing it
 - Functional specifications
 - Security controls/countermeasures
- Some standards show a generic process, but leave it up to the reader to apply it in their case
- A few use-cases exist, but many times these are:
 - Sector-specific
 - Only apply in certain cases
 - Limited in scope
- Very few end-users discuss the details of their processes
 - Restrict information from potential attackers
- Almost no vendors or system integrators discuss the details of their processes
 - Restrict information from potential competitors
Setting the Stage

- ISA99 is trying to use a single use-case throughout the entire series to show how each part of the standard fits into the process
- While the chlorine truck loading example is related to the chemical industry, the concepts presented could relate to any industry
- The example allows for somewhat more realistic discussions of risk than in an IT-focused, DHS-focused, or purely hypothetical example

Use case in early development and idea phase

- Will take quite a long time to complete entire use-case
- Different parts of use-case will probably emerge at different times
Pharmaceutical Company XYZCorp

- Wants to start producing new product (FixItAll)
- No room for new production plant at existing facilities
- Chemical process requires relatively small amounts of chlorine
- Existing facility produces chlorine in large enough quantities

XYZCorp considers their options

- Conducts business assessment of building new facility
 - Existing facilities all near space capacity
 - New facility has good access to roads
 - Land is suitable and available
 - Existing chlorine production facility over 50 miles away
- Considers options for transporting chlorine
 - Pipeline
 - Rail
 - Truck
Chlorine Truck Loading Use-Case: The Plan

- Build truck loading/unloading facilities
 - Loading @ existing facility, unloading @ new facility
 - Unmanned except during loading/unloading operations
 - Hazardous chemical requires special handling & safety

- Generations of equipment
 - Existing facility uses legacy equipment (brown-field)
 - New facility designed with current technology (green-field)

- Facility monitoring & control
 - Unmanned – centralized monitoring @ control center
 - Manned & operational – local control with both local & centralized monitoring

- Attached to business systems
 - Billing & logistics
 - Inventory tracking
Use Case: Design Considerations

Systems needed
- Safety Instrumented System (SIS)
- Basic Process Control System (BPCS)
- Control center
- Plant DMZ
- Enterprise systems

Level of SIS integration with BPCS?
- Air-gapped
- Interfaced
- Integrated
Initial Design Process: Identify the Control Assets

- **Process Equipment**
 - Pump Controller
 - Transmitters
 - Block and Control Valves

- **BPCS & SIS**
 - Functional Safety-PLC
 - Control PLC
 - Engineering Workstation(s)
 - Instrument Asset Management System
 - Human-Machine Interface(s)

- **Control Center**
 - Control Center Workstations

- **Plant DMZ**
 - Data Historian

- **Enterprise**
 - Enterprise Web Server
 - Enterprise WLAN
 - Business Logistics System
 - Billing System
Now What???
Now that the business case and some initial design ideas have been put down, where do you go from here?

A. Design the control system without worrying about the security?
B. Design everything so secure that it becomes unusable?
C. Throw in firewalls everywhere?
D. Conduct a detailed risk assessment at the device level?
E. Conduct a multi-stage risk assessment starting with the top level and working down to the low level as the design progresses?

Generally, the ISA99 approach begins with E
ISA99, Working Group 2 working on modified ISO/IEC 27005 risk management process
- Uses basic shell from 27005
- Modifies it for multi-stage risk assessment process
- Discusses “jump-in” point
- Relates risk management process to overall cyber security management system design process
 - Business planning
 - Change management
 - Decommissioning
Systems ≠ Zones

- Conducting a system breakdown may give some indication of future zones, but there is no direct one-to-one correlation between the two
- Systems = Collections of equipment/assets that logically function together to perform at least one task
- Zones = Collections of equipment/assets that logically have similar security requirements

System breakdown helps to identify different sets of equipment during the risk assessment phase

Zones are created after the risk assessment phase based on the particular security requirements for that set of equipment/assets

Conduits are a special kind of zone containing a communication channel
Security Levels

LEVEL 1
- Casual & Coincidental
- Violation

LEVEL 2
- Simple Means
- Low Resources
- Generic Skills
- Low Motivation

LEVEL 3
- Sophisticated Means
- Moderate Resources
- System-Specific Skills
- Moderate Motivation

