Руководство по эксплуатации

digitalYEWFLO

Протокол Foundation Fieldbus для вихревого расходомера (модель DY) и преобразователя вихревого потока (модель DYA)

IM 01F06F00-01R

СОДЕРЖАНИЕ

1.	Ві	ведение 1-1	
		Сведения о данном руководстве	1-1
	•	Гарантийные обязательства	1-1
	•	Меры безопасности	
2.	Ус	силитель связи Fieldbus	2-^
3.	Cı	вязь Fieldbus	3-1
	3.1	Общие сведения	3-1
	3.2	Внутренняя структура устройств digitalYEWFLO	3-1
	3.2.1		
	3.2.2	Виртуальный модуль функциональных блоков	3-1
	3.3	Логическая структура функциональных блоков	3-2
	3.4	Конфигурация системы электропроводки	3-2
4.	П	одготовка к работе	4-1
	4.1	Подключение устройств	
	4.2	Настройка хоста	
	4.3	Включение устройства digitalYEWFLO и шины	
	4.4	Интеграция дескриптора устройства (DD)	4-3
	4.5	Считывание параметров	4-3
	4.6	Непрерывная запись значений	
	4.7	Сигнализации	4-3
5.	Кс	онфигурация	5-1
	5.1	Сетевая организация	5-1
	5.2	Описание сети	5-1
	5.3	Описание связи между функциональными блоками	
	5.4	Задание признаков и адресов	5-3
	5.5	Настройка связи	
	5.5.1	1 7	
	5.5.2	Управление выполнением функциональных блоков	
	5.6	Настройка блоков	
		Связующие объекты	
		Объекты тенденций	
		Объекты отображения	
		Параметры функциональных блоков AI	
		Параметры блока преобразования	
		Параметры функциионального блока DI	
6.	Oı	перативное управление	
	6.1	Изменение режима работы	
	6.2	Выработка сигнализации	
		Индикация сигнализации	
		Сигнализация и события	
	6.3	Функция имитации	
7.	Co	остояние устройства	7-1
8.	0	бщие технические характеристики	8-1
	8.1	Технические нормативы	
	8.2	Варианты характеристик	
9.	Cı	тандарты взрывобезопасноститандарты взрывобезопасности	
	9.1	Стандарт CENELEC ATEX (KEMA)	
	J. ۱ . ۱	I CALINI TOURIO AQUAR I GUNO I VIRNI	

9.1.2	Установка	9-1
	Эксплуатация	
9.1.4	Техническое обслуживание и текущий ремонт	9-1
9.1.5	Схема установки в соответствии с требованиями взрывобезопасности	9-2
	Модель FISCO	
9.1.7	Шильдик	9-3
9.1.8	Маркировка винтового соединения	9-4
9.2	Стандарт FM	9-4
9.2.1	Технические характеристики	
	Проводящие соединения	
	Эксплуатация	
	Техническое обслуживание и текущий ремонт	
	Шильдик	
9.3	Стандарт SAA	
9.3.1	Технические характеристики	
	Установка	
	Эксплуатация	
	Техническое обслуживание и текущий ремонт	
	Шильдик	
9.4	Стандарт CSA	
9.4.1	Технические характеристики	
	Проводящие соединения	
	Эксплуатация	
	Техническое обслуживание и текущий ремонт	
	Шильдик	
Приложе		
A1.1	Блок ресурсов	
A1.2	Функциональный блок АІ	4
A1.3	Блок преобразования	6
A1.4	Функциональный блок П	12
△1. 4	Функциональный блок DI	12
Дт.4 Приложе	•	
Приложе	ение 2. Применение, настройка и изменение основных параметров	13
Приложе A2.1	ение 2. Применение, настройка и изменение основных параметров	13 13
Приложе A2.1 A2.2	применение, настройка и изменение основных параметров	13 13 14
Приложе A2.1 A2.2 A2.3	Риме 2. Применение, настройка и изменение основных параметров	13 13 14
Приложе A2.1 A2.2 A2.3 A2.4	Риме 2. Применение, настройка и изменение основных параметров	13 13 14 16
Приложе A2.1 A2.2 A2.3 A2.4 A2.5	Риме 2. Применение, настройка и изменение основных параметров	13 13 14 16 18
Приложе A2.1 A2.2 A2.3 A2.4 A2.5	Риме 2. Применение, настройка и изменение основных параметров	13 13 14 16 18
Приложе A2.1 A2.2 A2.3 A2.4 A2.5 Приложе	ение 2. Применение, настройка и изменение основных параметров	
Приложе A2.1 A2.2 A2.3 A2.4 A2.5	ение 2. Применение, настройка и изменение основных параметров Применение и выбор основных параметров Задание и изменение основных параметров Настройка функциональных блоков AI Настройка блока преобразования Настройка функциональ-ных блоков DI ение 3. Поведение параметров в режиме отказа	
Приложе	Риме 2. Применение, настройка и изменение основных параметров	
Приложе A2.1 A2.2 A2.3 A2.4 A2.5 Приложе	ение 2. Применение, настройка и изменение основных параметров Применение и выбор основных параметров Задание и изменение основных параметров Настройка функциональных блоков AI Настройка блока преобразования Настройка функциональ-ных блоков DI ение 3. Поведение параметров в режиме отказа	
Приложе A2.1 A2.2 A2.3 A2.4 A2.5 Приложе Приложе A4.1 A4.2	ение 2. Применение, настройка и изменение основных параметров Применение и выбор основных параметров Задание и изменение основных параметров Настройка функциональных блоков AI Настройка блока преобразования Настройка функциональ-ных блоков DI ение 3. Поведение параметров в режиме отказа Функциональный блок AI Функциональный блок DI	13141618192828
Приложе	ение 2. Применение, настройка и изменение основных параметров Применение и выбор основных параметров Задание и изменение основных параметров Настройка функциональных блоков AI Настройка блока преобразования Настройка функциональ-ных блоков DI ение 3. Поведение параметров в режиме отказа Функциональный блок AI Функциональный блок DI ение 5. Блок ПИД-регулирования	131416192828
Приложе	Рименение и выбор основных параметров	13141619282828
Приложе	Риме 2. Применение, настройка и изменение основных параметров Применение и выбор основных параметров Задание и изменение основных параметров Настройка функциональных блоков AI Настройка блока преобразования Настройка функциональ-ных блоков DI Риме 3. Поведение параметров в режиме отказа Риме 4. Принципиальные схемы функциональных блоков Функциональный блок AI Функциональный блок DI Риме 5. Блок ПИД-регулирования Принципиальная схема Функции блока ПИД-регулирования	1314161928282829
Приложе	рение 2. Применение, настройка и изменение основных параметров Применение и выбор основных параметров Задание и изменение основных параметров Настройка функциональных блоков AI Настройка блока преобразования Настройка функциональ-ных блоков DI Рение 3. Поведение параметров в режиме отказа Функциональный блок AI Функциональный блок DI Рение 5. Блок ПИД-регулирования Принципиальная схема Функции блока ПИД-регулирования Параметры блока ПИД-регулирования	131416192828282929
Приложе	рение 2. Применение, настройка и изменение основных параметров Применение и выбор основных параметров Задание и изменение основных параметров Настройка функциональных блоков AI Настройка блока преобразования Настройка функциональ-ных блоков DI Рение 3. Поведение параметров в режиме отказа Рение 4. Принципиальные схемы функциональных блоков Функциональный блок AI Функциональный блок DI Рение 5. Блок ПИД-регулирования Принципиальная схема Функции блока ПИД-регулирования Параметры блока ПИД-регулирования Расчет ПИД-регулирования	131416192828282929
Приложе	ение 2. Применение, настройка и изменение основных параметров	13141619282929293032
Приложе	риме 2. Применение, настройка и изменение основных параметров	13141619282929293032 и32
Приложе	Риме 2. Применение, настройка и изменение основных параметров	13141619282829293032 u32
Приложе	Риме 2. Применение, настройка и изменение основных параметров	131416192829293032323232
Приложе	Риме 2. Применение, настройка и изменение основных параметров Применение и выбор основных параметров Задание и изменение основных параметров Настройка функциональных блоков AI Настройка блока преобразования Настройка функциональ-ных блоков DI Настройка функциональ-ных блоков DI Настройка функциональ-ных блоков DI Настройка функциональные схемы функциональных блоков Настройка функциональный блок DI Настройка функциональный блок AI Настройка функциональный блок DI Настройка функциональный блок DI Настройка функциональный блок DI Настройка функциональный блок DI Настройка функциональный Бирока ПИД-регулирования Параметры блока ПИД-регулирования Параметры блока ПИД-регулирования Параметры ПиД-регулирования по производной PV (PI-D) Параметры ПИД-регулирования	131416192828292932323232
Приложе	Применение и выбор основных параметров Задание и изменение основных параметров Задание и изменение основных параметров Настройка функциональных блоков AI Настройка блока преобразования Настройка функциональ-ных блоков DI Вние 3. Поведение параметров в режиме отказа Вние 4. Принципиальные схемы функциональных блоков Функциональный блок AI Функциональный блок DI Вние 5. Блок ПИД-регулирования Принципиальная схема Функции блока ПИД-регулирования Параметры блока ПИД-регулирования Расчет ПИД-регулирования 1. Алгоритм регулирования по производной PV (PI-D) 2. Параметры ПИД-регулирования Управляющий выход 1. Выходное действие скоростного типа Направление управляющего действия	13141619282829293032323232
Приложе	Применение и выбор основных параметров Задание и изменение основных параметров. Задание и изменение основных параметров. Настройка функциональных блоков AI. Настройка блока преобразования Настройка функциональ-ных блоков DI. Вние 3. Поведение параметров в режиме отказа Вние 4. Принципиальные схемы функциональных блоков Функциональный блок AI. Функциональный блок DI. Вние 5. Блок ПИД-регулирования Принципиальная схема. Функции блока ПИД-регулирования Параметры блока ПИД-регулирования 1. Алгоритм регулирования, пропорциональный PV и по производной PV (I-PD), и алгоритм регулирования по производной PV (PI-D). 2. Параметры ПИД-регулирования 3. Параметры ПИД-регулирования 4. Алгоритм регулирования по производной PV (I-PD), и алгоритм регулирования по производной PV (PI-D). 2. Параметры ПИД-регулирования 3. Параметры ПИД-регулирования 4. Выходное действие скоростного типа 4. Направление управляющего действия Обход управляющего действия	13141619282829293032323232
Приложе	Применение и выбор основных параметров Задание и изменение основных параметров Задание и изменение основных параметров Настройка функциональных блоков AI Настройка блока преобразования Настройка функциональ-ных блоков DI В Принципиальные схемы функциональных блоков Функциональный блок AI Функциональный блок DI В Ние 5. Блок ПИД-регулирования Принципиальная схема Функции блока ПИД-регулирования Параметры блока ПИД-регулирования Параметры блока ПИД-регулирования Параметры блока ПИД-регулирования В Алгоритм регулирования по производной PV (I-PD), и алгоритм регулирования по производной PV (PI-D) Параметры ПИД-регулирования Выходное действие скоростного типа Направление управляющего действия Обход управляющего действия Прямая подача	1314161928282929303232323333
Приложе	Применение и выбор основных параметров Задание и изменение основных параметров Задание и изменение основных параметров Настройка функциональных блоков AI Настройка блока преобразования Настройка функциональ-ных блоков DI В ние 3. Поведение параметров в режиме отказа В ние 4. Принципиальные схемы функциональных блоков Функциональный блок AI Функциональный блок DI В ние 5. Блок ПИД-регулирования Принципиальная схема Функции блока ПИД-регулирования Параметры блока ПИД-регулирования Параметры блока ПИД-регулирования 1. Алгоритм регулирования, пропорциональный PV и по производной PV (I-PD), и алгоритм регулирования по производной PV (PI-D) 2. Параметры ПИД-регулирования 1. Выходное действие скоростного типа Направление управляющего действия Обход управляющего действия Прямая подача Режимы блока	13141619282929303232333333
Приложе	Риме 2. Применение, настройка и изменение основных параметров Применение и выбор основных параметров Задание и изменение основных параметров Настройка функциональных блоков АІ. Настройка блока преобразования Настройка функциональ-ных блоков DI Настройка функциональных блоков DI Настройка функциональные схемы функциональных блоков ОНИЕ 4. Принципиальные схемы функциональных блоков Функциональный блок AI Функциональный блок DI Наци 5. Блок ПИД-регулирования Принципиальная схема Функции блока ПИД-регулирования Параметры блока ПИД-регулирования Параметры блока ПИД-регулирования Олечет ПИД-регулирования, пропорциональный PV и по производной PV (I-PD), и алгоритм регулирования по производной PV (PI-D) Параметры ПИД-регулирования Управляющий выход Выходное действие скоростного типа Направление управляющего действия Обход управляющего действия Прямая подача Режимы блока. 1 Переход в другой режим	131416192829293032 и32333333
Приложе	Применение и выбор основных параметров Задание и изменение основных параметров Задание и изменение основных параметров Настройка функциональных блоков AI Настройка блока преобразования Настройка функциональ-ных блоков DI В ние 3. Поведение параметров в режиме отказа В ние 4. Принципиальные схемы функциональных блоков Функциональный блок AI Функциональный блок DI В ние 5. Блок ПИД-регулирования Принципиальная схема Функции блока ПИД-регулирования Параметры блока ПИД-регулирования Параметры блока ПИД-регулирования 1. Алгоритм регулирования, пропорциональный PV и по производной PV (I-PD), и алгоритм регулирования по производной PV (PI-D) 2. Параметры ПИД-регулирования 1. Выходное действие скоростного типа Направление управляющего действия Обход управляющего действия Прямая подача Режимы блока	1314161928292930323233333333

А5.11.1 Блок ПИД-регулирования в режиме AUTO	34
А5.11.2 Блок ПИД-регулирования в режиме CAS или RCAS RCAS	34
А5.12 Внешнее отслеживание выхода	35
А5.13 Отслеживание замеренного значения	35
А5.13.1 Параметр CONTROL_OPTS	35
А5.14 Инициализация и ручной переход на аварийный режим	35
А5.14 Ручной переход на аварийный режим	36
А5.15.1 Параметр STATUS_OPTS	36
А5.16 Автоматический переход на аварийный режим	
А5.17 Сброс режима в случае сбоя компьютера	36
А5.17.1 Параметр SHED_OPT	36
А5.18 Сигнализация	37
А5.18.1 Сигнализация блока (BLOCK_ALM)	37
А5.18.2 Сигнализация процесса	37
А5.19 Пример соединений блока	38
Приложение 6. Функции мастера связей	20
А6.1 Активный планировщик связей	
А6.2 Мастер связей	
A6.3 Передача полномочий LAS	40
А6.4 Функции LM	
А6.5 Параметры LM	42
А6.5.1 Список параметров LM	42
А6.5.2 Описание параметров LM	
(1) DImeLinkMasterCapabilitiesVariable	
(2) DImeLinkMasterInfoRecord	
(3) PrimaryLinkMasterFlagVariable	
(4) LiveListStatusArrayVariable	
(5) MaxTokenHoldTimeArray	
(6) BootOperatFunctionalClass	
(7) CurrentLinkSettingRecord и ConfiguredLinkSettingsRecord	
(8) DimeBasicInfo	
(9) PlmeBasicCharacteristics	
(10) ChannelStates	
(11) PlmeBasicInfo	
(12) LinkScheduleActivationVariable	
(13) LinkScheduleListCharacteristicsRecord	
(14) DImeScheduleDescriptor	
(15) Domain	
А6.6 Ответы на часто задаваемые вопросы	46
Приложение 7. Окно DeviceViewer менеджера ресурсов (PRM)	4 8
TIPINIONOLINO TI ORITO DOTTO TIOTO MOTIONAROPA POOSPOOD (1 1/111)	40
Информация об изданиях	50

1. Введение

Настоящее руководство содержит описание связи по протоколу Foundation Fieldbus, используемой цифровыми вихревыми расходомерами digitalYEWFLO. По основным характеристикам и режиму функционирования связь Foundation Fieldbus аналогична связи BRAIN. Данное руководство касается лишь вопросов, имеющих отношение к протоколу FOUNDATION Fieldbus и не освещенных в руководстве пользователя связи BRAIN. Вопросы, являющиеся общими для FOUNDATION Fieldbus и BRAIN, освещены в руководстве по работе с вихревыми расходомерами IM 01F06A00-01R. По идентичным вопросам данное руководство является приоритетным по отношению к IM 01F06A00-01R.

Сведения о данном руководстве

- Настоящее руководство предназначено для передачи конечному пользователю.
- Содержание руководства подлежит изменению без предварительного уведомпения.
- Авторские права защищены. Воспроизведение содержания данного руководства, как частичное, так и полностью, не допускается ни в какой форме без письменного разрешения компании Yokogawa.
- В рамках данного руководства компания Yokogawa не дает никаких гарантий, в том числе связанной гарантии товарного состояния изделия и его пригодности к решению конкретной задачи.
- При возникновении вопросов, обнаружении ошибок или упущений в данном руководстве следует обращаться в ближайшее представительство или торговое подразделение компании Yokogawa.
- Технические условия, приведенные в данном руководстве, относятся только к изделиям стандартного типа, имеющим установленный номер модели, и не распространяются на изделия заказного исполнения.
- Изменения в технических условиях, конструкции или узлах схемы могут быть отражены в руководстве с некоторым опозданием, при условии, что такая задержка не влечет возникновения сложностей для пользователя с точки зрения качества функционирования изделия.

FOUNDATION ЯВЛЯЕТСЯ ЗАРЕГИСТРИРОВАННОЙ ТОРГОВОЙ МАРКОЙ Fieldbus FOUNDATION.

Гарантийные обязательства

- Гарантийные обязательства распространяются на период, который оговаривается в документе, предоставляемом покупателю в момент приобретения изделия. Проблемы, возникающие на протяжении периода действия гарантийных обязательств, как правило, решаются бесплатно для клиента.
- В случае возникновения проблем следует обращаться в торговое подразделение Yokogawa, где было приобретено данное изделие, либо в ближайшее представительство компании.
- В случае какой-либо проблемы с изделием, следует сообщить о ее сути и обстоятельствах возникновения с указанием технических условий и серийного номера модели. Желательно также предоставление схем, данных и прочей информации.
- Сторону, несущую расходы за проведение ремонта, определяет компания Yokogawa на основании проведенного анализа проблемы.
- Клиент несет расходы за проведение ремонта даже на протяжении периода действия гарантийных обязательств, если неисправность возникла в результате следующих причин:
 - Неправильный и/или не отвечающий требованием уход за изделием со стороны клиента.
 - Неисправность или повреждение из-за неправильного обращения, использования или хранения, не отвечающих проектному режиму эксплуатации изделия.
 - Использование изделия в месте, не соответствующем стандартам, установленным компанией Yokogawa или ее уполномоченным представителем.
 - Неисправность или повреждение из-за неправильного перемещения изделия после доставки.

Форс-мажорные обстоятельства, такие как пожар, землетрясение, ураган, наводнение, гроза и прочие природные катаклизмы, а также нарушения общественного порядка, военные действия или радиоактивное загрязнение.

ВНИМАНИЕ

- Вихревой расходомер представляет собой массивный прибор. Исключите возможность травм персонала при его переноске и установке. Для транспортировки прибора рекомендуется использовать тележку. Не рекомендуется производить транспортировку в одиночку.
- Перед подсоединением кабелей питания следует проверить соответствие напряжения на блоке питания и на приборе. Кроме того, прежде чем подсоединять кабели, следует убедиться, что они не под напряжением.
- Если технологическая среда может оказаться токсичной или представляет опасность в другом отношении, исключите возможность ее контакта с телом и вдыхания паров даже после снятия прибора с технологической линии для проведения текущего регламентного ремонта.

Меры безопасности

- Обеспечение безопасности оператора, оборудования или системы, в состав которой входит это оборудование, требует соблюдения мер, перечисленных в данном руководстве, в ходе эксплуатации прибора. Если прибор используется с нарушением инструкций, компания Yokogawa не гарантирует безопасности.
- В данном руководстве используется следующая символика, относящаяся к безопасности:

🗥 ВНИМАНИЕ

Данная символика имеет отношение к потенциально опасным ситуациям, последствием которых может послужить гибель персонала или серьезное телесное повреждение.

🗥 ПРЕДУПРЕЖДЕНИЕ

Данная символика имеет отношение к потенциально опасным ситуациям, последствиями которых могут послужить незначительные или средние телесные повреждения. Эта символика может также использоваться для предупреждения об опасных условиях эксплуатации.

🕰 ВАЖНО

на условия эксплуатации аппаратуры или программного обеспечения, которые могут привести к повреждению оборудования или выходу из строя системы.

М ПРИМЕЧАНИЕ

Данная символика обращает внимание на информацию, важную для понимания работы прибора и его возможностей.

2. Усилитель связи Fieldbus

Подробная информация об усилителе дана в IM 01F06A00-01R. Данная глава затрагивает вопросы, имеющие отношение исключительно к связи Fieldbus.

- (1) Для связи Fieldbus не предусмотрена функция локального доступа по ключу.
- (2) Связь Fieldbus не предусматривает наличия концевого контактного вывода BRAIN.
- (3) Связь Fieldbus обладает функцией имитации. На усилителе установлен переключатель SIMULATE_ENABLE, используемый для включения этой функции. Более подробная информация о функции имитации содержится в разделе 6.3 "Функция имитации".

