GS 77J01Q10-01E

Analog to Pulse Converter (Isolated Single-output and Isolated Dual-output Types)

■ General

The VJQO is a compact, plug-in analog to pulse converter that receives DC voltage or DC current signal and converts it into isolated pulse-train signal. The converter provides either open-collector output or contactless AC switch output.

- a wide choice of input signal ranges;
- a low-level cutoff function (which is set at 1% as standard, but can be set between 1% and 10%);
- four isolated ports (input, output-1, output-2, power supply and grounding) on a dual-output model;
- a withstanding voltage of 2000 VAC ;
- a wide supply voltage range - supporting both 100 V and 200 V power lines of AC or DC; and
- close side-by-side mounting.

Model and Suffix Codes

\square Items to be specified when ordering

- Model and Suffix Code: e.g. VJQ0-026-A110
- Pulse width (ms): e.g. 10 ms for ON-state pulse
- Output frequency range: e.g. 0 to 30 Hz
- Low cut point (\%): e.g. 3
* If no pulse width is specified, the product is shipped with the duty ratio set to 50%. If it is required the fixed pulse width, it is at the ON-state pulse width.
* If no low cut point (\%) is specified, the product is shipped with the low cut point set to 1%.

Input/Output Specifications

Type of input: DC voltage or DC current signal Input resistance:

Current Input	Voltage Input
250Ω for 4 to 20 mADC range	Approx. $1 \mathrm{M} \Omega$ for 0 to 10 mV DC range
500Ω for 2 to 10 mADC range	Approx. $1 \mathrm{M} \Omega$ for 0 to 100 mV DC range
$1 \mathrm{k} \Omega$ for 1 to 5 mADC range	Approx. $1 \mathrm{M} \Omega$ for 0 to 1 VDC range
250Ω for 0 to 20 mADC range	Approx. $1 \mathrm{M} \Omega$ for 0 to 10 V DC range
250Ω for 0 to 16 mADC range	Approx. $1 \mathrm{M} \Omega$ for 0 to 5 V DC range
500Ω for 0 to 10 mADC range	Approx. $1 \mathrm{M} \Omega$ for 1 to 5 V DC range
$1 \mathrm{k} \Omega$ for 0 to 1 mADC range	Approx. $1 \mathrm{M} \Omega$ for -10 to +10 VDC range
100Ω for 10 to 50 mADC range	(or $100 \mathrm{k} \Omega$ when turned off)

Low-level cutoff point: 1\% as standard and userselectable between 1% and 10%
Output signal form: Open collector or contactless AC switch; selected individually for output 1 and output 2 , provided that output 2 and output 1 have the same pulse width and pulse rate.
Maximum allowable load: 30 V DC/200 mA for opencollector output
$100 \mathrm{~V} \mathrm{AC} / 200 \mathrm{~mA}$ for contactless AC switch output
Output frequency range: 0 to 4000 Hz
Span range: 0.001 to 4000 Hz
Zero elevation: 0\%

Pulse width: 50% duty ratio or a fixed width (that can be selected from eight options) Note that both outputs 1 and 2 have the same pulse width.

Output Pulse Width ($\mathrm{Tw}_{\text {w }}$		Frequency Range for 100\% Output
Fixed 50\% duty ratio		0.001 Hz to 4 kHz
Fixed pulse width	0.1 ms	0.001 Hz to 4 kHz
	0.5 ms	0.001 Hz to 1 kHz
	1 ms	0.001 to 500 Hz
	5 ms	0.001 to 100 Hz
	10 ms	0.001 to 50 Hz
	50 ms	0.001 to 10 Hz
	100 ms	0.001 to 5 Hz
	500 ms	0.001 to 1 Hz

For fixed pulse widths, the relationship between the pulse width (T_{w}) and the frequency for 100% output $\left(F_{100}\right)$ is: $F_{100} \leq\left\{1 /\left(2 \cdot T_{w}\right)\right\}$.
Zero and span adjustment: Within $\pm 1 \%$ of span for zero adjustment and within $\pm 5 \%$ of span for span adjustment

Standard Performance

Accuracy rating: $\pm 0.1 \%$ of span (aside from the $\pm 0.1 \%$ accuracy of the external resistor on current-input models)
Response: 150 ms at a span of 100 Hz or greater or 1.5 s at a span smaller than 100 Hz for a 63% response (10 to 90% change of range)
Insulation resistance: $100 \mathrm{M} \Omega$ minimum at 500 V DC between input, output-1, output-2, power supply and grounding terminals mutually
Withstanding voltage: 2000 V AC for one minute between input, (output-1, output-2), power supply and grounding terminals mutually;
1000 V AC for one minute between output-1 and output-2 terminals
Operating temperature range: 0 to $50^{\circ} \mathrm{C}$
Operating humidity range: 5 to 90% RH (no condensation)
Supply voltage range: $100-240 \mathrm{~V} \mathrm{AC/DC}=(-15$, $+10 \%) 50 / 60 \mathrm{~Hz}$ or $15-30 \mathrm{~V}$ DC - ($\pm 20 \%)$
Effects of power line regulation: Up to $\pm 0.1 \%$ of span for a supply voltage range of 85 to 264 V AC (47 to 63 Hz), 85 to 264 V DC or 12 to 36 V DC
Effects of ambient temperature variations: Up to $\pm 0.2 \%$ of span per $10^{\circ} \mathrm{C}$
Power Dissipation: 24 V DC 1.8 W 100 V AC $3.7 \mathrm{VA}, 200 \mathrm{~V}$ AC 5.0 VA

■ Mounting and Appearance
Material: Modified Polyphenylene Oxide (Case body) Mounting: Wall mounting, DIN rail mounting, or mounting on a side-by-side multiple mounting base
Connection: Terminals with M3 size screws
External dimensions: $76(\mathrm{H}) \times 29.5(\mathrm{~W}) \times 124.5(\mathrm{D}) \mathrm{mm}$
Weight: Main unit $=$ approx. 122 g ; socket $=$ approx. 51 g

Accessories

Tag number label: One
Resistor module: One (for current input models)

■ Customized Signal Specifications

Table 1 Manufacturable Ranges

	Current Signal	Voltage Signal
Input range	0 to +150 mADC	-10 to +10 V DC
Span	$100 \mu \mathrm{~A}$ to 150 mADC	10 mV to 20 V DC
Zero elevation	0% to $+73 \%$	-80% to $+73 \%$

Terminal Assignments

1	INPUT	$(+)$
2	OUTPUT 2	$(+)$
3	INPUT	$(-)$
4	N.C.	
5	OUTPUT 2	$(-)$
6	N.C.	
7	OUTPUT 1	$(+)$
8	GND	
9	OUTPUT 1	$(-)$
10	SUPPLY	$\left(\right.$ L $\left.^{+}\right)$
11	SUPPLY	$(\mathrm{N}-)$

Note: For single-output models, OUTPUT2 is N.C.

Note: When power of VJQ0 is turned on/off, one pulse may be counted by the pulse input device which connects to the VJQ0.

Block Diagrams

■ External Dimensions