LEVEL 4
- Sophisticated Means
- Extended Resources
- System-Specific Skills
- High Motivation
Design Considerations: SIS Air-Gapped vs. Interfaced vs. Integrated
Security Level Vector Discussion

- Industrial Security Isn’t Always About Death & Dismemberment
 - Some security concepts don’t fit into that model
- Use the Foundational Requirements to Engineer the System Security
 - Identification & Authentication Control
 - Use Control
 - System Integrity
 - Data Confidentiality
 - Restricted Data Flow
 - Timely Response to Events
 - Resource Availability
How will the switches affect the security of the BPCS & SIS?

- High availability is fairly common
- Uncommon for switches to have good access control (natively)
- Confidentiality depends, is SNMP enabled AND secured?
- If switch fails completely, what happens to system integrity? What about intermittent failures, or bad ports? What are the safety implications?
Security Level Vector Discussion

- Now, what about other components?
- How do each of the component capabilities roll into a system capability?
 - Mathematical/Additive?
 - Qualitative assessment of capabilities?
- How do capabilities relate to achieved security levels?
Security Lifecycles

Product Development Lifecycle

System Integration Lifecycle

System/Project Lifecycle
Security Lifecycle

- Business Planning
- Detail Planning
- Construction
- Facility Planning
- Implementation
- Startup & Commissioning
- Facility Operations
- Facility Decommissioning

- Product Supplier
- Engineering Entity
- Asset Owner
ISASecure certification programs are accredited as an ISO/IEC Guide 65 conformance scheme and ISO/IEC 17025 lab operations by ANSI/ACLASS.

- Provides global recognition for ISASecure certification
- Independent CB accreditation by ANSI/ACLASS and other global Accreditation Bodies such as JAB or UKAS
- ISASecure can scale on a global basis
- Ensures certification process is open, fair, credible, and robust.
- MOU’s with AB’s for ISASecure
Global Acceptance of ISASecure

- One set of certification criteria
- One certification test/assessment
- One globally recognized mark

Economically efficient for both suppliers and asset owners
Supporters-ISC\(\text{I}\) Member Companies

ISC\(\text{I}\) membership is open to all organizations

- Strategic membership
- Technical membership
- Government membership
- Associate membership
- Informational membership

Member organizations

- Chevron
- Aramco Services
- CSSC
- Codenomicon
- exida
- ExxonMobil
- Honeywell
- IT Promotion Agency, Japan
- Schneider Electric (Invensys)
- RTP Corp.
- Yokogawa
- ISA99 Committee Liaison
Global Adoption Expands to Japan

Japan Information-technology Promotion Agency and Control System Security Center

- IPA Translated ISASecure specifications to Japanese
- CSSC set up a test lab in Tagajo-city near Sendai, Japan - Control System Security Center Certification Laboratory (CSSC-CL)
- CSSC-CL was accredited by JAB (Japan Accreditation Board) to ISASecure in Q1 2014
- CSSC and CSSC-CL are promoting ISASecure as part of the Japanese critical infrastructure security scheme.
- CSSC-CL certified two EDSA devices in Q2 2014
Japan CSSC Supporters

1. Advanced Institute of Science and Technology
2. ALAXALA Networks Corporation
3. Azbil Corporation
4. Fuji Electric Co., Ltd.
5. Fujitsu Limited
6. Hitachi, Ltd.
7. Information Technology Promotion Agency
8. Japan Quality Assurance Organization
9. LAC Co., Ltd.
10. McAfee Co., Ltd.
11. Meidensha Corporation
12. Mitsubishi Electric Corporation
13. Mitsubishi Heavy Industries Ltd.
14. Mitsubishi Research Institute Inc.
15. Mori Building Co., Ltd.
16. NEC Corporation
17. NRI Secure Technologies Ltd.
18. NTT Communications Corporation
19. OMRON Corporation
20. The University of Electro-Communications
21. Tohoku Information Systems Company, Incorporated
22. Toshiba Corporation
23. Toyota Info. Technology Center Co., Ltd.
24. Trend Micro Incorporated
25. Yokogawa Electric Corporation