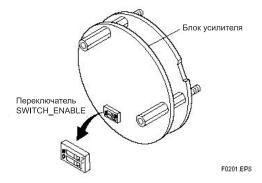


Рис. 2.1 Усилитель для связи Fieldbus

3. Связь Fieldbus

3.1 Общие сведения

Связь Fieldbus широко используется в различных устройствах и представляет собой двусторонний цифровой протокол связи, в котором реализованы технологические достижения в области систем управления процессами.

Применительно к цифровым устройствам digitalYEWFLO связь Fieldbus строится на основе использования стандартизованных технических условий Fieldbus FOUNDATION, что обеспечивает возможность взаимодействия изделий компании Yokogawa с продуктами других производителей. Благодаря наличию двух функциональных блоков аналогового входа и двух функциональных блоков цифрового входа, программное обеспечение Fieldbus позволяет реализовать гибкую контрольно-измерительную систему.

Более подробная информация о возможностях, конструктивном решении, техническом исполнении, подготовке к работе и техническом обслуживании связи Fieldbus содержится в техническом справочном руководстве ТI 38K3A01-01E.

3.2 Внутренняя структура устройств digitalYEWFLO

Каждое цифровое устройство digitalYEWFLO включает два виртуальных устройства (VFD), выполняющих описанные ниже функции.

3.2.1 Виртуальное устройство управления системой / сетью

- Задание узловых адресов и признаков физических устройств (PD Tag), участвующих в связи.
- Управление работой функциональных блоков.
- Управление рабочими параметрами и ресурсами связи (VCR – виртуальное отношение связи).

3.2.2 Виртуальный модуль функциональных блоков

(1) Блок ресурсов (RS)

- Управление состоянием аппаратной части устройства digitalYEWFLO.
- Автоматическое информирование хоста об обнаруженных сбоях и других проблемах.

(2) Блок преобразования (TR)

- Преобразование выходного сигнала датчика расхода в сигнал объемной скорости потока и пересылка сигнала на функциональный блок аналогового входа (Al1).
- При наличии опции обработки нескольких параметров процесса (MV):
 - Преобразование выходного сигнала датчика температуры в значение температуры технологической среды и расчет плотности среды.
 - Расчет массового расхода по полученному значению плотности среды и значению объемной скорости потока, полученному от датчика расхода.
 - Пересылка результатов расчета на функциональный блок аналогового входа (Al1).

(3) Функциональные блоки аналогового входа (AI) (2)

- Приведение в необходимое состояние необработанных данных, Приходящих от блока преобразования, что предполагает масштабный пересчет и сглаживание (фильтрация первого порядка с запаздыванием), а также обеспечение возможности имитации входа.
- Функциональный блок AI1 в качестве выходного значения выдает объемный или массовый расход, а AI2 – температуру.

(4) Функциональные блоки цифрового входа (DI) (2)

Предельное переключение по расходу и температуре (по выбору).

(5) Функциональный блок ПИДрегулирования

 Выполнение расчета ПИД-управления по отклонению замеренного значения от значения задания.

3.3 Логическая структура функциональных блоков

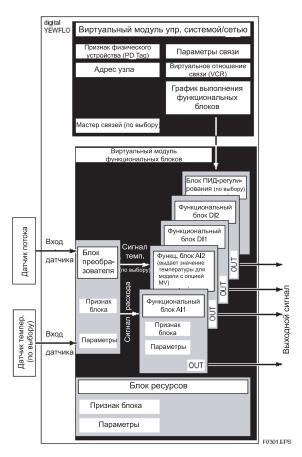


Рис. 3.1 Логическая структура функциональных блоков

Задание параметров, узловых адресов и признаков физических устройств, показанных на рис.3.1, должно выполняться до начала работы с устройством. Описание процедур настройки дано в гл.4.

3.4 Конфигурация системы электропроводки

Количество устройств, которые могут быть подключены к одной шине, и длина проводящих кабелей зависят от конкретной планировки системы. Для достижения максимальной эффективности работы устройства при компоновке систем следует учитывать базовые и общие особенности конструктивного решения.

4. Подготовка к работе

Связь Fieldbus полностью зависит от протокола цифрового обмена и отличается по режиму функционирования от стандартного режима передачи в диапазоне от 4 до 20 мА и протокола связи BRAIN. Начинающим пользователям связи Fieldbus рекомендуется соблюдать установленный порядок действий, описанный в данном разделе. Все процедуры проводятся в предположении, что устройства, осуществляющие информационный обмен по каналу связи Fieldbus, настроены должным образом в условиях инструментального цеха.

4.1 Подключение устройств

В организации информационного обмена по каналу связи Fieldbus участвуют следующие элементы:

Блок питания:

Связь Fieldbus требует использования специализированного блока питания. Рекомендуется, чтобы допустимая нагрузка по току значительно превышала максимальное значение суммарного тока, потребляемого всеми устройствами (включая хост). Использование стандартного источника постоянного тока "как есть" не допускается.

Терминатор:

Связь Fieldbus предполагает наличие двух оконечных устройств (терминаторов). Информацию о характеристиках терминаторов, присоединяемых к хосту, получите у поставщика.

Внешние устройства:

Устройства digitalYEWFLO, участвующие в информационном обмене, подсоединяются к шине Fieldbus. Допускается подсоединение двух или более устройств digitalYEWFLO и других внешних устройств. В таблице 4.1 указано распределение контактных выводов устройств digitalYEWFLO.

Таблица 4.1 Контактные выводы устройств digitalYEWFLO

Символическое обозначение контакта	Описание
SUPPLY 🕀]
SUPPLY 🖯] сигнал в канале связи Fieldbus
	Контакт заземления

Xoct:

Используется для доступа к внешним устройствам. Специализированный хост (например, DSC) используется на линии про-

ведения контрольных измерений, а для решения экспериментальных задач применяются инструментальные средства связи. Описание работы хоста содержится в прилагаемой к нему инструкции. Данный материал не содержит подробной информации, посвященной хостам.

Кабель:

Используется для подключения устройств. Подробное описание кабельных соединений измерительной аппаратуры содержится в технической инструкции по связи Fieldbus (TI 38К3A01-01E). Если общая длина кабеля составляет порядка 2-3 м применительно к лабораторным или экспериментальным исследованиям, допустимо использование упрощенного варианта кабеля (витая пара с поперечным сечением 0.9 мм² и более и периодом витка не более 5 см (2 дюйма)). Обработка концов зависит от типа устройств, участвующих в информационном обмене. Для устройств digitalYEWFLO используются кабельные наконечники под резьбовой вывод. Некоторые хосты требуют использования разъема.

Принимая решение о приобретении рекомендуемого оборудования, проконсультируйтесь со специалистами представительства компании Yokogawa.

Схема соединения устройств показана на рис.4.1. На обоих концах магистрали устанавливаются терминаторы. Длина ответвлений к подключаемым устройствам должна быть минимальна.

Необходимо соблюдать полярность сигнала и питания.

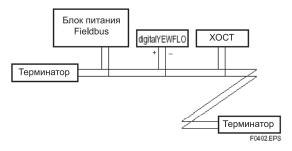


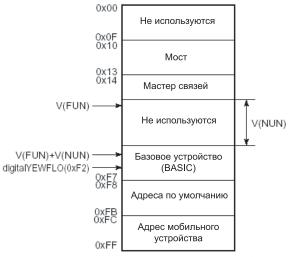
Рис. 4.1 Соединение устройств

При использовании другого инструмента настройки конфигурации связи Fieldbus (помимо действующего хоста) необходимо исключить возможность нарушения функционирования контура, в который замкнуты установленные устройства. При необходимости отсоедините управляющий контур от шины.

А важно

Подключение инструмента настройки конфигурации к замкнутому контуру с действующим хостом может вызвать хаотизацию данных информационного обмена и привести к функциональному нарушению и сбою системы.

4.2 Настройка хоста


Для активизации связи Fieldbus необходимо выполнить настройку хоста.

Не выключайте питание сразу после выполнения настройки. После сохранения значений параметров в памяти EEPROM идет дополнительная обработка с целью повышения уровня надежности. Если питание выключается ранее, чем через 60 сек после проведения настройки, измененные значения могут не сохраниться, и параметры могут вернуться к исходным значениям.

Таблица 4.2 Рабочие параметры

Символ	Параметр	Описание и значения
V(ST)	Временной сегмент	Задайте значение 4 или более.
V(MID)	Минимальная задержка между модулями данных протокола (PDU)	Задайте значение 4 или более.
V(MRD)	Максимальная задержка ответа	Задайте такое значение, чтобы произведение V(MRD)×V(ST) составляло 12 или более.
V(FUN)	Первый неопраши- ваемый узел	Укажите адрес, следующий за диапазоном адресов, используемых хостом. Задайте 0×15 или более.
V(NUN)	Число последова- тельных неопраши- ваемых узлов	Диапазон неиспользуемых адресов. На заводе перед отправкой устройству digitalYEWFLO назначается адрес 0×F2. Адрес должен находиться в пределах диапазона адресов, отведенных для базовых устройств (BASIC) (см. рис.4.2).

Примечание 1: Мастер связей обладает функцией управления шиной Примечание 2: Базовое устройство не обладает функцией управления шиной

F0403.EPS

Рис. 4.2 Диапазон адресов

4.3 Включение устройства digitalYEWFLO и шины

Включите питание хоста, шины и устройства digitalYEWFLO. Если в каком-либо сегменте не горит световая индикация, либо в случае скачков тока, проверьте напряжение источника питания устройства digitalYEWFLO.

Используя дисплей хоста, убедитесь, что подключенное к шине устройство digitalYEWFLO находится в рабочем состоянии. Если не указанно иначе, на заводе перед отправкой задаются следующие установки.

Признак физического устройства (PD Tag): FT1003

Адрес узла: 242 (в шестнадцатеричном представлении - F2)

Идентификатор устройства: 5945430006xxxxxxxx (хххххххх – 8 буквенно-цифровых символов)

Если устройство digitalYEWFLO не обнаружено, проверьте диапазон адресов. Если адрес узла и признак физического устройства не указаны в заказе, на заводе задаются установки, предусмотренные по умолчанию. При одновременном подключении двух или более устройств digitalYEWFLO с действующей одинаковой установкой по умолчанию хост обнаруживает лишь одно устройство digitalYEWFLO. Подключайте устройства digitalYEWFLO раздельно, задавая для каждого уникальный адрес.

4.4 Интеграция дескриптора устройства (DD)

Если хост предусматривает поддержку дескриптора устройства (Device Description - DD), необходима установка DD для устройства digitalYEWFLO. Убедитесь, что хост имеет указанную ниже директорию в качестве директории DD по умолчанию:

5945430006

(594543 – номер производителя Yokogawa Electric Corporation, 0006 – номер устройства digitalYEWFLO).

Если указанная директория не найдена, значит, служба DD для устройства digitalYEWFLO не установлена. Создайте директорию и скопируйте в нее файлы DD (0m0n.ffo и 0m0n.sym, где m и n - числа). Если пользователь не располагает файлами DD для устройства digitalYEWFLO, возможна их загрузка из глобальной сети:

http://www.yokogawa.com/fi/fieldbus/download.htm.

После установки DD в нужной директории на дисплей выдаются имена и атрибуты всех параметров устройства digitalYEWFLO.

Возможна автономная настройка конфигурации устройства с использованием файла характеристик.

Используя файл характеристик (CFF), убедитесь в правильности выбранного варианта для намеченного устройства. С точки зрения характеристик устройства digitalYEWFLO подразделяются на два типа:

- (1) без опции LC1, что предполагает наличие двух функциональных блоков аналогового входа (AI) и двух функциональных блоков цифрового входа (DI)
- (2) с опцией LC1, что предполагает наличие функционального блока ПИД- регулирования и мастера связей.

Использование неправильного файла CFF может привести к ошибке при загрузке настроек конфигурации данного устройства. Кроме того, следует использовать файлы DD, предусматривающие возможность изменения конфигурации данного устройства.

4.5 Считывание параметров

Для чтения параметров устройства digitalYEWFLO на экране хоста выберите блок аналогового входа (AI) данного устройства и считайте параметр OUT. Система выдаст на дисплей текущее значение расхода. Убедитесь, что для параметра MODE_BLOCK (режим блока) функционального блока и блока ресурсов задана установка AUTO (автоматический).

4.6 Непрерывная запись значений

Если хост имеет функцию непрерывной записи показаний, используйте эту функцию для формирования списка значений. В зависимости от используемого хоста может возникнуть необходимость в задании графика печати (функция передачи показаний с определенным интервалом).

4.7 Сигнализации

Если хост допускает прием сигнализации, можно организовать генерирование сигналов с устройства digitalYEWFLO. Для этого необходимо выполнить настройку хоста на прием сигнализации. Такая настройка предусмотрена на заводе для виртуального отношения связи VCR-7 устройства digitalYEWFLO. Практически вся сигнализация установлена в нерабочее состояние. Поэтому рекомендуется сначала сделать пробную попытку использования одного из сигналов. Задайте для связующего объекта-3 (индекс 30002) установку "0, 299, 0, 6, 0". Более подробная информация дана в разделе 5.6.1 "Связующий объект".

Установку "0", заданную для параметра LO_PRI (индекс 4029) блока аналогового входа (AI), поменяйте на "3". В экране действующего хоста выберите функцию "Write" (запись), укажите индекс или имя переменной и запишите установку "3".

Параметр LO_LIM (индекс 4030) блока аналогового входа (AI) определяет значение срабатывания сигнализации по достижению нижнего предела параметра процесса. Обычно в качестве установки для этого параметра задается очень малое значение. Задайте установку несколько менее 100% от значения параметра XD_SCALE. Так как расход практически равен 0, срабатывает сигнализация по нижнему пределу параметра процесса. Убедитесь в способности хоста принять этот сигнал. При подтверждении приема сигнала его передача приостанавливается.

Данная глава содержит краткое описание подключения устройства digitalYEWFLO к шине Fieldbus и подготовки к работе. Для ознакомления с функциональными возможностями устройств digitalYEWFLO в полном объеме рекомендуем изучать эту главу вместе с главой 5.

5. Конфигурация

Данная глава содержит информацию о настройке функциональных возможностей и характеристик устройств digitalYEWFLO с учетом конкретных прикладных задач. Так как к шине Fieldbus подключаются два или более устройства, необходимы настройки, учитывающие требования всех подключаемых устройств. Ниже перечислены необходимые этапы настройки.

(1) Схема сетевой организации

Определение устройств, подключаемых к шине Fieldbus, и проверка мощности блока питания.

(2) Описание сети

Задание признаков физических устройств и узловых адресов для всех устройств.

(3) Описание взаимосвязи функциональных блоков

Задание метода взаимосвязи всех функциональных блоков.

(4) Задание признаков и адресов

Задание признаков физических устройств и узловых адресов по порядку для всех устройств.

(5) Настройка связи

Компоновка схемы взаимодействия параметров связи и функциональных блоков

(6) Настройка блоков

Задание параметров функциональных блоков.

В следующем разделе дано описание каждого этапа процедуры настройки в указанном выше порядке. Использование специализированного инструмента настройки конфигурации позволяет значительно упростить процедуру. В данном разделе обсуждается процедура, назначаемая для хоста, который обладает относительно простыми функциями. Если устройство digitalYEWFLO используется в качестве мастера связей (LM), см. Приложение 6.

5.1 Сетевая организация

Выберите устройства, объединяемые в сеть с использованием канала связи Fieldbus. Связь Fieldbus предполагает использование следующих элементов:

Блок питания

Связь Fieldbus требует использования специализированного блока питания. Рекомендуется, чтобы допустимая нагрузка по току значительно превышала максимальное значение суммарного тока, по-

требляемого всеми устройствами (включая хост). Использование стандартного источника постоянного тока "как есть" не допускается.

• Терминатор:

Связь Fieldbus предполагает наличие двух терминаторов. Информацию о характеристиках терминаторов, присоединяемых к хосту, получите у поставщика.

Внешние устройства:

К сети Fieldbus подключаются устройства, используемые для проведения измерений. Устройства digitalYEWFLO прошли испытание на способность к взаимодействию, проводимое компанией The Fieldbus Foundation. Для правильной организации информационного обмена по каналу Fieldbus необходимо, чтобы все подключаемые устройства удовлетворяли требованиям данного испытания.

Xoct:

Используется для доступа к внешним устройствам. Необходимо использование как минимум одного устройства, обладающего функцией управления шиной.

• Кабель:

Используется для подключения устройств. Подробное описание кабельных соединений измерительной аппаратуры содержится в технической инструкции по связи Fieldbus (TI 38K3A01-01E). Для устройств digitalYEWFLO максимальная нагрузка по току (напряжение питания от 9 до 32 В постоянного тока) составляет 11 мА. Ответвления кабеля должны иметь минимальную длину. На обоих концах магистрали должны устанавливаться терминаторы.

5.2 Описание сети

Перед подключением устройств к шине Fieldbus необходимо описать сетевую организацию. Каждому устройству (за исключением пассивных элементов, таких терминаторы) назначается признак и узловой адрес.

Признак физического устройства (PD Tag) аналогичен стандартной кодовой метке, назначаемой для устройства. В качестве признака допустимо использование до 32 буквенно-цифровых символов. В качестве разделителя в случае необходимости используйте дефис.

Узловые адреса используются для определения местоположения устройств, участвующих в информационном обмене. Так как признак физического устройства является слишком длинным элементом данных, хост замещает его узловым адресом. В качестве узлового адреса задается число в диапазоне от 16 до 247 (в шестнадцатеричном представлении – от 10 до F7). Устройствам, выполняющим функции мастера связей (LM), в качестве адресов присваиваются номера, начиная с самого младшего (0×10) по порядку, а другим устройствам (например, базовым) - номера, начиная с самого старшего (0×F7). Устройствам digitalYEWFLO следует назначать адреса, лежащие в диапазоне для базовых устройств. Лишь устройству digitalYEWFLO, выполняющему функции мастера связей (LM), следует присваивать адрес в диапазоне для устройств LM (мастер связей). Диапазоны адресов определяются следующими параметрами:

Таблица 5.1 Параметры настройки диапазонов адресов

Символ	Параметр	Описание
V(FUN)	Первый неопрашиваемый узел	Укажите адрес, следующий за диапазоном адресов, используемых для хоста или мастера связей (устройства LM).
V(NUN)	Число последова- тельных неопраши- ваемых узлов	Диапазон неиспользуемых адресов.

Устройство, для которого назначен адрес из диапазона, обозначенного как "неиспользуемые адреса" (см. рис.5.1), не может быть подключено к каналу связи Fieldbus. Другие диапазоны адресов периодически просматриваются с целью выявления новых подключаемых устройств. Не следует без особой надобности расширять диапазоны адресов. Это может негативно отразиться на качестве функционирования связи Fieldbus.

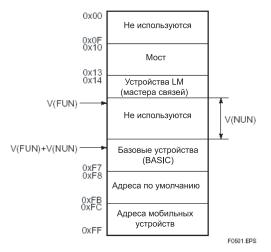


Рис. 5.1 Диапазон доступных узловых адресов

Для обеспечения стабильного функционирования связи Fieldbus определите рабочие параметры и задайте их для устройств LM. При задании параметров, перечисленных в таблице 5.2, для всех подключаемых к одной шине Fieldbus устройств необходимо использовать значения с учетом самого неблагоприятного варианта. Более подробная информация содержится в технических условиях для каждого устройства. В таблице 5.2 перечислены характеристики устройств digitalYEWFLO.

Таблица 5.2 Значения рабочих параметров устройств digitalYEWFLO, задаваемые для мастера связей

Символ	Параметр	Описание
V(ST)	Временной сегмент	Время, необходимое для немедленной ответной реакции устройства. Единица времени – октет (256 µс). Для всех устройств задайте максимальную характеристику. Для устройства digitalYEWFLO задайте значение 4 или более.
V(MID)	Минимальная задержка между модулями данных протокола	Минимальный временной интервал между протокольными единицами обмена. Единица времени – октет (256 µс). Для всех устройств задайте максимальную характеристику. Для устройства digitalYEWFLO задайте значение 4 или более.
V(MRD)	Максимальная задержка ответа	Максимальное время ответной реакции. Единица времени – временной сегмент (ST). Задайте такое значение, чтобы произведение V(MRD)×V(ST) было максимальным среди характеристик всех устройств. Для устройства digitalYEWFLO значение V(MRD)×V(ST) должно составлять 12 или более.

5.3 Описание связи между функциональными блоками

Задайте необходимые связи между входными/выходными параметрами функциональных блоков. Устройства digitalYEWFLO предусматривают привязку выходных параметров двух блоков аналогового входа AI (OUT), двух блоков цифрового входа DI (OUT D) и блоков ПИД-регулирования (по выбору) к параметрам различных функциональных блоков. Установки, определяющие связь, записываются в связующий объект в устройстве digitalYEWFLO. Более подробная информация содержится в разделе 5.6 "Настройка блоков". Возможно также считывание значений с хоста с определенным интервалом вместо привязки выходных сигналов функциональных блоков устройств digitalYEWFLO к другим блокам.

Связанные блоки должны выполняться синхронно с другими блоками и в соответствии с графиком связи. Измените график устройства digitalYEWFLO в соответствии с таблицей 5.3, где в круглых скобках указаны заводские установки.

