Percent Concentration Control

FLEXA/FLXA402 Inductive Conductivity Analyzer & ISC40G/S Sensor

The Advantages of Percent Concentration Control

Industry: Refining, Food & Beverage, Power, Oil & Gas, Pulp & Paper, Chemical

Product(s): Inductive Conductivity Process Liquid Analyzer

Application

There are numerous industrial applications where measurements and/or control of a specific chemical strength of the process is critical for optimizing the production of the end product. These specific concentrations are obtained by mixing a full-strength solution with water to achieve the desired percent concentration.

Process

The desired chemical concentration is achieved using a two-stage mixing procedure. During the first stage, the flow ratio control unit on the missing tank is set to provide (x) gallon per minute of the full-strength solution and (y) gallons per

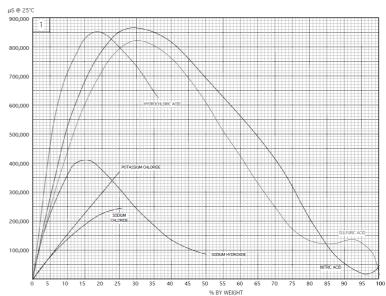


Figure 1. Chemical concentration curve, example.

minute of water. These values are adjusted to produce a concentration value which is slightly weaker than the desired value. This ratio control must include alarm capabilities to indicate "low flow" conditions for both the full-strength solution and the water in order to prevent wasted chemicals or hazardous situations.

At the second stage, a conductivity sensor and analyzer function as a "trim control". This combination adds small amounts of full-strength solution to the mixing tank to produce the exact concentration desired.

For example, to produce a 4% caustic solution from a large bulk caustic supply at 50%, the flow ratio controller is adjusted to make a 3% solution and the conductivity information is used to add additional caustic to achieve the 4% concentration.

Conductivity is a very reliable index of the concentration for most acid and base (caustic) solutions. Figure 1 shows the correlation between conductivity and concentration for four common solutions.

Challenges

For most solutions, there is a peak conductivity value. Before this peak value is reached, conductivity correlates positively with concentration; after the peak, it correlates negatively. So, if the concentration range passes

Percent Concentration Control

FLEXA/FLXA402 Inductive Conductivity Analyzer & ISC40G/S Sensor

through the peak for that chemical the conductivity value (except the peak value) represents two different concentration values. Therefore, it is mandatory that any application near the peak of a particular solution be carefully controlled.

Solution

Conductivity measurement is a reliable indicator of the concentration of most acid or base solutions. In determining the proper loop components for a particular application, the material of construction will be of primary concern. A chemical resistance chart should be consulted (see Figure 2 as example), or an application data sheet completed and sent to the factory in order to ensure an installation that will be suited for the intended application.

			Material						
			PVDF (Kynar)	S.S. 316	VITON	PEEK	PP	PVC	PFA
		Temp. % Conc.	20 60 100	20 60 100	20 60 100	20 60 100	20 60	20	20 60 100
Inorganic acid	Sulfiric acid	10	000	XXX	000	000	00	OX	000
		50	000	XXX	000	OOX	00	00	000
		95	OX -	XXX	000		Χ -	XX	000
		fuming			000				000
	Hydrochloric acid	10	000		000	OOX	00	OX	000
	1	sat.	000			OOX	00	00	000
	Nitric acid	25	OOX	XXX	OOX	000	00	OX	000
		50	OOX	XXX		XXX	X -	OX	000
		95	OX -	000					000
		fuming		000					000
	Phosphoric acid	25	000		000	000	00	OX	000
		50	000	XXX	000	000	00	00	000
		95	000	000	XX -	000	00	00	000
	Hydrofluoric acid	40	000		000		00	OX	000
		75	000		000		00	XX	000
Organic	Acetic acid	10	000	OOX		000	00	OX	000
		glacial	OX -	OOX		OOX	OX	XX	000
	Formic acid	80	000	XXX		XXX	00	O-	OOX
	Citric acid	50	000	000	000	000	00	00	000

O = can be used, X = shortens useful life, - = cannot be used

Note: Information in this list is based on our general experience and literature data and given in good faith. However Yokogawa is unable to accept responsobility for claims related to this information.

Figure 2. Chemical compatibility chart, example.

Key Advantage & Recommendations

One sensor that will measure the entire conductivity range. Since the sensor is non-contacting it is not affected by chemical attack and requires less overall maintenance.

Conductivity Measurement System:

Process Liquid Analyzer:

- 2-wire FLEXA Inductive Conductivity Analyzer
- 4-wire FLXA402 Inductive Conductivity Analyzer

Sensor Selection:

ISC40G General Purpose Sensor **ISC40S Intrinsically Safe Sensor**

Available in PEEK and PFA material for more aggressive chemicals

Note: For additional information on this application contact the local Yokogawa Process Liquid Analyzer Department