CSSC Supporter Companies

1. Ixia Communications K.K.
2. Japan Nuclear Security System Co., Ltd
3. OTSL Inc.
4. Rock international
5. The Japan Gas Association (JGA)
6. TOYO Corporation
Three ISASecure® certifications available

1. Embedded Device Security Assurance (EDSA) IEC-62443-4-2
 ![Certified Device ISASecure](image)

2. System Security Assurance (SSA) IEC-62443-3-3
 ![Certified System ISASecure](image)

3. Security Development Lifecycle Assurance (SDLA) IEC-62443-4-1
 “An ISASecure Certified Development Organization”
ISASecure™

Embedded Device Security Assurance (EDSA)
EDSA Overview

- Certification that the supplier’s product is robust against network attacks and is free from known security vulnerabilities

- Meets requirements of ISA/IEC-62443-4-2 for embedded devices (will be re-aligned with 4-2 when formally approved by IEC)

- Currently available – 7 devices certified with more devices under assessment
What is an Embedded Device?

Special purpose device running embedded software designed to directly monitor, control or actuate an industrial process, examples:

- Programmable Logic Controller (PLC)
- Distributed Control System (DCS) controller
- Safety Logic Solver
- Programmable Automation Controller (PAC)
- Intelligent Electronic Device (IED)
- Digital Protective Relay
- Smart Motor Starter/Controller
- SCADA Controller
- Remote Terminal Unit (RTU)
- Turbine controller
- Vibration monitoring controller
- Compressor controller
ISASecure EDSA Certification Program

- **Embedded Device Security Assurance (EDSA)**
 - Detects and Avoids systematic design faults
 - The vendor’s software development and maintenance processes are audited
 - Ensures the organization follows a robust, secure software development process

- **Software Development Security Assessment (SDSA)**
 - Detects Implementation Errors / Omissions
 - A component’s security functionality is audited against its derived requirements for its target security level
 - Ensures the product has properly implemented the security functional requirements

- **Functional Security Assessment (FSA)**
 - Detects Implementation Errors / Omissions
 - A component’s security functionality is audited against its derived requirements for its target security level
 - Ensures the product has properly implemented the security functional requirements

- **Communications Robustness Testing (CRT)**
 - Identifies vulnerabilities in networks and devices
 - A component’s communication robustness is tested against communication robustness requirements
 - Tests for vulnerabilities in the 4 lower layers of OSI Reference Model
ISASecure™
System Security Assurance (SSA)
SSA Overview

- Certification that the supplier’s product is robust against network attacks and is free from known security vulnerabilities
- Meets requirements of ISA/IEC-62443-3-3 (SSA was re-aligned with 3-3 by ISCI in 2013 when it was approved by IEC)
- Available as of Q1 2014
What is a “System”?

- Industrial Control System (ICS) or SCADA system
- Available from a single supplier
- Supported by a single supplier
- Components are integrated into a single system
- May consist of multiple Security Zones
- Can be identified by a product name and version
- Off the shelf; not site or project engineered yet
System Security Assessment (SSA)

- Ensures Security Was Designed-In
 - The supplier’s system development and maintenance processes are audited for security practices
 - Ensures the system was designed following a robust, secure development process

- Ensures Fundamental Security Features are Provided
 - A system’s security functionality is audited against defined requirements for its target security level
 - Ensures the system has properly implemented the security functional requirements

- Identifies Vulnerabilities in Actual Implementation
 - Structured penetration testing at all entry points
 - Scan for known vulnerabilities (VIT)
 - Combination of CRT and other techniques

Security Development Lifecycle Assessment (SDLA)

Functional Security Assessment (FSA)

System Robustness Testing (SRT) and Vulnerability Identification Testing (VIT)
SSA System Robustness Test

Asset Discovery Scan
– scan to discover the components on the network

Communications Robustness Test
– verify that essential functions continue to operate under high network load and malformed packets

Network Stress Test
– verify that essential functions continue to operate under high network load

Vulnerability Identification Test
– scan all components for the presence of known vulnerabilities (using Nessus)
– based on National Vulnerability Database
SSA System Robustness Test

Test Device: source for CRT or NST network traffic

Network stress tests; source TD connected to zone switch

Basic and load stress CRT; source TD connected to switch with exceptions noted in text

Basic and load stress CRT; source TD at External Interface n

PROCESS SAFETY ZONE

SIS Engineering Workstation

TD

SIS LAN

C-LAN 2

FS-PES

PROCESS CONTROL ZONE

Control System Server(s)

Control System Engineering Workstation

Control PES

External Interface 2
ISASecure™
Security Development Lifecycle Assurance (SDLA)
Certificate that the supplier’s product development work process includes security considerations throughout the lifecycle.