Таблица 5.3 График выполнения функциональных блоков устройства digitalYEWFLO

Индекс	Параметры	Установка (в круглых скобках – заводская установка)
269 (SM)	MACROCYCLE_ DURATION	Период повторений управляющих действий или измерений, т.е. макроцикл. Задается как значение, кратное 1/32 мс (32000 = 1 с).
276 (SM)	FB_START_ ENTRY.1	Пусковой период блока аналогового входа AI как время с момента запуска каждого макроцикла. Задается как значение, кратное 1/32 мс (0 = 0 мс).
277 (SM)	FB_START_ ENTRY.2	Пусковой период блока ПИД- регулирования как время с момента запуска каждого макроцикла. Задается как значение, кратное 1/32 мс (9600 = 300 мс).
с 278 (SM) по 289 (SM)	c FB_START_ ENTRY.3 no FB_START_ ENTRY.14	Установки не предусмотрены

Исполнение каждого блока AI занимает максимум 29 мс. График связи для данных блока AI, передаваемых блоку, находящемуся вниз по направлению трафика данных, составляется таким образом, чтобы запуск этого блока начинался не менее чем через 30 мс.

На рис.5.3 показан стандартный функциональный блок и графики связи для контура, представленного на рис.5.2.

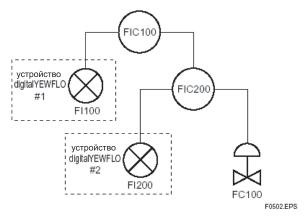


Рис.5.2 Два устройства digitalYEWFLO, объединенные в замкнутый контур с другими устройствами.

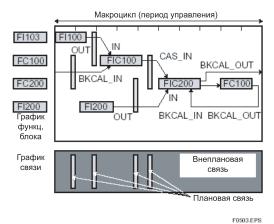


Рис.5.3 График функционального блока и график связи

Если для периода управляющего действия (макроцикла) задана установка более 4 сек, для перечисленных ниже интервалов следует задать установку, составляющую более 1% от этого значения.

- Интервал между "окончанием исполнения блока" и "началом плановой передачи данных с активного планировщика связей (LAS)"
- Интервал между "окончанием исполнения блока" и "началом исполнения следующего блока"

5.4 Задание признаков и адресов

Данный раздел содержит описание процедуры задания признаков физических устройств и узловых адресов в устройстве digitalYEWFLO. Для устройств, участвующих в информационном обмене по каналу связи Fieldbus, предусмотрены три состояния (см. рис.5.4). В любом состоянии, отличном от состояния SM_OPERATIONAL, ни один из функциональных блоков не выполняется. После выполнения изменения признака (PD Tag) или узлового адреса устройства digitalYEWFLO необходимо перевести его в состояние SM_OPERATIONAL.

F0504.EPS

Рис. 5.4 Переход из одного состояние в другое при задании признака физического устройства и адреса узла

Если не указано иначе, на заводе перед отправкой для каждого устройства digitalYEW-FLO в качестве признака и узлового адреса задаются установки "FT1003" и 242 (в шестнадцатеричном представлении – F2) соответственно. Чтобы изменить только узловой адрес, выполните его сброс и введите новое значение. Чтобы изменить признак физического устройства, сначала выполните сброс адреса узла, а затем сброс признака, после чего задайте новое значение признака и новое значение адреса.

Устройство, для которого произведен сброс узлового адреса, принимает установку по умолчанию (случайный выбор в диапазоне от 248 до 251 или в шестнадцатеричном представлении – от F8 до FB). В то же время корректное задание устройства требует указания идентификатора устройства (ID). Для YF100 идентификатор устройства имеет вид 5945430006xxxxxxxx (xxxxxxxx – буквенноцифровая строка длиной 8 символов).

5.5 Настройка связи

Для задания функции связи необходимо ввести изменения в базу данных виртуального устройства управления системой (SM).

5.5.1 Настройка виртуальных отношений связи - VCR

Виртуальное отношение связи (VCR) определяет адресата связи и ресурсов. Каждое устройство digitalYEWFLO имеет 33 виртуальных отношения связи (VCR), назначение которых может меняться, за исключением первого VCR, используемого для управления.

Каждое устройство digitalYEWFLO имеет виртуальные отношения связи четырех типов:

Сервер (QUB)

Сервер отвечает на запросы хоста. Такое взаимодействие предполагает обмен данными. Этот тип связи называется QUB (Queued User-triggered Bidirectional – запускаемая пользователем двусторонняя связь с организацией очереди).

Источник (QUU)

Источник осуществляет многоабонентскую рассылку сигнализации или тенденций другим устройствам. Этот тип связи называется QUU (Queued User-triggered Unidirectional – запускаемая пользователем односторонняя связь с организацией очереди).

Информатор (BNU)

Информатор осуществляет многоабонентскую рассылку выходных значений блоков аналогового входа AI, блоков цифрового входа DI и блоков ПИДрегулирования другим функциональным блокам. Этот тип связи называется BNU (Buffered Network-triggered Unidirectional—запускаемая сетью буферизованная односторонняя связь).

Абонент (BNU)

Абонент получает выходные значения других функциональных блоков через блок ПИД-регулирования.

Виртуальное отношение связи определяется параметрами, перечисленными в таблице 5.4. Изменения должны производиться сразу для всех параметров, так как изменение одного параметра может вызвать противоречие.

Таблица 5.4 Статические параметры виртуального отношения связи

Суб-	Параметр	Описание
1	FasArTypeAndRole	Задание типа и роли связи (VCR). В устройствах digitalYEW-FLO используются 4 типа: 0×32: Сервер (ответ на запросы хоста) 0×44: Источник (передача сигнализации и тенденций) 0×66: Информатор (передача выходных значений блоков AI, DI другим блокам) 0×76: Абонент (прием выходных значений от других блоков через блок ПИД-регулирования)
2	FasDIILocalAddr (локальный адрес)	Задание локального адреса VCR в устройстве digitalYEWFLO. Задается в диапазоне от 20 до F7 в шестнадцатеричном представлении.
3	FasDIIConfigured Remote Addr (удаленный адрес)	Задание узлового адреса адресата связи и адреса (DLSAP или DLSEP), назначаемого для VCR. Адреса DLSAP или DLSEP задаются в диапазоне от 20 до F7 в шестнадцатеричном представлении. Адреса в п.2 и п.3 должны настраиваться на одно и то же содержание VCR как адресата (локальный и удаленный каналы реверсированы).
4	FasDIISDAP	Задание типа связи. Обычно задается один из вариантов: 0×2В: Сервер 0×01: Источник (сигнализация) 0×03: Источник (тенденции) 0×91: Информатор/Абонент
5	FasDIIMaxConfirm DelayOnConnect (задержка соединения)	Задание соединения для связи. Задается максимальное время ожидания ответа адресата в мс. Стандартное значение — 60 сек (60000 мс).
6	FasDIIMaxConfirm DelayOnData (задержка данных)	Для запроса данных. Задание максимального времени ожидания ответа адресата в мс. Стандартное значение – 60 сек (60000 мс).
7	FasDIIMaxDlsdu- Size	Задание максимального размера единицы служебных данных (DLSDU). Для сервера и источника тенденций задается установка 256, для всех остальных VCR – 64.
8	FasDIIResidual ActivitySupported (поддержка остаточной активности)	Задание режима контроля связи. Для сервера задается установка TRUE (истинно) (0×ff). Для других типов связи этот параметр не используется.
9	FasDIITimeliness- Class	Для устройств digitalYEWFLO этот параметр не используется
10	FasDIIPublisher- Time WindowSize	Для устройств digitalYEWFLO этот параметр не используется
11	FasDIIPublisher Synchroni- zatingDlsep	Для устройств digitalYEWFLO этот параметр не используется

Суб- индекс	Параметр	Описание
12	FasDIISub- scriberTime WindowSize	Для устройств digitalYEWFLO этот параметр не используется
13	FasDIISub- scriber Synchroni- zationDIcep	Для устройств digitalYEWFLO этот параметр не используется
14	FmsVfdld	Задание виртуального устройства (VFD) для устройства digitalYEWFLO 0×1: Управление системой/сетью 0×1234: Функциональный блок
15	standing Service- Calling	Для сервера задается установка 0. Для других типов связи не используется.
16	FmsMaxOut standing Service- Called	Для сервера задается установка 1. Для других типов связи не используется.
17	FmsFea- tures Supported	Задание типа служб на уровне приложения. В устройстве digitalYEWFLO предусмотрено автоматическая установка в зависимости от конкретного применения.

В таблице 5.5 указаны настройки, устанавливаемые на заводе для 33 виртуальных отношений связи (VCR).

Таблица 5.5 Список виртуальных отношений связи

Индекс (SM)	Номер VCR	Установка, реализованная на заводе	
293	1	Управление системой (фиксированная	
		установка)	
294	2	Сервер	
254	_	(LocalAddr (локальный адрес) = 0xF3)	
295	3	Сервер (LocalAddr = 0xF4)	
296	4	Сервер (LocalAddr = 0xF7)	
297 5		Источник тенденций (LocalAddr = 0x07,	
291	3	Remote Address (удаленный адрес) = 0x111)	
298	6	Информатор (LocalAddr = 0x20)	
299	7	Источник сигнализации	
299	l '	(LocalAddr = 0x07, Remote Address = 0x110)	
300	8	Сервер (LocalAddr = 0xF9)	
c 301	c 9	Установка не предусмотрена	
по 325	по 33	. , ,	

5.5.2 Управление выполнением функциональных блоков

Задайте исполнительный цикл и график выполнения функциональных блоков в соответствии с инструкциями, данными в разделе 5.3.

5.6 Настройка блоков

Задайте параметры для виртуального модуля функциональных блоков.

5.6.1 Связующие объекты

Связующий объект комбинирует данные, произвольно посылаемые функциональными блоками, с виртуальным отношением связи (VCR). Каждое устройство digitalYEWFLO имеет 40 связующих объектов. Каждый связующий объект определяет одну комбинацию. Связующий объект определяется параметрами, перечисленными в таблице 5.6. Для каждого виртуального отношения связи

параметры следует менять только все вместе, так как изменение одного параметра может привести к противоречию.

Таблица 5.6 Параметры связующих объектов

Суб- индекс	Параметр	Описание
1	LocalIndex (локальный индекс)	Задание индекса комбинируемых параметров функционального блока. Для источника тенденций (Trend) и источника сигнализации (Alert) задайте "0".
2	VcrNumber (номер VCR)	Задание индекса комбинируемого виртуального отношения связи (VCR). Если задана установка "0", этот связующий объект не используется.
3	RemoteIndex (удаленный индекс)	В устройствах Stale этот параметр не используется. Задайте установку "0".
4	ServiceOperation (служебная функция)	Задается один из следующих вариантов (для "Trend" и "Alert" - только одна установка для каждого связующего объекта): 0: Параметр не определен 2: Информатор 3: Абонент 6: Источник предупреждающих сигналов (Alert) 7: Источник тенденций (Trend)
5	StaleCountLimit (предельное число устаревших данных)	

Для параметров связующих объектов задание установок на заводе не предусмотрено. Задайте установки, как показано в таблице 5.7.

Таблица 5.7 Установки для параметров связующих объектов (пример)

Индекс	Номер связующего объекта	Установки (пример)
30000	1	AI.OUT (выходное значение аналогового входа) → VCR # 6
30001	2	Trend (источник тенденций) \rightarrow VCR # 5
30002	3	Alert (источник сигнализации) → VCR # 7
с 30003 по 30039	с 4 по 40	Не используются

5.6.2 Объекты тенденций

Возможна настройка функционального блока на автоматическую передачу тенденций. Для этого в устройстве digitalYEWFLO существует десять объектов тенденций – восемь для аналоговых и два для дискретных параметров. Для каждого объекта тенденций задается один параметр, для которого предполагается организовать передачу тенденции изменения.

Параметры объекта тенденций перечислены в таблице 5.8. Для первых четырех параметров предусмотрены обязательные установки. Перед записью установок параметров для объекта тенденций необходимо изменить параметр WRITE_LOCK (блокировка записи) блока ресурсов для снятия блокировки записи.

Таблица 5.8 Параметры объектов тенденций

Суб- индекс	Параметр	Описание
1	Block Index (индекс блока)	Задание первого индекса функционального блока, отслеживающего тенденцию.
2	Parameter Relative Index (относитель- ный индекс параметра)	Задание индекса параметров, участвующих в отслеживании тенденции, по значению относительно начала функционального блока. Для устройства digitalYEW-FLO возможны три типа тенденций: 7: PV (параметр процесса) 8: OUT (выходное значение) 19: FIELD_VAL (внешнее значение)
3	Тип замера	Задание способа отслеживания тенденции. Возможны два варианта: 1: Замер по результату выполнения функционального блока 2: Замер среднего значения
4	Интервал замера	Задание интервалов замеров в единицах 1/32 мс. Задается целое число, кратное исполнительному циклу функционального блока.
5	Последнее обновление	Время последнего замера.
с 6 по 21	Список состояний	Элемент замеряемого параметра, относящийся к его состоянию.
с 21 по 37	Список замеров	Элемент замеряемого параметра, относящийся к данным.

Для десяти объектов тенденций заводские установки не предусмотрены.

Таблица 5.9 Объекты тенденций

Индекс	Параметр	Заводская установка
с 32000 по 32007	с TREND_FLT.1 по TREND.FLT.8	Установки не предусмотрены
32008		Установки не предусмотрены (эти
32009		параметры используются с блоком DI или блоком ПИД- регулирования (по выбору)).

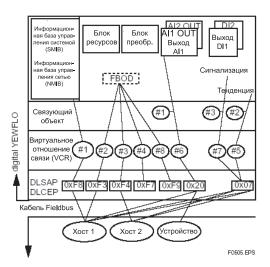


Рис.5.5 Пример конфигурации по умолчанию

5.6.3 Объекты отображения

Объекты отображения используются для группировки параметров. Это уменьшает количество транзакций с данными. Каждое устройство digitalYEWFLO поддерживает четыре объекта для каждого блока ресурсов, блока преобразователя, обоих блоков аналогового входа AI, обоих блоков цифрового входа DI и блока ПИД-регулирования (по выбору). Каждый объект отображения содержит группу параметров, перечисленных в таблицах с 5.11 по 5.14.

Таблица 5.10 Назначение объектов отображения

	Описание
VIEW_1	Набор динамических параметров, необходимых оператору в процессе эксплуатации объекта (PV (параметр процесса), SV, OUT(выходное значение), Mode (режим) и т.д.)
VIEW_2	Набор статических параметров, необходимых для одновременного представления оператору (Range (диапазоны) и т.д.).
VIEW_3	Набор всех динамических параметров.
VIEW_4	Набор статических параметров для настройки конфигурации или текущего обслуживания.

Таблица 5.11 Объекты отображения для блока ресурсов

Отн.	Символическая	VIEW	VIEW	VIEW	VIEW
индекс		1	2	3	4
1	ST_REV	2	2	2	2
2	TAG_DESC				
3	STRATEGY				2
4	ALERT_KEY				1
5	MODE_BLK	4		4	
6	BLOCK_ERR	2		2	
7	RS_STATE	1		1	
8	TEST_RW				
9	DD_RESOURCE				
10	MANUFAC_ID				4
11	DEV_TYPE				2
12	DEV_REV				1
13	DD_REV				1
14	GRANT_DENY		2		
	HARD_TYPES				2
16	RESTART				
17	FEATURES				2
	FEATURE_SEL		2		
	CYCLE_TYPE				1
20	CYCLE_SEL		1		
21	MIN_CYCLE_T				4
22	MEMORY_SIZE				2
23	NV_CYCLE_T		4		
	FREE_SPACE		4		
25	FREE_TIME	4		4	
26	SHED_RCAS		4		
27	SHED_ROUT		4		
28	FAIL_SAFE	1		1	
29	SET_FSAFE				
30	CLR_FSAFE				
31	MAX_NOTIFY		4		4
	LIM_NOTIFY		4		
33	CONFIRM_TIME		4		
	WRITE_LOCK		1		
	UPDATE_EVT				
36	BLOCK_ALM	0		0	
37	ALARM_SUM ACK OPTION	8		8	2
38	_				1
39	WRITE_PRI				1
40 41	WRITE_ALM ITK VER				
41	SOFT_REV				
42	SOFT_REV SOFT_DESC				
43	SIM_ENABLE_MSG				
				Λ	
45 46	DEVICE_STATUS_1 DEVICE STATUS 2			4	
46				4	
48	DEVICE_STATUS_3 DEVICE_STATUS_4			4	
49	DEVICE_STATUS_4 DEVICE_STATUS_5			4	
50	DEVICE_STATUS_6			4	
51	DEVICE_STATUS_7			4	
52	DEVICE_STATUS_8			4	
IJΖ	DEVICE_STATUS_0			4	
	Всего байт	22	32	54	31

Таблица 5.12 Объекты отображения для блока преобразователя

Отн. индекс	Символическая запись параметра	VIEW 1	VIEW 2	VIEW_3 1-й	VIEW_3 2-й	VIEW_3 3-й	VIEW_3 4-й	VIEW_4 1-й	VIEW_4 2-й	VIEW_4 3-й	VIEW_4 4-й	VIEW_4 5-й	VIEW_4 6-й
1	ST_REV	2	2	2	2	2	2	2	2	2	2	2	2
2	TAG_DESC												
3	STRATEGY								2				
4	ALERT_KEY								1				
5	MODE_BLK	4		4									
6	BLOCK_ERR	2		2									
7	UPDATE_EVT												
8	BLOCK_ALM												
9	TRANSDUCER_DIRECTORY												
10	TRANSDUCER_TYPE	2	2	2				2					
11	XD_ERROR	1		1									
12	COLLECTION_DIRECTORY												
13	PRIMARY_VALUE_TYPE		2										
14	PRIMARY_VALUE	5		5									
15	PRIMARY_VALUE_RANGE							11					
16	CAL_POINT_HI		4										
17	CAL_POINT_LO		4										
18	CAL_MIN_SPAN							4					
19	CAL_UNIT							2					
20	SENSOR_TYPE							2					
21	SENSOR_RANGE							11					
22	SENSOR_SN							4					
23	SENSOR_CAL_METHOD								2				
24	SENSOR_CAL_LOC								32				
25	SENSOR_CAL_DATE								7				
26	SENSOR_CAL_WHO								32				
27	LIN_TYPE							1					
28	SECONDARY_VALUE			5									
29	SECONDARY_VALUE_UNIT							2					
30	PRIMARY_FTIME									4			
31	TERTIARY_VALUE			5									
32	TERTIARY_VALUE_UNIT									2			
33	LIMSW_1_VALUE_D										2		
34	LIMSW_1_TARGET										1		
35	LIMSW_1_SETPOINT										4		
36	LIMSW_1_ACT_DIRECTION										1		
37	LIMSW_1_ACT_HYSTERESIS										4		
38	LIMSW_1_UNIT										2		
39	LIMSW_2_VALUE_D										2		
40	LIMSW_2_TARGET										1		
41	LIMSW_2_SETPOINT										4		
42	LIMSW_2_ACT_DIRECTION										1		
43	LIMSW_2_ACT_HYSTERESIS										4		
44	LIMSW_2_UNIT										2		
45	ALARM_PERFORM		2										
46	ARITHMETIC_BLOCK		1							1			

^{*} Продолжение на следующей странице

5. Конфигурация

Отн. индекс	Символическая запись параметра	VIEW 1	VIEW 2	VIEW_3 1-й	VIEW_3 2-й	VIEW_3 3-й	VIEW_3 4-й	VIEW_4 1-й	VIEW_4 2-й	VIEW_4 3-й	VIEW_4 4-й	VIEW_4 5-й	VIEW_4 6-й
47	SENSOR_STATUS		1							1			
48	FUNCTION		1							1			
49	FLUID_TYPE		1							1			
50	TEMPERATURE_UNIT		2							2			
51	PROCESS_TEMP		4							4			
52	BASE_TEMP		4							4			
53	DENSITY_UNIT		2							2			
54	PROCESS_DENSITY		4							4			
55	BASE_DENSITY		4								4		
56	PRESSURE_UNIT		2							2			
57	PROCESS_PRESSURE		4							4			
58	BASE_PRESSURE		4							4			
59	DEVIATION		4							4			
60	SECONDARY_FTIME										4		
61	CABLE_LENGTH										4		
62	FIRST_TEMP_COEF										4		
63	SECOND_TEMP_COEF										4		
64	SIZE_SELECT		1							1			
65	BODY_TYPE		1							1			
66	VORTEX_SENSOR_TYPE		1							1			
67	K_FACTOR_UNIT		1							1			
68	K_FACTOR		4							4			
69	LOW_CUT_FLOW									4			
70	UPPER_DISPLAY_MODE											1	
71	LOWER_DISPLAY_MODE											1	
72	DISPLAY_CYCLE											1	
73	USER_ADJUST											4	
74	REYNOLDS_ADJUST											1	
75	VISCOCITY_VALUE											4	
76	GAS_EXPANSION_FACT											1	
77	FLO_ADJUST											1	
78	FLOW_ADJ_FREQUENCY											20	
79	FLOW_ADJ_DATA											20	
80	TLA_VALUE									4			
81	NOISE_BALANCE_MODE									1			
82	NOISE_RATIO									4			
83	SIGNAL_LEVEL									4			
84	FLOW_VELOCITY												
85	SPAN_VELOCITY												
86	VORTEX_FREQ												
87	SPAN_FREQ												
88	FLUID_DENSITY												
89	SENSOR_ERROR_RECORD									2			
90	MODEL											32	
91	ALARM_SUM							8					
	Всего байт	16	62	50	2	2	2	52	75	69	50	88	0

Таблица 5.13 Объекты отображения для функционального блока AI

Отн. VIEW VIEW VIEW VIEW Символическая индекс запись параметра 3 2 ST_REV 2 2 2 TAG_DESC 2 STRATEGY 2 3 ALERT_KEY 1 4 MODE_BLK 4 4 5 6 BLOCK_ERR 2 2 5 7 PV5 OUT 5 5 8 SIMULATE 9 XD_SCALE 11 10 OUT SCALE 11 11 GRANT_DENY 2 12 IO_OPTS 2 13 STATUS_OPTS 2 14 CHANNEL 2 15 L_TYPE 16 1 LOW_CUT 4 17 PV_FTIME 4 18 FIELD_VAL 5 5 19 UPDATE_EVT 20 BLOCK_ALM 21 ALARM_SUM 8 8 22 23 ACK_OPTION 2 ALARM_HYS 4 24 HI_HI_PRI 25 1 HI_HI_LIM 4 26 HI_PRI 1 27 HI_LIM 4 28 LO_PRI 1 29 LO_LIM 4 30 LO_LO_PRI 1 31 32 LO_LO_LIM 4 HI_HI_ALM 33 HI_ALM 34 LO_ALM 35 LO_LO_ALM 36 TOTAL 4 37 TOTAL_START 38 TTAL_RATE_VAL 39 TOTAL_RESET 40 Всего байт 31 26 35 46

Таблица 5.14 Объекты отображения для функционального блока DI

Отн. индекс	Символическая запись параметра	VIEW 1	VIEW 2	VIEW 3	VIEW 4
1	ST_REV	2	2	2	2
2	TAG_DESC				
3	STRATEGY				2
4	ALERT_KEY				1
5	MODE_BLK	4		4	
6	BLOCK_ERR	2		2	
7	PV_D	2		2	
8	OUT_D	2		2	
9	SIMULATE_D				
10	XD_STATE		2		
11	OUT_STATE		2		
12	GRANT_DENY		2		
13	IO_OPTS				2
14	STATUS_OPTS				2
15	CHANNEL				2
16	PV_FTIME				4
17	FIELD_VAL_D	2		2	
18	UPDATE_EVT				
19	BLOCK_ALM				
20	ALARM_SUM	8		8	
21	ACK_OPTION				2
22	DISC_PRI				1
23	DISC_LIM				1
24	DISC_ALM				
	Всего байт	22	8	22	19

Примечание: Параметры, начиная с номера 37 (TOTAL) включительно, для блока Al2 не предусмот-

рены.

Таблица 5.15 Объекты отображения для функционального блока ПИД-регулирования (по выбору)

Отн. индекс	Символическая запись параметра	VIEW 1	VIEW 2	VIEW 3	VIEW 4
1	ST_REV	2	2	2	2
2	TAG_DESC				
3	STRATEGY				2
4	ALERT_KEY				1
5	MODE_BLK	4		4	
6	BLOCK_ERR	2		2	
7	PV	5		5	
8	SP	5		5	
9	OUT	5		5	
10	PV_SCALE		11		
11	OUT_SCALE		11		
12	GRANT_DENY		2		
13	CONTROL_OPTS				2
14	STATUS_OPTS				2
15	IN			5	
16	PV_FTIME				4
17	BYPASS		1		
18	CAS_IN	5		5	
19	SP_RATE_DN				4
20	SP_RATE_UP				4
21	SP_HI_LIM		4		
22	SP_LO_LIM		4		
23	GAIN				4
24	RESET				4
25	BAL_TIME				4
26	RATE				4
27	BKCAL_IN			5	
28	OUT_HI_LIM		4		
29	OUT_LO_LIM		4		
30	BKCAL_HYS				4
31	BKCAL_OUT			5	
32	RCAS_IN			5	
33	ROUT_IN			5	
34	SHED_OPT				1
35	RCAS_OUT			5	
36	ROUT_OUT			5	
37	TRK_SCALE				11
38	TRK_IN_D	2		2	
39	TRK_VAL	5		5	
40	FF_VAL			5	

Отн. индекс	Символическая запись параметра	VIEW 1	VIEW 2	VIEW 3	VIEW 4
41	FF_SCALE				11
42	FF_GAIN				4
43	UPDATE_EVT				
44	BLOCK_ALM				
45	ALARM_SUM	8		8	
46	ACK_OPTION				2
47	ALARM_HYS				4
48	HI_HI_PRI				1
49	HI_HI_LIM				4
50	HI_PRI				1
51	HI_LIM				4
52	LO_PRI				1
53	LO_LIM				4
54	LO_LO_PRI				1
55	LO_LO_LIM				4
56	DV_HI_PRI				1
57	DV_HI_LIM				4
58	DV_LO_PRI				1
59	DV_LO_LIM				4
60	HI_HI_ALM				
61	HI_ALM				
62	LO_ALM				
63	LO_LO_ALM				
64	DV_HI_ALM				
65	DV_LO_ALM			_	
	Всего байт	43	43	83	104

Таблица 5.16 Индексы объектов отображения для функциональных блоков

4,						
Блок	VIEW 1	VIEW 2	VIEW 3	VIEW 4		
Блок ресурсов	40100	40101	40102	40103		
Блок преобразователя	40200	40201	40202	40203		
Блок AI1	40400	40401	40402	40403		
Блок AI2	40410	40411	40412	40413		
Блок DI1	40600	40601	40602	40603		
Блок DI2	40610	40611	40612	40613		
Блок ПИД- регулирования (по выбору)	40800	40801	40802	40803		

5.6.4 Параметры функциональных блоков AI

Параметры двух функциональных блоков AI могут считываться и записываться с хоста. Список параметров функциональных блоков устройства digitalYEWFLO приведен в Приложении 1 "Список параметров блоков устройства digitalYEWFLO". Данный раздел содержит описание важных параметров. Описание параметров моделей, имеющих блок ПИДрегулирования и функцию мастера связей (LM), дано в Приложениях 5 и 6.

MODE BLK

Параметр задает режим функционального блока — Out_Of_Service (нерабочий), Manual (ручной) и Auto (автоматический). В режиме Out_Of_Service блок AI бездействует. Режим Manual не допускает обновления значений. Режим Auto предусматривает обновление измеряемого значения. В нормальных условиях следует устанавливать режим Auto. Эта установка задается на заводе по умолчанию.

CHANNEL

Параметр блока преобразования, определяющий источник сигнала, подаваемого на вход блока AI. Блок AI1 принимает сигнал расхода, блок AI2 —температуру. Не меняйте эти установки.

XD SCALE

Шкала входного сигнала, приходящего от блока преобразователя. Задается максимальный диапазон расхода, фигурирующий в листке заказа (WS 1F6A0-01E). Если на прилагаемом листке заказа не указано иначе, на заводе задается диапазон от "0" (0%) до "10000" (100%) в единицах "м³/ч". Изменение единицы измерения (задается только для расхода) влечет автоматическое изменение единицы измерения в блоке преобразования. (Единица измерения автоматически меняется в соответствии с выбором блоков АІ1,2). Возможные варианты задания единицы измерения (параметр XD SCALE) перечислены в таблице 5.17.

Диапазон, т.е. 100% шкалы (XD_SCALE.EU при 100), зависит от выбранной единицы измерения (XD_SCALE.Units Index (индекс единицы)), как показано в таблице 5.18.

Таблица 5.17 Варианты единиц измерения

Элемент	Блок	Rai	рианты единиц измерения
CHOMENI	אטונם	Daj	kg/s (кг/с) (1322), kg/min (кг/мин)
		LIQUID (жидкость): масса GAS/STEAM (газ/пар): масса	(1323), kg/h (кг/ч) (1324), kg/d (кг/день) (1325), t/s (т/с) (1326), t/min (т/мин) (1327), t/h (т/ч) (1328), t/d (т/день) (1329), lb/s (фунт/с) (1330), lb/min (фунт/мин) (1331), lb/h (фунт/ч) (1332) lb/d (фунт/день) (1333)
XD_SCALE	АІ1 (канал 1: PV)	LIQUID (жидкость): объем GAS/STEAM (газ/пар): объем	m³/s (м³/с) (1347), m³/min (м³/мин) (1348), m³/h (м³/ч) (1349), m³/d (м³/день) (1350), L/s (л/с) (1351), L/min (л/мин) (1352), L/h (л/ч) (1353), L/d (л/день) (1354), CFS [cf/s] (куб.фут/с) (1356), CFM [cf/min] (куб.фут/чин) (1357), CFH [cf/h] (куб.фут/ч) (1358), ft3/d [cf/d] (куб.фут/ч) (1358), ft3/d [cf/d] (куб.фут/день) (1359), gal/s [USgal/s] (амер.гал/с) (1362), GPM [USgal/min] (амер.гал/мин) (1363), gal/h [USgal/h] (амер.гал/ч) (1364), gal/d [USgal/d] (амер.гал/день) (1365), ImpGal/s [UKgal/s] (брит.гал/с) (1367), ImpGal/min [UKgal/min] (брит.гал/мин) (1368), ImpGal/h [UKgal/h] (брит.гал/день) (1370), bbl/s (баррель/с) (1371), bbl/min (баррель/ин) (1373), bbl/d (баррель/уень) (1373), bbl/d (баррель/уень) (1373), bbl/d (баррель/день) (1374)
		GAS (газ) станд. усл-я/ норм. усл-я	SCFM [scf/min] (станд.куб.фут/мин) (1360), SCFH [scf/h] (станд.куб.фут/ч) (1361), Nm³/s (норм.м³/с) (1522), Nm³/min (норм.м³/ч) (1524), Nm³/d (норм.м³/день) (1525), Sm³/s (станд.м³/с) (1527), Sm³/min (станд.м³/мин) (1528), Sm³/h (станд.м³/ч) (1529), Sm³/d (станд.м³/ч) (1529), Sm³/d (станд.м³/н) (1529), Sm³/d (станд.м³/день) (1530), NL/s (норм.л/с) (1532), NL/min (норм.л/мин) (1533), NL/h (норм.л/день) (1535), SL/s (станд.л/с) (1537), SL/min (станд.л/и) (1537), SL/min (станд.л/и) (1538), SL/h (станд.л/ч) (1539), SL/d (станд.л/уень) (1540)
	АІ1 (канал 2: SV)	Температу- ра	°C (шкала Цельсия) (1001), °F (шкала Фаренгейта) (1002)

Примечание: При одной и той же установке представление некоторых единиц различается в зависимости от того, использует ли устройство digitalYEWFLO связь FOUNDATION Fieldbus или связь HART или BRAIN. Единицы, заключенные в квадратные скобки, относятся к связи HART или BRAIN, используемой устройством digitalYEWFLO.

Таблица 5.18 Диапазон шкалы XD_SCALE в зависимости от выбранной единицы измерения

Блок	Единица измерения	Диапазон
	L/s (л/с), L/min (л/мин), L/h (л/ч), L/d (л/день), t/s (т/с), t/min (т/мин), t/h (т/ч), t/d (т/день), kg/s (кг/с), kg/min (кг/мин), kg/h (кг/ч), kg/d (кг/день), NL/s (норм.л/с), NL/min (норм.л/мин), NL/h (норм.л/ч), NL/d (норм.л/день), SL/s (станд.л/с), SL/min (станд.л/мин), SL/h (станд.л/день)	от 10 ⁻⁵ до 32000
Al1	m³/s (м³/с), m³/min (м³/мин), m³/h (м³/ч), m³/d (м³/день), GPM (ммер.гал/мин), gal/h (амер.гал/ч), gal/d (амер.гал/с), ImpGal/s (брит.гал/с), ImpGal/min (брит.гал/мин), ImpGal/h (брит.гал/ч), ImpGal/d (брит.гал/ч), ImpGal/d (брит.гал/мин), Ib/s (фунт/с), Ib/min (фунт/мин), Ib/h (фунт/ч) или Ib/d (фунт/день)	от 10 ⁻⁵ до 3.2 × 10 ⁷
	Nm³/s (норм.м³/c), Nm³/min (норм.м³/мин), Nm³/h (норм.м³/ч), Nm³/d (норм.м³/ч), Nm³/d (норм.м³/день), Sm³/s (станд.м³/c), Sm³/min (станд.м³/мин), Sm³/h (станд.м³/ч), Sm³/d (станд.м³/день), SCFM (станд.куб.фут/мин) или SCFH (станд.куб.фут/ч)	от 10 ⁻⁵ до 3.2 × 10 ¹⁰
	CFS (куб.фут/с), CFM (куб.фут/ч), (куб.фут/мин), CFH (куб.фут/ч), ft3/d (куб.фут/день), bbl/s (бар-рель/с), bbl/min (баррель/мин), bbl/h (баррель/ч), bbl/d (бар-рель/день)	от 10 ⁻⁸ до 3.2 × 10 ⁷
Al2	°C (шкала Цельсия)	от -273.15 до 999.9
AIZ	°F (шкала Фаренгейта)	от -459.67 до 999.9

OUT SCALE

Диапазон выходного сигнала (от 0% до 100%). Возможные варианты единиц измерения для OUT_SCALE соответствуют единицам для XD_SCALE, перечисленным в таблице 5.17.

L TYPE

Рабочая функция блока AI1. Заводская установка по умолчанию – "Direct" (прямая передача). Эта установка означает, что в качестве выходного значения (OUT) выдается входной сигнал, приходящий от блока преобразования по каналу CHANNEL. Установка "Indirect" (непрямая передача) означает выдачу в качестве выходного значения (OUT) результата выполнения масштабного пересчета в соответствии с XD_SCALE и OUT_SCALE. Установка "Indirect SQRT" для устройств digitalYEWFLO не используется.

PV FTIME

Временная константа сглаживания (фильтрации), используемая в блоке AI (первичная задержка), в секундах.

Alarm Priority

Приоритет сигнализации процесса. Сигнализация передается, если задано значение 3 или больше. Заводская установка по умолчанию — "0". Возможны четыре типа сигнализации: HI_PRI, HI_HI_PRI, LO_PRI, LO_LO_PRI.

Alarm Threshold

Пороговое значение, при котором вырабатывается сигнализация. Заводская установка по умолчанию — значение, при котором сигнализация не вырабатывается. Возможны четыре типа сигнализации: HI_LIM, HI_LIM, LO_LIM, LO_LO_LIM.

5.6.5 Параметры блока преобразования

Блок преобразования задает функции, используемые в устройстве digital YEWFLO для измерения расхода. Список параметров блока содержится в Приложении 1 "Список параметров блоков устройства digitalYEWFLO". Данный раздел содержит описание важных параметров и их установки.

(1) Обязательные установки параметров блока преобразования

Примечание: Перед заданием параметров блока преобразования необходимо задать параметр XD_SCALE блока AI1. В таблице ниже приведены параметры, задание которых обязательно (в порядке последовательного возрастания относительного индекса), в зависимости от рабочего режима.

Таблица 5.19 Обязательные установки параметров блока преобразования в зависимости от режима работы

	Отн. индекс	Название параметра								
	47	SENSOR_STATUS (состояние датчика)	1 = стандартн. конфиг.	1 = стандартн. конфиг.	2 = встроен. датчик темп.	2 = встроен. датчик темп.	2 = встроен. датчик темп.	2 = встроен. датчик темп.	2 = встроен. датчик темп.	2 = встроен. датчик темп.
	48	THERMOMETER_ FUNCTION (функция термо- метра)	-	-	1 = только текущий контроль; или 6 = не использу- ется	1 = только текущий контроль; или 6 = не использует- ся	2 = насы- щенный пар	2 = перегре- тый пар	4 = GAS (газ): STD/Normal (станд./ норм. усл-я)	5 = LIQUID (жидкость): масса
Режим работы	49	FLUID_TYPE (тип технологиче- ской среды)	1 = LIQUID (жидкость): объемный расход; 2 = GAS/STEAM (газ/пар): объемный расход; 3 = LIQUID (жидкость): массовый расх. или 4 = GAS/STEAM (газ/пар): массовый расх.	5 = GAS (газ): STD/Normal (станд./ норм. усл-я)	1 = LIQUID (жидкость): объемный расход; 2 = GAS/STEAM (газ/пар): объемный расход; 3 = LIQUID (жидкость): массовый расх. или 4 = GAS/STEAM (газ/пар): массовый расход	5 = GAS (газ): STD/Normal (станд./ норм. усл-я)	-	-	-	-
	50	TEMPERATURE_UNIT	Į	Į	Ş	Ÿ	Į.	Į.	Į	Į.
		PROCESS_TEMP	Į.	Į.	Ş	Ÿ	Į.	Į.	Į.	Į.
BKI		BASE_TEMP		Į.		Į.			Į.	Į.
ЭНОІ		DENSITY_UNIT	Į.	Į.	Į.	Į.	V	Į.	Į.	Į.
установки		PROCESS_DENSITY	Į.	Į.	Į.	Į.	V	Į.	Į.	Į.
PIE		BASE_DENSITY								Ş
		PRESSURE_UNIT		Į.		Ÿ		Į.	Į.	
Обязательн		PROCESS_PRESSURE		Į.		Ÿ		Į.	Į.	
5я3		BASE_PRESSURE		Ş		Į.			Į.	
ŏ		DEVIATION		Ş		Į.			Ş	
		FIRST_TEMP_COEF								Ş
	63	SECOND_TEMP_COEF								Į

(2) Описание параметров

1) PRIMARY_VALUE_TYPE (отн.индекс 13)

Тип измеряемого элемента, стоящего за параметром PRIMARY_VALUE. Для устройства digitalYEWFLO предусмотрены следующие варианты задания этого параметра: 100, 101, 102 или 103, что означает следующее:

100 = массовый расход

101 = объемный расход

102 = средний массовый расход

103 = средний объемный расход

65535 = прочее

Установка по умолчанию: 101 (объемный расход)

2) PRIMARY_VALUE_TIME (отн.индекс 30)

Временная константа сглаживания, используемая в расчете расхода.

Диапазон установки: от 0 до 99 (секунд) Установка по умолчанию: 4 (секунды)

3) THERMOMETER_FUNCTION (отн. инд. 48)

Параметр задает функцию текущего контроля температуры для модели с опцией MV (возможность обработки нескольких параметров процесса).

1 = только текущий контроль

2 = насыщенный пар

3 = перегретый пар

4 = газ: STD (в стандартных условиях) / Normal (в нормальных условиях)

5 = жидкость: масса

6 =не используется

Установка по умолчанию: 1 (=только текущий контроль)

4) FLUID_TYPE (отн. индекс 49)

Задание типа технологической среды, участвующей в измерении расхода.

1 = жидкость: объемный расход

2 = газ/пар: объемный расход

3 = жидкость: массовый расход

4 = газ/пар: массовый расход

5 = газ: STD (в стандартных условиях) / Normal (в нормальных условиях)

Установка по умолчанию: 1 (жидкость: объемный расход)

5) TEMPERATURE UNIT (отн.индекс 50)

Задание единиц измерения температуры.

1001 = °С (шкала Цельсия)

1002 = °F (шкала Фаренгейта)

Установка по умолчанию: 1001 (шкала Цельсия)

6) PROCESS_TEMP (отн.индекс 51)

Задание нормальной рабочей температуры.

Диапазон установки: от -999.9 до 999.9

Единица измерения: в соответствии с установкой для параметра TEMP_UNIT

Установка по умолчанию: 15.0

7) BASE_TEMP (отн.индекс 52)

Задание температуры в стандартных условиях.

Диапазон установки: от -999.9 до 999.9

Единица измерения: в соответствии с установкой для параметра TEMP UNIT

Установка по умолчанию: 15.0

8) DENSITY_UNIT (отн.индекс 53)

Задание единицы измерения плотности. Установка по умолчанию: 1097 (=кг/м³)

9) PROCESS_DENSITY (отн. индекс 54)

Задание плотности, соответствующей нормальному рабочему режиму.

Диапазон установки: от 0.00001 до 32000

Единица измерения: в соответствии с установкой для параметра DENSITY_UNIT

Установка по умолчанию: 1024.0

10) BASE_DENSITY (отн. индекс 55)

Задание плотности, соответствующей стандартным условиям.

Диапазон установки: от 0.00001 до 32000

Единица измерения: в соответствии с установкой для параметра DENSITY_UNIT

Установка по умолчанию: 1024.0

11) PRESSURE_UNIT (отн. индекс 56)

Задание единицы измерения давления. Диапазон установки: 1545 (=МПа) или 1547 (=КПа)

Установка по умолчанию: 1545 (=МПа)

12) PROCESS_PRESSURE (отн. индекс 57)

Задание абсолютного давления, соответствующего нормальному рабочему режиму.

Диапазон установки: от 0.00001 до 32000

Единица измерения: в соответствии с установкой для параметра PRESSURE_UNIT

Установка по умолчанию: 0.1013

12) BASE PRESSURE (отн. индекс 58)

Задание абсолютного давления, соответствующего стандартным условиям.

Диапазон установки: от 0.00001 до 32000

Единица измерения: в соответствии с установкой для параметра PRESSURE_UNIT

Установка по умолчанию: 0.1013

14) DEVIATION (отн. индекс 59)

Задание коэффициента отклонения для технологической среды.