(Organization process certification)

Meets requirements of ISA/IEC-62443-4-1

(will be re-aligned with 4-1 when it is formally approved by IEC)

Based on several industry-recognized security development lifecycle processes

Launched May 2014
SDL Phases

1. Security Management Process
2. Security Requirements Specification
3. Security Architecture Design
4. Security Risk Assessment (Threat Model)
5. Detailed Software Design
7. Module Implementation & Verification
8. Security Integration Testing
10. Security Response Planning
11. Security Validation Testing
12. Security Response Execution
Multiple Product Certification

Security Development Lifecycle Assessment

- Security Development Lifecycle Assessment
- Functional Security Assessment
- Robustness Testing

Product #1

- Security Development Lifecycle Assessment
- Functional Security Assessment
- Robustness Testing

Product #n

An organization’s product development process is certified once per the SDLA requirements.

Individual products are certified which includes an assessment to verify the certified SDLA process was followed.
Security Levels

- Security Level 1
 - Secure Development Lifecycle Assessment
 - Functional Security Assessment
 - Vulnerability Identification Testing

- Security Level 2
 - Secure Development Lifecycle Assessment
 - Functional Security Assessment
 - Vulnerability Identification Testing

- Security Level 3
 - Secure Development Lifecycle Assessment
 - Functional Security Assessment
 - Vulnerability Identification Testing

- Security Level 4
 - Secure Development Lifecycle Assessment
 - Functional Security Assessment
 - Vulnerability Identification Testing

Robustness Testing

Communication Robustness Testing
Communication Robustness Test tools

1. Codenomicon – Defensics X
2. FFR – Raven
3. Wurldtech – Achilles

Vulnerability Scanning Tools

1. Tenable - Nessus
Simplified Asset Owner Use Case

- Establishes and operates a security program based upon 62443-2-1 & -2-2
- Maintains a patch management system using -2-3
- Certifies that suppliers & vendors comply with -2-4
- Measures achieved security using metrics from -1-3
 - Uses zone & conduit model to design their systems based upon -3-2
 - Builds and/or procures systems that comply with technical requirements in -3-3
 - Builds and/or procures components that comply with:
 • Product development lifecycle in -4-1
 • Technical requirements in -4-2
In Summary

- ISA/IEC-62443 standards set the requirements for Industrial Automation and Control Systems
- ISASecure certifies that suppliers and products meet the ISA/IEC-62443 standards
- Asset Owners have confidence that the IACS products they purchase are robust against network attacks and are free from known security vulnerabilities
ISA under Automation Federation facilitating NIST effort to develop a cybersecurity framework.

Draft framework 1.0 completed in 2013. IEC 62443 standards are prominent in the document.

Cybersecurity Framework 2.0. Plans are underway for a meeting this Fall in Illinois by the White House and NIST
Glossary