Диапазон установки: от 0.001 до 10.0

Установка по умолчанию: 1 (безразмерное число)

15) SECONDARY_VALUE_FTIME (отн. индекс 60)

Задание коэффициента сглаживания для измерения температуры (для моделей с опцией MV).

Диапазон установки: от 0.0 до 99.0

Единица измерения: s (сек)

Установка по умолчанию: 4 (сек)

16) SIZE_SELECT (отн. индекс 64)

Задание типоразмера расходомера.

Диапазон установки:

- 1 = 15 мм (1/2 дюйма)
- 2 = 25 мм (1 дюйм)
- 3 = 40 мм (1.5 дюйма)
- 4 = 50 мм (2 дюйма)
- 5 = 80 мм (3 дюйма)
- 6 = 100 мм (4 дюйма)
- 7 = 150 мм (5 дюймов)
- 8 = 200 мм (6 дюймов)
- 9 = 250 мм (7 дюймов)
- 10 = 300 мм (8 дюймов)

Установка по умолчанию:

2 (=25 мм (1 дюйм))

17) K FACTOR UNIT (отн. индекс 67)

Задание единицы измерения К-фактора.

Установка по умолчанию: 1 (р/л)

18) K_FACTOR (отн. индекс 68)

Задание К-фактора комбинированного датчика при 15°C.

Диапазон установки: от 0.00001 до 32000

Единица измерения: в соответствии с установкой для параметра K_FACTOR_UNIT

Установка по умолчанию: 68.6

19) LOW CUT FLOW (отн. индекс 69)

Задание нижнего уровня отсечки сигнала расхода.

Диапазон установки: от значения минимального расхода \times 0.5 до XD_SCALE.EU_100

Единица измерения: в соответствии с установкой для параметра PRIMARY_VALUE_RANGE.Units Index (индекс единицы измерения)

Установка по умолчанию: Минимальный расход газа для расходомера 25 мм.

20) UPPER DISPLAY MODE (отн. индекс 70)

Задание режима отображения данных в верхней строке жидкокристаллического дисплея.

- 1 = FLOW RATE (%): мгновенный расход в процентах
- 2 = FLOW RATE: мгновенный расход в указанных единицах измерения
- 3 = TEMPERATURE (%): температура в процентах (только для моделей с опцией MV)

21) LOWER_DISPLAY_MODE (отн. индекс 71)

Задание режима отображения данных в нижней строке жидкокристаллического дисплея.

- 1 = BLANK (пусто)
- 2 = TOTAL: суммарный расход
- 3 = TEMPERATURE: температура (только для моделей с опцией MV)

22) DISPLAY_CYCLE (отн. индекс 72)

Цикл обновления данных, отображаемых на жидкокристаллическом дисплее, как величина, кратная 500 миллисекунд.

Диапазон установки: от 1 до 10 (=500 мс до 5 с)

Установка по умолчанию: 1 (=500 мс)

5.6.6 Параметры функциионального блока DI

Функциональные блоки цифрового входа (DI) работают на базе предельных сигналов переключения, вырабатываемых блоком преобразования. При этом блок DI1 использует сигналы расхода, а DI2 – сигналы температуры (необходима опция MV).

MODE BLK

Поддерживаются режимы O/S (нерабочий), Auto (автоматический) и Manual (ручной). В режиме O/S блок DI не функционирует. В режиме Manual измеряемое значение не обновляется. Обновление измеряемого значения происходит в режиме Auto. На заводе перед отправкой оба блока DI устройства digitalYEWFLO устанавливаются в режим O/S (нерабочий).

CHANNEL

Выбор входного сигнала, поступающего на блок DI от преобразователя. Для параметра CHANNEL устройства digitalYEWFLO всегда задается установка 3 или 4.

PV FTIME

Задание времени задержки (в секундах) изменения выходного значения после изменения значения внутри блока DI.

DISC PRI

Задание уровня приоритета дискретной сигнализации по выходному значению блока (OUT_D). Вырабатываемая сигнализация передается, только когда для параметра DISC_PRI задана установка 3 и выше. На заводе перед отправкой для этого параметра задается установка 1.

Таблица 5.20 Уровни приоритета сигнализации

Значение	Описание
0	Сигнализация не передается. Параметры сигнализации не обновляются
1	Сигнализация не передается.
от 3 до 7	Сигнализация в форме рекомендации.
от 8 до 15	Критическая сигнализация.

DISC_LIM

Задание дискретной сигнализации. Дискретная сигнализация вырабатывается, когда значение OUT_D соответствует значению, заданному для параметра DISC LIM.

6. Оперативное управление

Данная глава содержит описание манипуляций с функциональными блоков устройства digitalYEWFLO, производимых в процессе его функционирования.

6.1 Изменение режима работы

При переходе в нерабочий режим (Out_Of_Service) функциональный блок останавливает работу, и вырабатывается сигнализация.

При переходе в ручной режим (Manual) функциональный блок приостанавливает обновление измеряемых значений. Только в этом случае возможно присвоение значения параметру (OUT) блока, выдаваемому в качестве выходного сигнала. Заметим, что состояние параметра не может быть изменено.

6.2 Выработка сигнализации

6.2.1 Индикация сигнализации

Когда функция самодиагностики регистрирует отказ устройства, блок ресурсов вырабатывает сигнализацию (сигнализация устройства). При обнаружении ошибки в функциональном блоке (ошибка блока) или в значении параметра процесса (сигнализация процесса), каждый блок вырабатывает сигнализацию. Номер ошибки в форме AL-XX выдается на ЖК-дисплей, если таковой установлен. Если вырабатываются два или более сигнала, на дисплей выдаются соответствующие номера ошибок с 2-секундным интервалом (если для параметра DISPLAY_CYCLE задана установка "1").

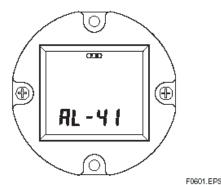


Рис.6.1 Индикация ошибки на дисплее

В таблице 6.1 даны комментарии к индикации ошибок, выдаваемых на ЖК-дисплей, с указанием наличия или отсутствия возможности отключения соответствующей сигнализации. Для сигналов, для которых предусмотрен маскировочный выключатель, указана также установка по умолчанию. Сигнализация, для которой маскировочный выключатель не предусмотрен, всегда включена. Порядок изменения состояния маскировочного переключателя описан в Приложении 3 "Функционирование параметров в режиме сбоя".

6. Оперативное управление

Таблица 6.1 Индикация сигнализации и маскирующие переключатели

Индикация на ЖК- дисплее	Описание ошибки	Переключатель маскировки сигнализации (установка по умолчанию)
AL-01	Сбой памяти EEPROM (S)	Не предусмотрен
AL-02	Сбой контура связи Fieldbus в усилителе (ошибка типа 1)	Не предусмотрен
AL-03	Сбой контура связи Fieldbus в усилителе (ошибка типа 2)	Не предусмотрен
AL-04	Сбой EEPROM (F)	Не предусмотрен
AL-05	Неисправность датчика расхода	Предусмотрен (ON-вкл.)
AL-06	Сбой входного контура в усилителе	Предусмотрен (ON)*
AL-07	Сбой контура температуры в усилителе	Не предусмотрен
AL-08	Неисправность датчика температуры	Не предусмотрен
AL-20	Нет графиков исполнения функциональных блоков	Не предусмотрен
AL-21	Блок ресурсов в нерабочем режиме (O/S)	Не предусмотрен
AL-22	Блок преобразования в нерабочем режиме (O/S)	Не предусмотрен
AL-23	Блок Al1 в нерабочем режиме (O/S)	Предусмотрен (ON)
AL-24	Блок AI2 в нерабочем режиме (O/S)	Предусмотрен (ОFF-выкл.)
AL-25	Блок DI1 в нерабочем режиме (O/S)	Предусмотрен (OFF)
AL-26	Блок DI2 в нерабочем режиме (O/S)	Предусмотрен (OFF)
AL-27	Блок ПИД-регулирования в нерабочем режиме (O/S)	Предусмотрен (OFF)
AL-41	Выход скорости потока за пределы диапазона	Не предусмотрен
AL-42	Границы скорости потока выходят за пределы диапазона	Не предусмотрен
AL-43	Выход температуры за пределы диапазона	Не предусмотрен
AL-51	Избыточные колебания при переходном процессе	Предусмотрен (OFF)
AL-52	Избыточные колебания	Предусмотрен (OFF)
AL-53	Аномалия потока (закупорка)	Предусмотрен (OFF)
AL-54	Аномалия потока (избыточные флуктуации выходного значения)	Предусмотрен (OFF)
AL-61	Превышение диапазона индикатора	Не предусмотрен
AL-62	Блок AI1 в ручном режиме	Предусмотрен (ON)
AL-63	В блоке AI1 включена функция имитации	Предусмотрен (ON)
AL-64	Нет графика исполнения блока AI1	Предусмотрен (ON)
AL-65	Блок AI2 в ручном режиме	Предусмотрен (OFF)
AL-66	В блоке AI2 включена функция имитации	Предусмотрен (OFF)
AL-67	Нет графика исполнения блока AI2	Предусмотрен (OFF)
AL-68	Блок DI1 в ручном режиме	Предусмотрен (OFF)
AL-69	В блоке DI1 включена функция имитации	Предусмотрен (OFF)
AL-70	Нет графика исполнения блока DI1	Предусмотрен (OFF)
AL-71	Блок DI2 в ручном режиме	Предусмотрен (OFF)
AL-72	В блоке DI2 включена функция имитации	Предусмотрен (OFF)
AL-73	Нет графика исполнения блока DI2	Предусмотрен (OFF)
AL-74	Блок ПИД-регулирования в режиме BYPASS (обход)	Предусмотрен (OFF)
AL-75	Сбой блока ПИД-регулирования	Предусмотрен (OFF)
AL-76	Сбой блока ПИД-регулирования	Предусмотрен (OFF)

^{*} Маскирующий переключатель не предусмотрен для модели с опцией MV и с активизированным расчетом плотности среды

6.2.2 Сигнализация и события

Устройство digitalYEWFLO предусматривает возможность регистрации перечисленных ниже сигнализаций и событий как предупреждающих сообщений.

Аналоговые сигнализации

(генерируются, когда параметр процесса превышает пороговое значение)

Блок АІ:

Hi-Hi Alarm, Hi Alarm (по верхнему пределу), Low Alarm, Low-Low Alarm (по нижнему пределу)

Дискретные сигнализации

(генерируются, когда регистрируются аномальное состояние)

Блок ресурсов:

Block Alarm (сигнал блока),

Write Alarm (запись)

Блок преобразования:

Block Alarm (сигнал блока)

Блок AI: Block Alarm (сигнал блока)

Сообщения об обновлении значений

(генерируются, когда происходит обновление важного (восстанавливаемого) параметра)

Блок ресурсов: Событие обновления

Блок преобразования:

Событие обновления Блок AI: Событие обновления

Структура предупреждающих сигналов:

Таблица 6.2 Объект предупреждающего сигнала

Су	Суб-индекс			
Аналоговая сигнализация	Дискретная сигнализация	Сообщение об обновлении	Наименование параметра	Описание
1	1	1	Block Index	Индекс блока, вырабаты- вающего сигнал
2	2	2	Alert Key	Ключ сигнала, копируемый из блока
3	3	3	Standard Type	Тип сигнала
4	4	4	Mft Type	Название сигнала в соответствии с дескриптором (DD) конкретного изготовителя
5	5	5	Message Type	Причина сигнала
6	6	6	Priority	Приоритет сигнала
7	7	7	Time Stamp	Временная метка – время первой регистрации сигнала
8	8		Subcode	Нумерованная причина сигнала
9	9		Value	Значение справочных данных
10	10		Relative Index	Относительный индекс справочных данных
		8	Static Revision	Редакция статических данных (ST_REV) блока
11	11	9	Unit Index	Код единицы справочных данных

6.3 Функция имитации

Функция имитации воспроизводит подачу сигнала от блока преобразования на вход функционального блока. Имитация позволяет провести тестирование функциональных блоков, расположенных ниже по течению потока данных, и работы сигнализации.

Для предотвращения случайного запуска этой функции на усилитель устройства digitalYEW-FLO устанавливается переключатель SIMULATE_ENABLE в виде перемычки. Функция имитации активизируется при включении (ON) этого переключателя (см. рис.6.2). Аналогичная функция может также быть инициирована с удаленного терминала, если для параметра SIM_ENABLE_MSG (индекс 1044) задана установка REMOTE LOOP TEST SWITCH. Заметим, что при выключении питания эта установка теряется. В состоянии активности функции имитации сигнализация вырабатывается блоком ресурсов; сигнализация других устройств маскируется. По этой причине необходимо выключать функцию имитации сразу же после ее использования.

Параметр SIMULATE блока AI состоит из элементов, перечисленных в таблице 6.3.

Таблица 6.3 Параметр SIMULATE

Суб- индекс	Параметры	Описание
1	Simulate Status	Состояние имитируемых данных
2	Simulate Value	Значение имитируемых данных
3	Transducer Status	Отображение состояния данных блока преобразования. Элемент изменению не подлежит.
4	Transducer Value	Отображение значения данных блока преобразования. Элемент изменению не подлежит.
5	Simulate En/Disable	Управление функцией имитацией данного блока. 1: Disabled (функция выключена) (стандартная установка) 2: Active (функция активна) (имитация)

Если для параметра "Simulate En/Disable" (вкл./выкл.имитации) в таблице 6.3. задана установка "Active" (функция имитации активна), соответствующий функциональный блок использует имитационное значение, заданное для этого параметра, вместо сигнала от блока преобразования. Эта установка может использоваться для распространения этого состояния на зависимые блоки, выработки сигнализации процесса и в качестве теста для проверки работоспособности зависимых блоков.

Puc. 6.2 Положение переключателя SIMULATE_SWITCH

7. Состояние устройства

В устройстве digitalYEWFLO для представления выявленных ошибок и текущего состояния устройств предусмотрены параметры с DEVICE_STATUS_1 по DEVICE_STATUS_4 (индексы с 1045 по 1048).

Таблица 7.1 Содержание параметра DEVICE_STATUS_1 (индекс 1045)

Шестнадца- теричное представле- ние	Отображение на цифровом дисплее	Описание
0x00800000	SIMULATE_ENABLE switch on	Переключатель SIMULATE_ENABLE в положении ON (вкл.)
0x00400000	Resource block in O/S mode (AL-21)	Блок ресурсов в нерабочем состоянии
0x00080000	AMP. module failure (2) (AL-04)	Сбой памяти EEPROM (F)
0x00008000	Link Obj.1/17/33 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00004000	Link Obj.2/18/34 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00002000	Link Obj.3/19/35 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00001000	Link Obj.4/20/36 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00000800	Link Obj.5/21/37 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00000400	Link Obj.6/22/37 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00000200	Link Obj.7/23/37 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00000100	Link Obj.8/24/37 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00000080	Link Obj.9/25 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00000040	Link Obj.10/26 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00000020	Link Obj.11/27 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00000010	Link Obj.12/28 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00000008	Link Obj.13/29 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00000004	Link Obj.14/30 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00000002	Link Obj.15/31 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто
0x00000001	Link Obj.16/32 not open	Виртуальное отношение данных (VCR) в связующем объекте не открыто

Таблица 7.1 Содержание параметра DEVICE_STATUS_2 (индекс 1046)

Шестнадца- теричное представле- ние	Отображение на цифровом дисплее	Описание
0x00000040	Temperature sensor failure (AL-08)	Неисправность датчика температуры
0x00000020	Temperature converter failure (AL-07)	Неисправность температурного контура в усилителе
0x00000010	Input circuit failure (AL-06)	Неисправность входного контура усилителя
0x00000008	Flow sensor failure (AL-05)	Неисправность датчика потока
0x00000004	COM. circuit failure (2) (AL-03)	Сбой контура связи Fieldbus в усилителе (ошибка типа 2)
0x00000002	COM. circuit failure (1) (AL-02)	Сбой контура связи Fieldbus в усилителе (ошибка типа 1)
0x0000001	AMP. module failure (1) (AL-01)	Сбой памяти EEPROM (S)

Таблица 7.3 Содержание параметра DEVICE_STATUS_3 (индекс 1047)

Шестнадца- теричное представле- ние	Отображение на цифровом дисплее	Описание
0x10000000	No function blocks scheduled (AL-20)	Нет графиков исполнения функциональных блоков
0x02000000	Transducer block in O/S mode (AL-22)	Блок преобразования в нерабочем режиме (O/S)
0x01000000	Al1 block in O/S mode (AL-23)	Блок AI1 в нерабочем режиме (O/S)
0x00800000	Al2 block in O/S mode (AL-24)	Блок AI2 в нерабочем режиме (O/S)
0x00400000	DI1 block in O/S mode (AL-25)	Блок DI1 в нерабочем режиме (O/S)
0x00200000	DI2 block in O/S mode (AL-26)	Блок DI2 в нерабочем режиме (O/S)
0x00100000	PID block in O/S mode (AL-27)	Блок ПИД-регулирования в нерабочем режиме (O/S)
0x00080000		
0x00040000	Al1 block in MAN mode (AL-62)	Блок AI1 в ручном режиме
0x00020000	Simulation is enable in Al1 (AL-63)	В блоке AI1 включена функция имитации
0x00010000	Al1 block not scheduled (AL-64)	Нет графика исполнения блока AI1
0x00008000		
0x00004000	Al2 block in MAN mode (AL-65)	Блок AI2 в ручном режиме
0x00002000	Simulation is enable in Al2 (AL-66)	В блоке AI2 включена функция имитации
0x00001000	Al2 block not scheduled (AL-67)	Нет графика исполнения блока AI2
0x00000800		
0x00000400	DI1 block in MAN mode (AL-68)	Блок DI1 в ручном режиме
0x00000200	Simulation is enable in DI1 (AL-69)	В блоке DI1 включена функция имитации
0x00000100	DI1 block not scheduled (AL-70)	Нет графика исполнения блока DI1
0x00000080		
0x00000040	DI2 block in MAN mode (AL-71)	Блок DI2 в ручном режиме
0x00000020	Simulation is enable in DI2 (AL-72)	В блоке DI2 включена функция имитации
0x00000010	DI2 block not scheduled (AL-73)	Нет графика исполнения блока DI2
0x00000008		
0x00000004	PID block in BYPASS mode (AL-74)	Блок ПИД-регулирования в режиме BYPASS (обход)
0x00000002	PID Function Block Error 1 (AL-75)	Сбой блока ПИД-регулирования
0x00000001	PID Function Block Error 2 (AL-76)	Сбой блока ПИД-регулирования

Таблица 7.4 Содержание параметра DEVICE_STATUS_4 (индекс 1048)

Шестнадца- теричное представле- ние	Отображение на цифровом дисплее	Описание
0x00000100	Indicator overrange (AL-61)	Превышение диапазона индикатора
0x00000080	Flow velocity overrange (AL-41)	Превышение диапазона скорости потока
0x00000040	Flow rate span exceeding limit (AL-42)	Диапазон скорости потока выходит за установленные пределы
0x00000020	Temperature overrange (AL-43)	Выход температуры за пределы диапазона
0x00000010		
80000000x0	Transient excessive vibration (AL-51)	Избыточные колебания при переходном процессе
0x00000004	Excessive vibration (AL-52)	Избыточные колебания
0x00000002	Flow anomaly (clogging) (AL-53)	Аномалия потока (закупорка)
0x00000001	Flow anomaly (fluctuating) (AL-54)	Аномалия потока (избыточные флуктуации выходного значения)

8. Общие технические характеристики

8.1 Технические нормативы

Информация по элементам, отсутствующим в приведенном ниже описании, содержится в документации GS 01F06A00-01E.

Применимые модели

Все модели DY и DYA, обладающие функциями связи Fieldbus (выходной код: F). Эти модели соответствуют следующим стандартам EMC:

ÉN61326 AS/NZS2064

Выходные сигналы

Сигнал цифровой связи, соответствующий протоколу FOUNDATION Fieldbus.

Напряжение питания

От 9 до 32 В постоянного тока для универсального и пожаробезопасного типов От 9 до 24 В постоянного тока для взрывобезопасного типа (модель Entity) От 9 до 17.5 В постоянного тока для взрывобезопасного типа (модель FISCO)

Характеристики линии связи

Напряжение питания: от 9 до 32 В постоян-

ного тока

Ток питания: 11 мА (максимум)

Функциональные технические характеристики

Технические характеристики связи соответствуют техническим условиям H1, разработанным для связи Fieldbus FOUNDATION.

Функциональные блоки

- Два функциональных блока AI (блок AI1 осуществляет текущий контроль мгновенного и суммарного расхода; блок AI2 контроль температуры для моделей, обладающих опцией обработки нескольких переменных процесса).
- Два функциональных блока DI для предельных переключателей расхода и температуры.
- Один блок ПИД-регулирования (для моделей с опцией LC1)

Мастер связей (для моделей с опцией LC1)

8.2 Варианты характеристик

Варианты, отсутствующие в приведенном ниже списке, описаны в документации GS 01F06A00-01E.

(Примечание 1) Аттестация на взрывобезопасность предполагает использование барьера, сертифицированного в испытательной лаборатории (модель BARD-400 неприменима). Технические условия для отраслевого стандарта взрывобезопасности (FM) в настоящее время разрабатываются.

Элемент	Описание	Код		
Функции ПИД-регулирования (РІD) и мастера связей (LM) Обработка нескольких переменных процесса Обеспечение возможности использования датчика температуры (термопара с внутренним сопротивлением 1000 Ом), встроенного в завихритель. Блок АІ2 выдает в качестве выходного значения температуру технологической среды для расчета массового расхода. (Более подробная информация содержится в документации GS 01F06A00-01E). Стандарт взрывобазопасная для класса I, кат. 1, гр. А, В, С и D; взрывобезопасная по отношению к пыли для кл. II/III, кат. 1, гр. Е, F и G. "SEAL ALL CONDUITS WITHIN 18 INCHES" (изоляция кабельных каналов на протяжении 18 дюймов). "WHEN INSTALLED IN DIV.2, SEALS NOT REQUIRED" (при установке по кат.2 изоляция не требуется". Корпус:NEMA TYPE 4X Код температуры: Т6 Темп. окр. среды: от -29 до +60°C (расходомер интегр. типа и расходомер разнесен. типа) от -40 до +60°C (преобразователь разнесенного типа) Влажность окр. среды: от 0 до 100% (относит.)		LC1		
Обработка несколь- ких переменных процесса	нение функциональной возможности ПИД-регулирования и мастера связей. (Перед ой производится настройка устройства как мастера связей). Leние возможности использования датчика температуры (термопара с внутренним влением 1000 Ом), встроенного в завихритель. Блок AI2 выдает в качестве выходного из температуру технологической среды для расчета массового расхода. подробная информация содержится в документации GS 01F06A00-01E). DT взрывобезопасная для класса I, кат. 1, гр. A, B, C и D; взрывобезопасная по отношению к пыли для кл. II/III, кат. 1, гр. E, F и G. "SEAL ALL CONDUITS WITHIN 18 INCHES" (изоляция кабельных каналов на протяжении 18 дюймов). "WHEN INSTALLED IN DIV.2, SEALS NOT REQUIRED" (при установке по кат.2 изоляция не требуется". NEMA TYPE 4X пературы: T6 кр. среды: от -29 до +60°C (расходомер интегр. типа и расходомер разнесен. типа) от -40 до +60°C (преобразователь разнесенного типа) сть окр. среды: от 0 до 100% (относит.) альное рабочее давление: 42 МПа (6092 фунта/кв.дюйм) не корпуса: Эпоксидная смола или полиуретанение: гнездо ANSI 1/2NPT от взрывобезопасности FM (Примечание 1) циты: взрывобезопасная для кл. I, II, III, кат. 1, гр. A, B, C, D, E, F и G, T4, и кл. I, зоны 0, AEx ia IIC Т4 нестимулирующая для кл. I, II, кат.2, гр.A, B, C, D, F и G, кл. III, кат.1, т4 и кл. I, зоны 2, гр. IIC, Т4 NEMA TYPE 4X пературы: T6 кр. среды: от -29 до +60°C (расходомер интегрированного типа)			
Отраслевой стандарт	Тип защиты: взрывобезопасная для класса I, кат. 1, гр. А, В, С и D; взрывобезопасная по отношению к пыли для кл. II/III, кат. 1, гр. Е, F и G. "SEAL ALL CONDUITS WITHIN 18 INCHES" (изоляция кабельных каналов на протяжении 18 дюймов). "WHEN INSTALLED IN DIV.2, SEALS NOT REQUIRED" (при установке по кат.2 изоляция не требуется". Корпус:NEMA TYPE 4X Код температуры: Т6 Темп. окр. среды: от -29 до +60°С (расходомер интегр. типа и расходомер разнесен. типа) от -40 до +60°С (преобразователь разнесенного типа) Влажность окр. среды: от 0 до 100% (относит.) Максимальное рабочее давление: 42 МПа (6092 фунта/кв.дюйм) Покрытие корпуса: Эпоксидная смола или полиуретан Соединение: гнездо ANSI 1/2NPT	FF1		
(FM)	нестимулирующая для кл. I, II, кат.2, гр.А, В, С, D, F и G, кл. III,	FS15		

Элемент	Описание	Код
Ozovene CENELEO	Стандарт взрывозащищенности CENELEC ATEX (KEMA) Тип защиты: EExd IIC T6T1 (расходомер интегр. типа и расходомер разнесен. типа)	KF1
Стандарт GENELEC ATEX (KEMA)	Соединение: гнездо ANSI 1/2NPT, гнездо ISO M20 x 1.5 Стандарт взрывобезопасности CENELEC ATEX (КЕМА) (Примечание 1) Тип защиты: EEx ia IIC T4T1 (расходомер интегр. типа и расходомер разнесен. типа) ЕEx ia IIC T4 (преобразователь разнесенного типа) Группа: II Категория: 1G Макс. рабочее давление: 42 МПа Темп. окр. среды: от -29 до +60°С (расходомер интегр. типа) от -29 до +80°С (расходомер разнесенного типа) от -40 до +60°С (преобразователь разнесенного типа) Влажность окр. среды: от 0 до 100% (относит.) Темп. процесса: Т4;135°С, Т3;200°С, Т2;300°С, Т1;450°С (используйте вариант /НТ выше 260°С) Для включения в сертифицированный по взрывобезопасности контур с питающей линией расходомера интегр. типа и преобразователя разнесен. типа: Номинал 1 (Entity): Ui=24 B, Ii=250 мА, Pi=1.2 Вт, Ci=1.76 пF, Li=0 Номинал 2 (FISCO): Ui=17.5 B, Ii=380 мА, Pi=5.32 Вт, Ci=1.76 пF, Li=0 Соедините контур измерения DYA и DY-N (/НТ)	FS25
Стандарт CSA (Канадская ассоциация по стандартизации)	Соединение: гнездо ANSI 1/2 NPT, гнездо ISO M20 x 1.5 Стандарт взрывозащищенности CSA Тип защиты: взрывобезопасная для класса I, гр. В, С и D; кл. II, гр. Е, F и G; кл. для кл.I разд.1 - "FACTORY SEALED. CONDUIT SEAL NOT REQUIRED" (заводская заделка, изоляция в кабельном канале не требуется) Корпус: тип 4X Класс температуры: Т6Т1 (расходомер интегр. типа и расходомер разнесен. типа) Т6 (преобразователь разнесенного типа) Темп. окр. среды: от -29 до +60°C (расходомер интегр. типа и расходомер разнесен. типа) от -40 до +60°C (преобразователь разнесенного типа) Влажность окр. среды: от 0 до 100% (относит.) Темп. процесса: Т6;85°C, Т5;100°C, Т4;135°C, Т3;200°C, Т2;300°C, Т1;450°C Корпус: тип 4X Максимальное рабочее давление: 42 МПа (6092 фунта/кв.дюйм) Покрытие корпуса: Эпоксидная смола или полиуретан Соединение: гнездо ANSI 1/2	CF1
Стандарт САА (Австралийская ассоциация по стандартизации)	Соединение: . нездо ANSI 1/2 Стандарт пожаробезопасности САА Ех d IIC Т6Т1, IP67, класс I, зона 1 Темп. окр. среды: от -29 до +60°C (расходомер интегр. типа и расходомер разнесен. типа) от -40 до +60°C (преобразователь разнесенного типа) Макс. темп. процесса: T6;85°C, T5;100°C, T4;135°C, T3;200°C, T2;300°C, T1;450°C Соединение: гнездо ANSI 1/2 NPT, гнездо ISO M20 x 1.5	SF1
Стандарт TIIS (Техно- логический институт по технике безопасности на производстве, Япония)	Стандарт взрывозащищенности TIIS Темп. окр. среды: от -29 до +60°C (расходомер интегр. типа и расходомер разнесен. типа) Соединение: гнездо JIS	JF3

8. Общие технические характеристики

Установки на заводе перед отправкой

Элемент	Al1 - сигнал расхода (стандарт)	Al2 - сигнал температуры (модели с опцией MV)			
Кодовая метка* (PD_TAG)	Установка "FT1003" по умолчанию, если в заказе не указано иначе "Direct" (прямая передача) тановка для верхнего предела диапазона ответствует максимальному значению схода, указанному в заказе (WS 1F6A0-01E),				
Режим выхода (L_TYPE)	Установка "FT1003" по умолчанию, если в заказе не указано иначе "Direct" (прямая передача) тановка для верхнего предела диапазона ответствует максимальному значению охода, указанному в заказе (WS 1F6A0-01E), бо задается диапазон от 0 до 10 м³/ч, если в				
Верхний и нижний пределы диапазона измерений и единицы измерений (XD_SCALE)	Установка для верхнего предела диапазона соответствует максимальному значению	от -40 до 260°C			
Верхний и нижний пределы диапазона выходного сигнала и единицы (OUT_SCALE)	либо задается диапазон от 0 до 10 м ³ /ч, если в заказе не указано иначе.	или от -40 до 500°F			
Адрес узла	Установка 0xF2, если в	заказе не указано иначе			

^{*} Кодовая метка, если таковая указана, заносится в память усилителя и выбита на шильдике из нержавеющей стали.

- В память усилителя заносится кодовая метка длиной до 32 буквенно-цифровых символов (допускаются дефис (-) и маркер абзаца (·)).
- На шильдике из нержавеющей стали может быть выбита кодовая метка длиной до 16 буквенноцифовых символов (допускаются дефис (-) и маркер абзаца (·)) (только для моделей, отмеченных кодом /SCT; см. GS 01F06A00-01E).

Стандарты взрывобезопасности

Данная глава содержит дальнейшие пояснения относительно требований и различий, существующих для приборов взрывобезопасного типа, за исключением стандарта JIS. Для приборов взрывобезопасного типа содержание данной главы имеет первостепенное значение по сравнению другими главами настоящего руководства.

🗥 ПРЕДУПРЕЖДЕНИЕ

На промышленных объектах с такими приборами работает только подготовленный персонал.

9.1 Стандарт CENELEC ATEX (KEMA)

9.1.1 Технические характеристики

Пожаробезопасность

Тип защиты: EEx d IIC T6...T1 (расходомер интегрированного типа и расходомер разнесенного типа) EEx d IIC T6 (преобразователь

разнесенного типа)

Группа: Group II Код температуры:

Класс температуры	Температура окружающей среды	Температура процесса
T6	+60°C	85°C
T5	+60°C	100°C
T4	+60°C	135°C
T3	+60°C	200°C
T2 *1	+60°C	300°C
T1 *1	+60°C	450°C

^{*1} Примечание: Используйте вариант /HT выше 260°C

T6 (преобразователь температуры: разнесенного типа)

Степень защиты корпуса: IP67

Температура окружающей среды:

от -29 до +60°C (расходомер интегрированного типа и расходомер разнесенного типа)

от -30 до +60°C (преобразователь разнесенного типа)

от -29 до +60°C (расходомер интегрированного типа с индикатором)

от -29 до +60°C (преобразователь разнесенного типа с индикатором)

Влажность окружающей среды: от 0 до 100% (относит.)

Источник питания: макс. 32 В постоянного тока Выходной сигнал: выход тока - 11 мА постоянного тока

Максимальное рабочее давление: 42 МПа Покрытие корпуса: Эпоксидная смола или полиуретан

Электрическое соединение: гнездо ANSI ½ NPT, гнездо ISO M20

9.1.2 Установка

- Все проводящие соединения должны соответствовать местным требованиям к установке и местным электротехническим правилам и нормам.
- Если температура окружающей среды превышает +70°C и/или температура процесса превышает 135°C, для вихревого расходомера модели YEWFLO серии DY следует использовать специальный термостойкий кабель.
- Устройства кабельного ввода должны быть сертифицированы по типу "d" пожаробезопасности, соответствовать условиям эксплуатации и правильно устанавли-
- Неиспользуемые отверстия должны быть закрыты с использованием гасящих элементов, сертифицированных по типу "d" пожаробезопасности.

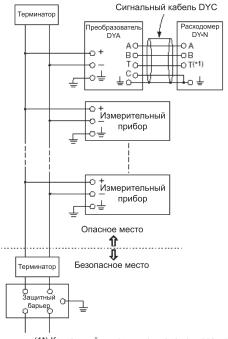
9.1.3 Эксплуатация

ПРЕДУПРЕЖДЕНИЕ

- После выключения питания следует подождать 10 мин, прежде чем открывать крышку.
- Необходимо исключить возможность механического искрового разряда при доступе к прибору и периферийным устройствам в опасных местах (Hazardous).

9.1.4 Техническое обслуживание и текущий ремонт

ПРЕДУПРЕЖДЕНИЕ


Видоизменение прибора или замена его частей лицом, не являющимся уполномоченным представителем компании Yokogawa Electric Corporation, запрещено и аннулирует сертификацию.

9.1.5 Схема установки в соответствии с требованиями взрывобезопасности

[Интегрального типа]

[Дистанционного типа]

(1*) Контактный вывод для сигнала температуры Для моделей с датчиком температуры - установлен Для моделей без датчика температуры - не установлен

F090105.EPS

Примечание:

- По номиналу 1 выходной ток барьера должен ограничиваться резистором с активным сопротивлением [Ra], так чтобы I₀=U₀/Ra.
- По номиналу 2 выходной ток барьера должен иметь выходную трапецеидальную или прямоугольную выходную характеристику. Такой выходной элемент может подсоединяться к оборудованию Fieldbus, соответствующему требованиям взрывобезопасности (модель FISCO).
- Терминаторы должны быть встроены в барьер.
- Допускается подключение к шине питания нескольких внешних приборов.
- Терминатор и защитный барьер должны быть сертифицированы.

Электрические данные:

Номинал 1 (модель Entity):

Максимальное входное напряжение Ui = 24 В Максимальный входной ток Ii = 250 А Максимальная входная мощность Pi = 1.2 Вт Максимальная внутренняя емкость Ci = 1.76 нФ Максимальная собственная индуктивность Li = 0

Номинал 2 (модель FISCO):

Максимальное входное напряжение Ui = 17.5 В Максимальный входной ток Ii = 380 А Максимальная входная мощность Pi = 5.32 Вт Максимальная внутренняя емкость Ci = 1.76 нФ Максимальная собственная индуктивность Li = 0

9.1.6 Модель FISCO

Критерием межсоединения является требование, чтобы напряжение (Ui), ток (Ii) и мощность (Pi), которые прибор может воспринять, были равны или превышали напряжение (Uo), ток (Io) и мощность (Po), обеспечиваемые вспомогательным устройством (блоком питания). Кроме того, максимальная незащищенная остаточная емкость (Ci) и индуктивность (Li) каждого прибора (кроме оконечных устройств), подсоединенного к шине Fieldbus, были равны или менее 5 нФ и 10 Гн, соответственно.

Блок питания

Блок питания должен быть сертифицирован как модель FISCO и обеспечивать следующую трапецеидальную или прямоугольную выходную характеристику:

Uo (вых. напр.) = 14...24 В (максимальное значение I.S.)

Io (вых. ток) - на основе результатов пробы на искру или другой оценки,

либо 133 мА для Uo = 15 В (группа Group II, прямоугольная характеристика)

Требования по Lo и Co в сертификате и на маркировке отсутствуют.

Кабель

Кабель, используемый для соединения устройств, должен иметь следующие параметры:

Сопротивление шлейфа R': 15...150 Ом/км Индуктивность на единицу длины

L': 0.4...1 мГн/км

Емкость на единицу длины

С': 80...200 нФ/км

С' = С' линия/линия +0.5 С' линия/экран, если обе линии изолированы или

С' = С' линия/линия + С' линия/экран, если экран соединен с одной линией длина кабельного ответвления: максимум 30 м (EEx ia IIC T4) или 120 м (EEx ia IIB T4) длина магистрального кабеля: максимум 1 км (EEx ia IIC T4) или 1.9 км (EEx ia IIB T4)

Терминаторы

Терминаторы должны быть сертифицированы по взрывобезопасности как модель FISCO. Сертифицированные терминаторы, устанавливаемые на каждом конце магистрального канала, должны иметь следующие параметры:

R = 90...100 Ом C = 0...2.2 мкФ.

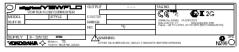
Резистор должен соответствовать стандарту IEC 60079-11. Один из двух терминаторов должен быть интегрирован во вспомогательное устройство (блок питания шины).

Количество устройств

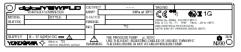
Допустимое количество устройств (максимум 32), подключаемых к шине, зависит от ряда факторов, в частности, от потребляемой мощности каждого устройства, типа используемого кабеля, использования ретрансляторов и т.д.

9.1.7 Шильдик

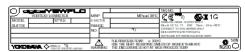
Взрывозащищенный прибор


Расходомер интегрированного типа

Расходомер разнесенного типа



Преобразователь интегрированного типа



Взрывобезопасный прибор

Расходомер интегрированного типа

Расходомер разнесенного типа

Преобразователь интегрированного типа

MODEL SUFFIX : Установленный код модели

STYLE : Установленный код стилевого исполнения MWP : Максимальное рабочее давление прибора K-FACTOR : Константа измерительного элемента

RANGE : Диапазон измерений No. : Серийный номер TAG.No. : Кодовая метка прибора

С € : СЕ-маркировка

КЕМА 03АТЕХ1136 X для ЕЕх іа Тип зашиты и класс температуры

EEx d IIC T6...T1 : Тип защиты и класс температуры Tamb : Температура окружающей среды PROCESS TEMP. : Температура процесса

ENCLOSURE : Номер защиты оболочки : Примечание по модели, суффиксный код /НТ

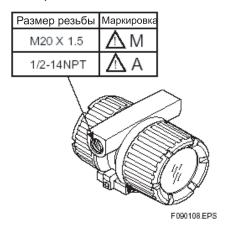
суффиксный ко

1*) Третья цифра с конца соответствует последней цифре года выпуска

Например, продукт, маркированный, как показано ниже, изготовлен в 2001 г.

No. 2 1 W C Z Z 0 5 2 <u>1</u> 2 0

год изготовления 2001


- 2*) Идентификационный номер аттестационного органа: 0344
- *3) Страна-изготовитель

🕰 ВАЖНО

В опасном месте не допускается соединение оконечного устройства BT200 BRAIN с устройством digitalYEWFLO, сертифицированным как взрывобезопасное по стандарту CENELEC (KEMA). (См. IM 1C0A11-01E).

9.1.8 Маркировка винтового соединения

Тип резьбы указан вблизи порта электрического соединения в соответствии с принятой системой кодировки:

9.2 Стандарт FM

9.2.1 Технические характеристики

Взрывозащищенность

Тип защиты: взрызащищенность для кл. І, кат. 1. гр. А. В. С и D: взрывозащищенность по отношению к пыли для кл. II/III, кат. 1, гр. E, F и G.

"SEAL ALL CONDUIT 18 INCHES" (изоляция всех кабельных каналов на 18 дюймов) "WHEN INSTALLED IN DIV.2, SEALS NOT REQUIRED" (при установке по кат.2 заделка не требуется)

Корпус: NEMA TYPE 4X

Температура окр. среды: от -29 до 60°C (расходомер интегр. типа и расходомер разнесен. типа) от -40 до 60°C (преобразователь разнесенного типа)

Влажность окр. среды: от 0 до 100% (относит.)

Источник питания: макс. 32 В пост. тока (расходомер интегр. типа и расходомер разнесен. типа)

Выходной сигнал (расходомер интегр. типа): токовый выход; 11 мА пост. тока

Выходной сигнал (расходомер разнесен. типа): выходной сигнал к преобраз.; 30 В р-р. 100 µA p-p

Входной/выходной сигнал (преобраз. разнесен. типа): токовый выход; 11 мА пост. тока входной сигнал от расходомера; 30 В р-р, 100 µA p-p

Максимальное рабочее давление: 42 МПа (6092 фунт/кв дюйм)

Покрытие корпуса: Эпоксидная смола или полиуретан

9.2.2 Проводящие соединения

Взрывозащищенность

🗥 ПРЕДУПРЕЖДЕНИЕ

- Все проводящие соединения должны соответствовать национальным (ANSI/NFPA 70) и местным электротехническим правилам и нормам.
- "SEAL ALL CONDUIT 18 INCHES" (изоляция всех кабельных каналов на 18 дюй-"WHEN INSTALLED IN DIV.2, SEALS NOT

REQUIRED" (при установке по кат.2 заделка не требуется)

9.2.3 Эксплуатация

Взрывозащищенность

ПРЕДУПРЕЖДЕНИЕ

- Обратите внимание на предупредительную маркировку:
 - "ÓPEN CIRCUIT BEFORE REMOVING COVER" (перед снятием крышки разомкнуть цепь)
 - "INSTALL'IN ACCORDANCE WITH THE **INSTRUCTION MANUAL (IM) IF6A1-01E"** (устанавливать в соответствии с руководством пользователя IM IF6A1-01E)
- Исключите возможность образования механического искрового разряда при доступе к прибору и периферийным устройствам в опасных местах.

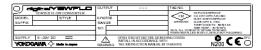
9.2.4 Техническое обслуживание и текущий ремонт

🗥 ПРЕДУПРЕЖДЕНИЕ

Видоизменение прибора или замена его частей лицом, не являющимся уполномоченным представителем компании Yokogawa Electric Corporation, запрещено и аннулирует сертификацию, проведенную в соответствии с требованиями, разработанными организацией по изучению отраслевых стандартов Factory Mutual Research Corporation.