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACLASS</td>
<td>One of three brands of the ANSI-ASQ National Accreditation Board</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>CSSC</td>
<td>Control System Security Center, Japan-R&D and test lab in Tagajo-city Japan</td>
</tr>
<tr>
<td>CSSC-CL</td>
<td>Control System Security Center, Japan – certification lab operation</td>
</tr>
<tr>
<td>ISA</td>
<td>International Society of Automation</td>
</tr>
<tr>
<td>IACS</td>
<td>Industrial Automation and Control System</td>
</tr>
<tr>
<td>ICS</td>
<td>Industrial Control System</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IPA</td>
<td>Information-technology Promotion Agency, Japan</td>
</tr>
<tr>
<td>ISCI</td>
<td>ISA Security Compliance Institute</td>
</tr>
<tr>
<td>JAB</td>
<td>Japan Accreditation Board-Japan based IEC accreditation body (AB)</td>
</tr>
<tr>
<td>Supplier</td>
<td>Type</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Honeywell Process Solutions</td>
<td>Safety Manager</td>
</tr>
<tr>
<td>RTP Corporation</td>
<td>Safety manager</td>
</tr>
<tr>
<td>Honeywell Process Solutions</td>
<td>DCS Controller</td>
</tr>
<tr>
<td>Honeywell Process Solutions</td>
<td>Fieldbus Controller</td>
</tr>
<tr>
<td>Yokogawa Electric Corporation</td>
<td>Safety Control System</td>
</tr>
<tr>
<td>Yokogawa Electric Corporation</td>
<td>DCS Controller</td>
</tr>
<tr>
<td>Hitachi, Ltd.</td>
<td>DCS Controller</td>
</tr>
</tbody>
</table>
ISASecure Program Structure

- ISCI: Defines Program
 - Certification Scheme
 - Accreditation Requirements
- IEC Accreditation Body (AB)
 - ANSI/AClass or JAB
 - Accredits
- Chartered Lab
 - Develops Test Specs
 - Uses Recognized Test Tool
- IACS Vendor
 - Submits Product
 - Assesses Product
 - Issues ISASecure Certification
- Test Tool Vendor
 - Recognizes Test Tools
 - Uses Recognized Test Tool
- End Users
 - Specify ISASecure in Procurement Specifications
 - Procurement Specifications

End Users
Specify ISASecure in Procurement Documents
Procurement Specifications
CSSC-CL Receives Accreditation from JAB

April 2014 Photo-Mr. Hideaki Kobayashi, Vice-President of CSSC-CL showing Guide 65 and ISO 17025 accreditation certificates from JAB for ISASecure EDSA conformance scheme.
July 2014 Photo-Andre Ristaino, ISCI Managing Director with Mr. Hideaki Kobayashi, Vice-President of CSSC-CL and team members during tour and celebration of accreditation by JAB and completion of first two ISASecure EDSA certifications.
No bears were hurt in the making of this presentation
Graham Speake
Vice President and Chief Product Architect, NexDefense
ICS 410 Course Instructor, The SANS Institute

Email: graham.speake@nexdefense.com
LinkedIn: Graham Speake
Who to contact for ISA99 committee

Eric Cosman
Co-Chairman ISA99 Committee
eric.cosman@gmail.com

Jim Gilsinn
Co-Chairman ISA99 Committee
jimgilsinn@gmail.com
Certificate / Certifikat
Zertifikat / 合格証

HPS 1108033 C002
exida hereby confirms that the
Experion® Series C FIM
Manufactured by
Honeywell Process Solutions
Phoenix, Arizona
USA

Has been assessed per the relevant requirements of:

ISASecure™ Embedded Device Security Assurance Program
2010.1

And meets the requirements for:

LEVEL 1

Model Number: Series C FIM with 9 Port FTE Control
Firewall Module and Input Output Termination Assemblies (IOTA)

Firmware Version: R400

ISASecure Chartered Laboratory: exida
64 North Main St.,
Sellersville, PA 18960
License: IISC-CL0001
ACLASS Cert No: AT-1531

Authorized Representative

vigilantplant.® 2014 Yokogawa Users Group Conference & Exhibition
Copyright © Yokogawa Electric Corporation
Sept. 9-11, 2014 Houston, TX
- 105 -

The clear path to operational excellence
Who to Contact to Certify Products

ISASecure EDSA Chartered Lab:

Exida – USA and EU

Mike Medoff
Director of Security Services
Phone: (215) 453-1720
Fax: (215) 257-1657
Email: mmedoff@exida.com
Website: http://www.exida.com

ISASecure EDSA Chartered Lab:

CSSC - Japan

Kenzo Yoshimatsu
Phone: +81 (22) 353-6751
Email: kenzo.yoshimatsu@css-center.or.jp
Website: http://www.css-center.or.jp
Who to contact for ISCI Membership

Andre Ristaino
Managing Director, ASCI
Phone: 919-990-9222
Fax: 919-549-8288
Email: aristaino@isa.org
Website: http://www.isasecure.org
Thank-You