9.2.5 Шильдик

Взрывозащищенный прибор


Расходомер интегрированного типа

Расходомер разнесенного типа

Преобразователь интегрированного типа

9.3 Стандарт SAA

Л ПРЕДУПРЕЖДЕНИЕ

 На промышленных объектах с такими приборами работает только подготовленный персонал.

9.3.1 Технические характеристики

• Пожаробезопасность

Exd IIC T6...Т1, IP67, класс I, зона I

Температура окружающей среды: от -40 до +60

Максимальная температура процесса:

T6; 85°C, T5; 100°C, T4; 135°C, T3; 200°C, T2; 300°C, T1; 450°C,

Электрическое соединение: гнездо ANSI ½, гнездо ISO M20 X 1.5

9.3.2 Установка

Л ПРЕДУПРЕЖДЕНИЕ

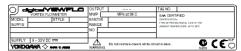
- Все проводящие соединения должны соответствовать местным требованиям к установке и местным электротехническим правилам и нормам.
- Устройства кабельного ввода должны быть сертифицированы по пожаробезопасности, соответствовать условиям эксплуатации и правильно устанавливаться.
- Неиспользуемые отверстия должны быть закрыты с использованием гасящих элементов, сертифицированных как относящиеся к пожаробезопасному типу.

9.3.3 Эксплуатация

$\hat{\mathbb{T}}$ ПРЕДУПРЕЖДЕНИЕ

- Прежде чем открывать крышку, разомкните цепь
- Исключите возможность возникновения механического искрового разряда при доступе к прибору и периферийным устройствам в опасных местах.

9.3.4 Техническое обслуживание и текущий ремонт



 Видоизменение прибора или замена его частей лицом, не являющимся уполномоченным представителем компании Yokogawa Electric Corporation, запрещено и аннулирует сертификацию.

9.3.5 Шильдик

Пожаробезопасный прибор

Расходомер интегрированного типа

Расходомер разнесенного типа

9.4 Стандарт CSA

9.4.1 Технические характеристики

• Взрывозащищенность

Тип защиты: взрывозащищенность для кл. I, B, C и D; кл. II, гр. E, F и G; кл. III; для кл. I, мест размещения по кат. 2 - "FACTORY SEALED, CONDUIT SEAL NOT REQUIRED" (Заводская заделка, изоляция в кабельном канале не требуется).

Корпус: тип 4X (расходомер интегрированного типа и расходомер разнесенного типа)

Код температуры	Температура окружающей среды	Температура процесса
T6	60°C	85°C
T5	60°C	100°C
T4	60°C	135°C
T3	60°C	200°C
T2	60°C	300°C
T1	60°C	450°C

(преобразователь Класс температуры: T6 разнесенного типа)

Температура окр. среды:

от -29 до 60°C (расходомер интегр. типа и расходомер разнесен. типа)

от -40 до 60°C (преобразователь разнесенного типа)

Влажность окр. среды: от 0 до 100% (относит.)

Источник питания: макс. 32 В пост. тока (расходомер интегр. типа и расходомер разнесен. типа)

Выходной сигнал (расходомер интегр. типа): токовый выход; 11 мА пост. тока

сигнал (расходомер разнесен. типа): выходной сигнал к преобраз.; 30 В р-р. 100 μA p-p

Входной/выходной сигнал (преобраз. разнесен. типа): токовый выход; 11 мА пост. тока входной сигнал от расходомера; 30 В р-р. 100 µA p-p

Покрытие корпуса: Эпоксидная смола или полиуретан

Электрическое соединение: гнездо ANSI ½ (специальное)

9.4.2 Проводящие соединения

Взрывозащищенность

🗥 ПРЕДУПРЕЖДЕНИЕ

- Все проводящие соединения должны соответствовать канадским электротехническим правилам и нормам, часть І, и местным электротехническим правилам и нормам.
- В опасных местах (Hazardous) проводящие соединения должны быть изолированы в кабельном канале, как показано на
- "A SEAL SHALL BE INSTALLED WITHIN 50 cm OF THE ENCLOSURE" (изолирующий слой устанавливается на 50 см)
- При установке оборудования в соответствии с кат. 2, "FACTORY SEALED, CONDUIT SEAL NOT REQUIRED" (заводская заделка, изоляция в кабельном канале не требуется)

9.4.3 Эксплуатация

Взрывозащищенность

🗥 ПРЕДУПРЕЖДЕНИЕ

- Обратите внимание на предупредительную маркировку: "OPEN CIRCUIT BEFORE REMOVING COVER" (перед снятием крышки разомкнуть цепь)
- Исключите возможность образования механического искрового разряда при доступе к прибору и периферийным устройствам в опасных местах.

9.4.4 Техническое обслуживание и текущий ремонт

🗥 ПРЕДУПРЕЖДЕНИЕ

Видоизменение прибора или замена его частей лицом, не являющимся уполномоченным представителем компании Yokogawa Electric Corporation, запрещено и аннулирует сертификацию по стандарту CSA.

9.4.5 Шильдик

Взрывозащищенный тип

Расходомер интегрированного типа

Расходомер разнесенного типа

Преобразователь интегрированного типа

	OUTPUT	TAGNO.	
MODEL BTYLE SUFFIX	K-FACTUR FRANCE NO.	LRBITARC	EDICISIONNO C. (SPERICIO) C. E SPER DE PROCEIR MARI HEROLLER DE CLUBRY VALCTORY MELADI, COVICAT MIR. SOT RECEI MEDT MICHINE LE JOHN THE PROCEIR MARY J. (SPERICI
SUPPLY 0-32YDC ==	NAME AND DESIGNATION PROCESS OF THE PROCESS OF THE ADDRESS OF THE PROCESS OF THE	comments.	CE

Примечание: В столбце "режим записи" указаны режимы, в которых разрешена запись значений параметров.

O/S: Запись разрешена в нерабочем режиме (O/S)

MAN: Запись разрешена в ручном (Man) и нерабочем (O/S) режимах

AUTO: Запись разрешена в автоматическом (Auto), ручном (Man) и нерабочем (O/S) режимах

А1.1 Блок ресурсов

Отн. индекс	Инд.	Наименование параметра	Заводская установка по умолч.	Режим записи	Пояснения
0	1000	Block Header (заголовок блока)	TAG: "RS"	Признак блока = O/S	Информация о блоке, например, признак блока, редакция файла данных DD, время исполнения и т.д.
1	1001	ST_REV	_	_	Уровень обновления статических данных, связанных с блоком ресурсов. Значение получает приращение при каждом изменении значения статического параметра.
2	1002	TAG_DESC	(пробелы)	AUTO	Описание предполагаемого применения блока
3	1003	STRATEGY	1	AUTO	Поле стратегии может использоваться для определения группировки блоков. Эти данные не подлежат проверке и обработке со стороны блока.
4	1004	ALERT_KEY	1	AUTO	Идентификационный номер модуля объекта. Эта информация может использоваться хостом для сортировки сигнализации и проч.
5	1005	MODE_BLK	_	AUTO	Фактический, целевой, разрешенный и нормальный режимы блока.
6	1006	BLOCK_ERR	0	_	Указание ошибок аппаратного или программного элементов, связанных с блоком. Имеет вид строки разрядов (бит) и позволяет отображать несколько ошибок.
7	1007	RS_STATE			Состояние конечного автомата блока ресурсов.
8	1008	TEST_RW	0	AUTO	Параметр проверки чтения/записи. Используется только для аттестационной проверки и имитации.
9	1009	DD_RESOURCE	(пробелы)	1	Строка, определяющая признак ресурса, содержащего описание устройства для этого ресурса.
10	1010	MANUFAC_ID	0x594543	-	Идентификационный номер изготовителя. Используется только устройствами сопряжения для обнаружения файла данных DD для ресурса.
11	1011	DEV_TYPE	6	-	Номер модели изготовителя, связанный с ресурсом. Используется устройством сопряжения для обнаружения файла данных DD для ресурса.
12	1012	DEV_REV	1		Номер редакции изготовителя, связанный с ресурсом. Используется устройством сопряжения для обнаружения файла данных DD для ресурса.
13	1013	DD_REV	1	_	Редакция данных DD, связанных с ресурсом. Используется устройством сопряжения для обнаружения файла данных DD для ресурса.
14	1014	GRANT_DENY	_	AUTO	Варианты управления доступом с главного компьютера (хоста) и с локальных пультов управления к рабочим параметрам, параметрам настройки и сигнализации блока.
15	1015	HARD_TYPES	0х0001 (скалярный вход)	_	Типы аппаратного обеспечения, доступного в качестве номеров каналов. разряд 0: скалярный вход разряд 1: скалярный выход разряд 2: дискретный вход разряд 3: дискретный выход.

Отн. индекс	Инд.	Наименование параметра	Заводская установка по умолч.	Режим записи	Пояснения
16	1016	RESTART	_	_	Позволяет инициировать ручной перезапуск. Возможны несколько уровней перезапуска: 1: выполнение; 2: перезапуск ресурса; 3: перезапуск с установками по умолчанию; 4: перезапуск процессора.
17	1017	FEATURES	0х000а (поддержка про- граммной блокировки записи; поддержка отчета)	ı	Используется для отображения поддерживаемых вариантов блока ресурсов.
18	1018	FEATURE_SEL	0х000а (поддержка про- граммной блокировки записи; поддержка отчета)	AUTO	Используется для выбора вариантов блока ресурсов. разряд 0: график разряд 1: управление в зависимости от события разряд 2: указано изготовителем
19	1019	CYCLE_TYPE	0x001 (график)	_	Задание методов выполнения блока, предусмотренных для этого ресурса.
20	1020	CYCLE_SEL	0x0001 (график)	AUTO	Выбор метода выполнения блока для этого ресурса.
21	1021	MIN_CYCLE_T	3200	AUTO	Минимальный период цикла, который способен обеспечить этот ресурс
22	1022	MEMORY_SIZE	0	_	Доступная память для конфигурации из свободного ресурса. Этот параметр необходимо проверять перед выполнением загрузки.
23	1023	NV_CYCLE_T	0	_	Интервал записи копий долговременных параметров в долговременную память. Установка "0" означает "никогда".
24	1024	FREE_SPACE	0	AUTO	Процент доступной памяти для дальнейшей настройки конфигурации. Устройство digitalYEWFLO имеет установку "0", что означает предварительно выполненную настройку конфигурации ресурса.
25	1025	FREE_TIME	0		Процент свободного времени для обработки дополнительных блоков. Поддерживается только для вариантов с функцией ПИД-регулирования.
26	1026	SHED_RCAS	640000 (20 c)	1	Время, на протяжении которого происходит отказ для записи компьютера в ячейки "RCas" функционального блока. Поддерживается только для варианта с функцией ПИД-регулирования.
27	1027	SHED_ROUT	640000 (20 c)	_	Время, на протяжении которого происходит отказ для записи компьютера в ячейки "ROut" функционального блока. Поддерживается только для варианта с функцией ПИД-регулирования.
28	1028	FAULT_STATE	1		Состояние, устанавливаемое при потере связи с выходным блоком из-за сбоя выходного блока или физического контакта. Если установлено отказобезопасное состояние, выходные функциональные блоки выполняют действия, заданные как FSAFE. Поддерживается только для варианта с функцией ПИД-регулирования.
29	1029	SET_FSTATE	1 (OFF) (выкл.)		Разрешение ручного инициирования отказобезопасного состояния. Поддерживается только для варианта с функцией ПИД-регулирования.
30	1030	CLR_FSTATE	1 (OFF) (выкл.)	AUTO	Сброс отказобезопасного состояния в случае сброса состояния функционирования, если таковое предусмотрены. Поддерживается только для варианта с функцией ПИД-регулирования.
31	1031	MAX_NOTIFY	3	_	Максимально допустимое число неподтвержденной сигнализации.
32	1032	LIM_NOTIFY	3		Максимально возможное число неподтвержденной сигнализации.
33	1033	CONFIRM_TIME	640000 (20 c)		Минимальный интервал между повторными попытками выработки сигнализации.
34	1034	WRITE_LOCK	Запись разрешена		Задание блокировки записи налагает запрет на любую запись, кроме сброса параметра WRITE_LOCK. В этом случае обновление входов блока продолжается. 1: блокировка записи; 2: запись разрешена
35	1035	UPDATE_EVT	_		Эта сигнализация вырабатывается при любом изменении статических данных.
36	1036	BLOCK_ALM	_		Сигнализация блока предусмотрена на случай сбоя конфигурации, аппаратной части или связи, либо проблем с системой. Причина сигнала отображается в поле субкода. Первый активизированный сигнал устанавливает состояние "Active" (активное) для атрибута состояния "Status". Как только программный модуль оповещения выполняет сброс состояния "Unreported" (без оповещения), становится возможным оповещение о другой сигнализации без сброса состояния "Active" в случае изменения субкода.

Отн. индекс	Инд.	Наименование параметра	Заводская установка по умолч.	Режим записи	Пояснения
37	1037	ALARM_SUM			Текущее состояние сигнализации, случаи отсутствия подтверждения приема сообщений, случаи отсутствия оповещения и случаи отключения сигнализации, связанной с функциональным блоком.
38	1038	ACK_OPTION	0xffff	AUTO	
39	1039	WRITE_PRI	0	AUTO	Приоритет сигнализации, вырабатываемой в случае сброса блокировки записи. Варианты: от 0, 1, 3÷15.
40	1040	WRITE_ALM		1	Сигнализация, вырабатываемая в случае сброса параметра блокировки записи.
41	1041	ITK_VER	4	_	Номер версии теста на возможность взаимодействия, применяемого устройством Fieldbus Foundation к устройству digitalYEWFLO
42	1042	SOFT_REV		1	Номер редакции программного обеспечения устройства digitalYEWFLO
43	1043	SOFT_DESC			Параметр внутреннего использования в компании Yokogawa
44	1044	SIM_ENABLE_MSG	пробелы	AUTO	Программируемый выключатель функции имитации
45	1045	DEVICE_STATUS_1	_	_	Состояние устройства (настройка виртуального отношения связи (VCR) и т.д.)
46	1046	DEVICE_STATUS_2		_	Состояние устройства (сбой или ошибка настройки и т.д.)
47	1047	DEVICE_STATUS_3			Состояние устройства (настройка функционального блока)
48	1048	DEVICE_STATUS_4			Состояние устройства (состояние датчика)
49	1049	DEVICE_STATUS_5		_	Не используется для устройств digitalYEWFLO
50	1050	DEVICE_STATUS_6		_	Не используется для устройств digitalYEWFLO
51	1051	DEVICE_STATUS_7		AUTO	Не используется для устройств digitalYEWFLO
52	1052	DEVICE_STATUS_8			Не используется для устройств digitalYEWFLO

A1.2 Функциональный блок AI

Отн.	гц Индекс		Наименование	Заводская	Режим	
инд.			параметра	установка по умолч.	записи	Пояснения
0	4000	4100	Block Header (заголовок блока)	TAG: "RS"	Признак блока = O/S	Информация о блоке, например, признак блока, редакция файла данных DD, время исполнения и т.д.
1	4001	4101	ST_REV		-	Уровень обновления статических данных, связанных с блоком ресурсов. Значение получает приращение при каждом изменении значения статического параметра.
2	4002	4102	TAG_DESC	(пробелы)	AUTO	Описание предполагаемого применения блока
3	4003	4103	STRATEGY	1	AUTO	Поле стратегии может использоваться для определения группировки блоков. Эти данные не подлежат проверке и обработке со стороны блока.
4	4004	4104	ALERT_KEY	1	AUTO	Идентификационный номер модуля объекта. Эта информация может использоваться хостом для сортировки сигнализации и проч.
5	4005	4105	MODE_BLK		AUTO	Фактический, целевой, разрешенный и нормальный режимы блока.
6	4006	4106	BLOCK_ERR	0	Ī	Указание ошибок аппаратного или программного элементов, связанных с блоком. Имеет вид строки разрядов (бит) и позволяет отображать несколько ошибок.
7	4007	4107	PV	0	I	Первичное аналоговое значение, используемое при выполнении функции, либо связанное с ним значение параметра процесса. Может также рассчитываться по значению READBACK блока аналогового выхода (AO).
8	4008	4108	OUT	0	Значение	Первичное аналоговое значение, рассчитываемое как
9	4009	4109	SIMULATE	Disabled (функция выключена)	= MAN AUTO	результат выполнения функции. Позволяет при запуске функции имитации осуществлять ручную подачу на блок аналогового входа или выхода преобразователя. Если функция имитации выключена, имитационные значение и состояние отслеживают фактические значение и состояние. 1 = функция выключена; 2 = функция активна.
10	4010	4110	XD_SCALE	Указано в заказе (см. Прим. 3) (для AI2: от - 40 до 260°C)	O/S (нерабоч.)	Верхний и нижний пределы шкалы, код единиц измерения и число знаков после десятичной точки для значения, передаваемого от преобразователя по конкретному каналу. Возможные варианты единиц измерения перечислены в п.5.6.4 "Параметры функционального блока Al".
11	4011	4111	OUT_SCALE	Указано в заказе (см. Прим. 3) (для AI2: от - 40 до 260°C)	O/S (нерабоч.)	Верхний и нижний пределы шкалы, код единиц измерения и число знаков после десятичной точки, используемых для выходного параметра (OUT) и параметров, имеющих тот же масштаб, что и параметр OUT. Возможные варианты единиц измерения перечислены в п.5.6.4 "Параметры функционального блока AI".
12	4012	4112	GRANT_DENY	0x00	AUTO	Варианты управления доступом с главного компьютера (хоста) и с локальных пультов управления к рабочим параметрам, параметрам настройки и сигнализации блока.
13	4013	4113	IO_OPTS	0x0400 (Al1) 0x0000 (Al2)	O/S (нерабоч.)	Варианты выбора чередования обработки блоком входа и выхода. Разряд 6: отсечка по низкому уровню.
14	4014	4114	STATUS_OPTS	0	O/S (нерабоч.)	Варианты обработки блоком состояния. Разряд 3: распространение состояния сбоя в прямом направлении; разряд 8: в ручном режиме (MAN) действие не определено.
15	4015	4115	CHANNEL	1 (Al1) 2 (Al2)	O/S (нерабоч.)	Количество логических каналов связи с данным блоком В/В. Эта информация определяет форму использования преобразователя – при выходе в физическое пространство или при входе из физического пространства.
16	4016	4116	L_TYPE	Direct (прямая передача) (1)	MAN	Задание режима передачи значений. Значения, приходящие от блока преобразователя на блок AI, могут использоваться непосредственно (установка Direct (1)); значения выражены в других единицах измерения и подвергаются линейному преобразованию (Indirect (2)); выполняется вычисление квадратного корня (Ind Sqr Root (3)) с использованием входного диапазона, определяемого блоком преобразователя, и связанного с ним выходного диапазона. Вариант "Indirect Square Root" (вычисление квадратного корня) для устройств digitalYEWFLO не используется.

Приложение 1. Список параметров функциональных блоков устройств digitalYEWFLO

17 1017 1	Отн.	Инд	цекс	Наименование	Заводская	Режим	_
4017 4117 LOW_CUT					установка по умолч.		Пояснения
10 4019 4119 FIELD_VAL (пробелы) АUTO АUTO Опробедотанное замачение внешенего устройства в процентах от диапазона параметра процесса (РV). Состояние которого отражает состояние блока премобразонателя, перед сиятием хараатеристик (L_TYPE), фильтара для ситием хараатеристик из ситием хараатеристик (L_TYPE), фильтара для ситием хараатеристик из ситием хараатеристик (L_TYPE), фильтара для ситием хараатеристик из ситием хараатеристик ситием хараатеристик из ситием хараатеристик ситием хараатеристик из ситием хараатеристик из ситием хараатеристик из ситием хараатеристик из ситием хараатеристик ситием хараатеристик ситием хараатеристик из ситием хараатеристик ситием хар	17	4017	4117	LOW_CUT	0.0 (Al2)	AUTO	доступным при задании установки "Low cutoff" (отсечка по низкому уровню сигнала) для параметра "IO-OPTS"
19 4019 4119 FIELD_VAL (пробелы) АUTO Оператив Процентах от диапазона параметра процесса (РV), Стоятие Стоторого отражает состояние блока преобразователя, перед снятием характеристик (L, TYPE), фильтрация (РV, FTIME) Импи выполнением отсечки по инахому уровню сигнала (LOW, CUT).	18	4018	4118	PV_FTIME		AUTO	фильтра для параметра процесса (PV) в секундах.
20 40.20 41.20 41.20 41.20 41.20 41.20 41.20 41.20 41.21 8 40.21 41.21 8 40.21 41.21 8 40.21 41.21 8 40.21 41.21 8 40.21 41.21 8 40.21 41.21 8 40.21 41.21 8 40.21 41.21 8 40.21 41.21 8 40.22 41.22 40.22 41.22 41.22 41.22 41.22 41.22 41.22 41.22 41.22 41.22 41.22 41.22 41.22 41.23 41.24 41.24 41.24 41.24 41.24 41.24 41.24 41.24 41.24 41.24 41.24 41.24 41.24 41.24 41.24 41.24 41.25	19	4019	4119	FIELD_VAL	(пробелы)	AUTO	процентах от диапазона параметра процесса (PV), состояние которого отражает состояние блока преобразователя, перед снятием характеристик (L_TYPE), фильтрацией (PV_FTIME) или выполнением отсечки по низкому уровню сигнала (LOW_CUT).
21	20	4020	4120	UPDATE_EVT	_	_	
22 4022 4122 ALARM_SUM — подтверждения приема сообщений, случаи отсутствия оповещения и случкциональным блоком. 23 4023 4123 ACK_OPTION 0xfff AUTO Выбор автоматического подтверждения приема сигнализации, связанной с блоком. 24 4024 4124 ALARM_HYS 0.5% AUTO Вобор автоматичения РV в заданных для сигнализации по достижению ределах перед сбросом аварийного состояния. Гистерезис сигнализации выражается в процентах от ширины диапазона параметра процесса (PV - от 0 до 50. 25 4025 4125 HI_HI_PRI 0 AUTO Приоритет сигнализации по достижению верхнего верхнего предела. 0, 1, 3-15. 26 4026 4126 HI_HI_RII 1. #INF AUTO Установка верхнего предела для сигнализации в единицах измерения (Примечание 1). 27 4027 4127 HI_PRI 0 AUTO Приоритет сигнализации по достижению верхнего предела. 0, 1, 3-15. 28 4028 4128 HI_LIM 1. #INF AUTO Приоритет сигнализации по достижению верхнего предела. 0, 1, 3-15. 30 4030 4130 LO_LIM -1. #INF AUTO Приоритет сигнализации по достижению нижнего пред	21	4021	4121	BLOCK_ALM	_	_	Сигнализация блока предусмотрена на случай сбоя конфигурации, аппаратной части или связи, либо проблем с системой. Причина сигнала отображается в поле субкода. Первый активизированный сигнал устанавливает состояние "Active" (активное) для атрибута состояния "Status". Как только программный модуль оповещения выполняет сброс состояния "Unreported" (без оповещения), становится возможным оповещение о другой сигнализации без сброса состояния "Active" в случае изменения субкода.
25 4023 4123 ACK_OPTION XVIII AUTO зации, связанной с блюком. 24 4024 4124 ALARM_HYS 0.5% AUTO Возвращаемяя доля значения РV в заданных для сигнализации пределах перед сбросом аварийного состояния. Гистерезис сигнализации выражается в процентах от ширины диапазона параметра процесса (PV – от 0 до 50. 25 4025 4125 HI_HI_PRI 0 AUTO Приоритет сигнализации по достижению верхнего верхнего предела. 0, 1, 3+15. 26 4026 4126 HI_HI_LIM 1. #INF AUTO Установка верхнего предела для сигнализации верхнего предела для сигнализации верхнего предела. 0, 1, 3+15. 28 4028 4128 HI_LIM 1. #INF AUTO Установка верхнего предела для сигнализации верхнего предела. 0, 1, 3+15. 29 4029 4129 LO_PRI 0 AUTO Установка верхнего предела для сигнализации верхнего предела. 0, 1, 3+15. 30 4030 4130 LO_LIM -1. #INF AUTO Приоритет сигнализации по достижению нижнего предела. 0, 1, 3+15. 31 4031 4131 LO_LO_PRI 0 AUTO Приоритет сигнализации по достижению нижнего предела измерения (22	4022	4122	ALARM_SUM	-	_	подтверждения приема сообщений, случаи отсутствия оповещения и случаи отключения сигнализации,
24 4024 4124 ALARM_HYS 0.5% AUTO сигнализации пределах перед сброссом аварийного состояния. Гистерезис сигнализации выражается в процентах от ширины диапазона параметра процесса (PV – от 0 до 50. 25 4025 4125 HI_HI_PRI 0 AUTO Приоритет сигнализации по достижению верхнего верхнего предела. 0, 1, 3-15. 26 4026 4126 HI_HI_LIIM 1. #INF AUTO Приоритет сигнализации по достижению верхнего предела для сигнализации в единицах измерения (Примечание 1). 27 4027 4127 HI_PRI 0 AUTO Приоритет сигнализации по достижению верхнего предела для сигнализации верхнего предела для сигнализации верхнего предела для сигнализации верхнего предела. 0, 1, 3-15. 29 4028 4128 HI_LIIM 1. #INF AUTO Приоритет сигнализации по достижению нижнего предела. 0, 1, 3-15. 30 4030 4130 LO_LIM -1. #INF AUTO Приоритет сигнализации по достижению нижнего предела. 0, 1, 3-15. 31 4031 4131 LO_LO_LIM -1. #INF AUTO Приоритет сигнализации по достижению нижнего предела и дазанна с ней временная метка. 32 4032 4132 LO_LO_LIM <td< td=""><td>23</td><td>4023</td><td>4123</td><td>ACK_OPTION</td><td>0xfff</td><td>AUTO</td><td></td></td<>	23	4023	4123	ACK_OPTION	0xfff	AUTO	
25 4025 4125 HI_HI_PRI 0 AUTO Приоритет сигнализации по достижению верхнего верхнего верхнего верхнего предела. 0, 1, 3+15. 26 4026 4126 HI_HI_LIM 1. #INF AUTO Установка верхнего верхнего предела для сигнализации в единицах измерения (Примечание 1). 27 4027 4127 HI_PRI 0 AUTO Приоритет сигнализации по достижению верхнего предела. 0, 1, 3+15. 28 4028 4128 HI_LIM 1. #INF AUTO Установка верхнего предела для сигнализации в единицах измерения (Примечание 1). 29 4029 4129 LO_PRI 0 AUTO Приоритет сигнализации по достижению нижнего предела. 0, 1, 3+15. 30 4030 4130 LO_LIM -1. #INF AUTO Приоритет сигнализации по достижению нижнего нижнего предела. 0, 1, 3+15. 31 4031 4131 LO_LO_PRI 0 AUTO Приоритет сигнализации по достижению нижнего нижнего нижнего нижнего нижнего нижнего нижнего нижнего нижнего предела. 0, 1, 3+15. 32 4032 4132 LO_LO_LIM -1. #INF AUTO Установка нижнего нижнего предела. 0, 1, 3+15. 33	24	4024	4124	ALARM_HYS	0.5%	AUTO	сигнализации пределах перед сбросом аварийного состояния. Гистерезис сигнализации выражается в процентах от ширины диапазона параметра процесса (PV)
27 4027 4127 HI_PRI 0 AUTO Приоритет сигнализации по достижению верхнего предела. 0, 1, 3+15.	25	4025	4125	HI_HI_PRI	0	AUTO	Приоритет сигнализации по достижению верхнего верхнего предела. 0, 1, 3÷15.
27 4027 4127 RI_FRI 0 AUTO предела. 0, 1, 3÷15. 28 4028 4128 HI_LIM 1. #INF AUTO Установка верхнего предела для сигнализации в единицах измерения (Примечание 1). 29 4029 4129 LO_PRI 0 AUTO Приоритет сигнализации по достижению нижнего предела для сигнализации в единицах измерения (Примечание 2). 30 4030 4130 LO_LO_PRI 0 AUTO Приоритет сигнализации по достижению нижнего нижнего предела для сигнализации в единицах измерения (Примечание 2). 32 4031 4131 LO_LO_LIM -1. #INF AUTO Установка нижнего нижнего предела для сигнализации в единицах измерения (Примечание 2). 33 4032 4132 LO_LO_LIM -1. #INF AUTO Установка нижнего нижнего предела для сигнализации в единицах измерения (Примечание 2). 34 4034 4133 HI_HI_ALM — Состояние сигнализации по достижению верхнего верхнего предела и связанная с ней временная метка. 35 4035 4135 LO_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 36 4036 <td>26</td> <td>4026</td> <td>4126</td> <td>HI_HI_LIM</td> <td>1. #INF</td> <td>AUTO</td> <td>в единицах измерения (Примечание 1).</td>	26	4026	4126	HI_HI_LIM	1. #INF	AUTO	в единицах измерения (Примечание 1).
28 4028 4128 HI_LIM 1. #INF AUTO единицах измерения (Примечание 1).	27	4027	4127	HI_PRI	0	AUTO	предела. 0, 1, 3÷15.
29 4029 4129 LO_PRI 0 AUTO предела. 0, 1, 3÷15. 30 4030 4130 LO_LIM -1. #INF AUTO Установка нижнего предела для сигнализации в единицах измерения (Примечание 2). 31 4031 4131 LO_LO_PRI 0 AUTO Приоритет сигнализации по достижению нижнего нижнего предела. 0, 1, 3÷15. 32 4032 4132 LO_LO_LIM -1. #INF AUTO Установка нижнего нижнего предела для сигнализации в единицах измерения (Примечание 2). 33 4033 4133 HI_HI_ALM — Состояние сигнализации по достижению верхнего верхнего предела и связанная с ней временная метка. 34 4034 4134 HI_ALM — Состояние сигнализации по достижению верхнего предела и связанная с ней временная метка. 35 4035 4135 LO_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 36 4036 4136 LO_LO_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 37 4037 — TOTAL 0 — Значение суммарного расхода Запуск / остановка суммирующего устройства Запуск / остановка суммирующего устройства Состоямирования (Примечание 4) Соброс суммарного значения расхода. Этот параметр	28	4028	4128	HI_LIM	1. #INF	AUTO	единицах измерения (Примечание 1).
30 4030 4130 LO_LIM -1. #INF AUTO Установка нижнего предела для сигнализации в единицах измерения (Примечание 2). 31 4031 4131 LO_LO_PRI 0 AUTO Приоритет сигнализации по достижению нижнего нижнего предела для сигнализации в единицах измерения (Примечание 2). 32 4032 4132 LO_LO_LIM -1. #INF AUTO Установка нижнего нижнего предела для сигнализации в единицах измерения (Примечание 2). 33 4033 4133 HI_HI_ALM — Состояние сигнализации по достижению верхнего предела и связанная с ней временная метка. 34 4034 4134 HI_ALM — Состояние сигнализации по достижению верхнего предела и связанная с ней временная метка. 35 4035 4135 LO_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 36 4036 4136 LO_LO_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 37 4037 — ТОТАL_START 0 — Значение суммарного расхода 38 4038 — ТОТАL_START 1 (Stop) (29	4029	4129	LO_PRI	0	AUTO	
31 4031 4131 LO_LO_PRI 0 AUTO предела. 0, 1, 3+15. 32 4032 4132 LO_LO_LIM -1. #INF AUTO Установка нижнего нижнего предела для сигнализации в единицах измерения (Примечание 2). 33 4033 4133 HI_HI_ALM — Состояние сигнализации по достижению верхнего предела и связанная с ней временная метка. 34 4034 4134 HI_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 35 4035 4135 LO_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 36 4036 4136 LO_LO_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 37 4037 — ТОТАL 0 — Значение суммарного расхода 38 4038 — ТОТАL_START 1 (Stop) (останов) — Запуск / остановка суммирующего устройства 39 4039 — ТОТАL_RATE_VAL 1 — Скорость суммирования (Примечание 4) 40 40400	30	4030	4130	LO_LIM	-1. #INF	AUTO	
32 4032 4132 LO_LO_LIM -1. #INF AUTO Установка нижнего пижнего предела для сигнализации в единицах измерения (Примечание 2). 33 4033 4133 HI_HI_ALM — Состояние сигнализации по достижению верхнего верхнего предела и связанная с ней временная метка. 34 4034 4134 HI_ALM — Состояние сигнализации по достижению верхнего предела и связанная с ней временная метка. 35 4035 4135 LO_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 36 4036 4136 LO_LO_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 37 4037 — ТОТАL 0 — Значение суммарного расхода 38 4038 — ТОТАL_START 1 (Stop) (останов) — Запуск / остановка суммирующего устройства 39 4039 — ТОТАL_RATE_VAL 1 — Скорость суммирования (Примечание 4) 40 4040 — ТОТАL RESET 1 (Off) — Сброс суммарного значения расхода. Этот параметр <td>31</td> <td>4031</td> <td>4131</td> <td>LO_LO_PRI</td> <td>0</td> <td>AUTO</td> <td>предела. 0, 1, 3÷15.</td>	31	4031	4131	LO_LO_PRI	0	AUTO	предела. 0, 1, 3÷15.
33 4033 4133 HI_HI_ALM — верхнего предела и связанная с ней временная метка. 34 4034 4134 HI_ALM — Состояние сигнализации по достижению верхнего предела и связанная с ней временная метка. 35 4035 4135 LO_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 36 4036 4136 LO_LO_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 37 4037 — ТОТАL 0 — Значение суммарного расхода 38 4038 — ТОТАL_START 1 (Stop) (останов) — Запуск / остановка суммирующего устройства 39 4039 — ТОТАL_RATE_VAL 1 — Скорость суммирования (Примечание 4) 40 4040 — ТОТАL_RATE_VAL 1 — Сброс суммарного значения расхода. Этот параметр	32	4032	4132	LO_LO_LIM	-1. #INF	AUTO	Установка нижнего нижнего предела для сигнализации в
34 4034 4134 HI_ALM — предела и связанная с ней временная метка. 35 4035 4135 LO_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 36 4036 4136 LO_LO_ALM — Состояние сигнализации по достижению нижнего нижнего предела и связанная с ней временная метка. 37 4037 — ТОТАL 0 — Значение суммарного расхода 38 4038 — ТОТАL_START 1 (Stop) (останов) — Запуск / остановка суммирующего устройства 39 4039 — ТОТАL_RATE_VAL 1 — Скорость суммирования (Примечание 4) 40 4040 — ТОТАL RESET 1 (Off) — Сброс суммарного значения расхода. Этот параметр	33	4033	4133	HI_HI_ALM	_		верхнего предела и связанная с ней временная метка.
35 4035 4135 LO_ALM — и связанная с ней временная метка. 36 4036 4136 LO_LO_ALM — Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка. 37 4037 — ТОТАL 0 — Значение суммарного расхода 38 4038 — ТОТАL_START 1 (Stop) (останов) — Запуск / остановка суммирующего устройства 39 4039 — ТОТАL_RATE_VAL 1 — Скорость суммирования (Примечание 4) 40 4040 — ТОТАL_RATE_VAL 1 — Сброс суммарного значения расхода. Этот параметр	34	4034	4134	HI_ALM			
36 4036 4136 LO_LO_ALW — предела и связанная с ней временная метка. 37 4037 — TOTAL 0 — Значение суммарного расхода 38 4038 — TOTAL_START 1 (Stop) (останов) — Запуск / остановка суммирующего устройства 39 4039 — ТОТАL_RATE_VAL 1 — Скорость суммирования (Примечание 4) 40 4040 — ТОТАL_RESET 1 (Off) — Сброс суммарного значения расхода. Этот параметр	35	4035	4135	LO_ALM	_		Состояние сигнализации по достижению нижнего предела и связанная с ней временная метка.
38 4038 — TOTAL_START 1 (Stop) (останов) — Запуск / остановка суммирующего устройства 39 4039 — ТОТАL_RATE_VAL 1 — Скорость суммирования (Примечание 4) 40 4040 — ТОТАL_RESET 1 (Off) — Сброс суммарного значения расхода. Этот параметр	36	4036	4136	LO_LO_ALM			Состояние сигнализации по достижению нижнего нижнего предела и связанная с ней временная метка.
38 4038 — ТОТАL_START (останов) — 39 4039 — ТОТАL_RATE_VAL 1 — Скорость суммирования (Примечание 4) 40 4040 — ТОТАL_RESET 1 (Off) — Сброс суммарного значения расхода. Этот параметр	37	4037	_	TOTAL			, , ,
40 4040 — ТОТАІ RESET 1 (Off) — Сброс суммарного значения расхода. Этот параметр	38	4038	_	TOTAL_START		_	Запуск / остановка суммирующего устройства
1 40 1 4040 1 — 1 101Δ1 RESELL	39	4039	_	TOTAL_RATE_VAL	` '		Скорость суммирования (Примечание 4)
	40		_	TOTAL_RESET	1 (Off) (выкл.)		Сброс суммарного значения расхода. Этот параметр возвращается к значению 1 (off – выкл.) после

Примечание 1: В качестве установки допускается значение, удовлетворяющее условию Min(OUT_SCALE.EU0, OUT_SCALE.EU100) ≤ устанавливаемое значение ≤ +INF.

OUT_SCALÉ.EU100) ≤ устанавливаемое значение ≤ +INF.

Примечание 2: В качестве установки не допускаются значения, удовлетворяющие условию -INF ≤ устанавливаемое значение ≤. Min(OUT_SCALE.EU0, OUT_SCALE.EU100).

Примечание 3: Указание соответствующих данных по температуре.

Примечание 4: Диапазон установки для параметра TOTAL_RATE_VAL составляет от 0.00001 до 32000, а единица измерения определяется установкой для элемента "Units Index" (индекс единицы измерения) параметра XD_SCALE. Например, если в качестве единицы измерения для параметра XD_SCALE выбрана "м³/ч", единицей измерения для параметра TOTAL_RATE_VAL является "м³/импульс"; если в качестве единицы измерения для параметра XD_SCALE выбрана "кг/с", единицей измерения для параметра TOTAL_RATE_VAL является "кг/импульс". В качестве установки для параметра TOTAL_RATE_VAL следует задавать степень 10, т.е. 0.1, 1, 10 или 100. При задании другого значения показание суммирующего устройства на ЖК-дисплее будет отображаться в виде суммарного количества импульсов без единиц измерения.

А1.3 Блок преобразования

Отн. индекс	Инд.	Наименование параметра	Заводская установка по умолч.	Режим записи	Пояснения
0	2000	Block Header (заголовок блока)	TAG: "RS"	Признак блока = O/S	Информация о блоке, например, признак блока, редакция
1	2001	ST_REV	_	— UTIOKA = 0/3	файла данных DD, время исполнения и т.д. Уровень обновления статических данных, связанных с блоком ресурсов. Значение получает приращение при каждом изменении значения статического параметра.
2	2002	TAG_DESC	(пробелы)	AUTO	Описание предполагаемого применения блока
3	2003	STRATEGY	1	AUTO	Поле стратегии может использоваться для определения группировки блоков. Эти данные не подлежат проверке и обработке со стороны блока.
4	2004	ALERT_KEY	1	AUTO	Идентификационный номер модуля объекта. Эта информация может использоваться хостом для сортировки сигнализации и проч.
5	2005	MODE_BLK	_	AUTO	Фактический, целевой, разрешенный и нормальный режимы блока.
6	2006	BLOCK_ERR	0	_	Указание ошибок аппаратного или программного элементов, связанных с блоком. Имеет вид строки разрядов (бит) и позволяет отображать несколько ошибок.
7	2007	UPDATE_EVT	_		Эта сигнализация вырабатывается при любом изменении статических данных.
8	2008	BLOCK_ALM	_		Сигнализация блока предусмотрена на случай сбоя конфигурации, аппаратной части или связи, либо проблем с системой. Причина сигнала отображается в поле субкода. Первый активизированный сигнал устанавливает состояние "Active" (активное) для атрибута состояния "Status". Как только программный модуль оповещения выполняет сброс состояния "Unreported" (без оповещения), становится возможным оповещение о другой сигнализации без сброса состояния "Active" в случае изменения субкода.
9	2009	TRANSDUCER_ DIRECTORY	1, 2010	_	Директория, задающая номер и начальные индексы устройства.
10	2010	TRANSDUCER_ TYPE	Стандартный расход с ка- либровкой (104)	_	Задание типа устройства. Для устройства digitalYEWFLO таковым является "Standard Flow with Calibration" (стандартный расход с калибровкой).
11	2011	XD_ERROR	0 (нет ошибки)	_	Указание кода ошибки, имеющей самый высокий приоритет среди ошибок, одновременно возникающих в блоке преобразования. 0 = нет сбоя; 20 = сбой электроники; 21 = механический сбой; 22 = сбой В/В.
12	2012	COLLECTION_ DIRECTORY	3, 2013, 0x80020380 2028, 0x80020382, 2031, 0x30003	_	Директория, задающая номер, начальные индексы и идентификаторы элементов дескриптора устройства (DD) для совокупности данных каждого преобразователя в блоке преобразования.
13	2013	PRIMARY_ VALUE_TYPE	Объемный расход (101)	O/S (нерабоч.)	Тип измерения, фигурирующего в роли первичного значения. Для устройств digitalYEWFLO возможны следующие варианты: 100 = массовый расход; 101 = объемный расход; 102 = средний массовый расход; 103 = средний объемный расход.
14	2014	PRIMARY_ VALUE	_	_	Значение расхода.
15	2015	PRIMARY_ VALUE_RANGE	(Прим.1)	_	Диапазон расхода. В качестве значений выступают преобразованные значения параметра SENSOR_RANGE (диапазон датчика) в соответствии с единицами измерения, заданными для параметра XD_SCALE, и данными LINE_SIZE
16	2016	CAL_POINT_HI	Макс. диапаз. (Прим.2)	O/S (нерабоч.)	Верхнее калибровочное значение. Задается в пределах диапазона датчика SENSOR_RANGE.
17	2017	CAL_POINT_LO	Мин. диапаз. (Прим.3)	O/S (нерабоч.)	Нижнее калибровочное значение. Задается в пределах диапазона датчика SENSOR_RANGE.
18	2018	CAL_MIN_SPAN	(Прим.1)		Минимальное допустимое значение ширины калибровочного диапазона.
19	2019	CAL_UNIT	м ³ /ч (1349) (Прим.4)	O/S (нерабоч.)	Единица измерения для калибровочных значений. Варианты единиц измерения приведены в табл.5.17.

Отн. индекс	Инд.	Наименование параметра	Заводская установка по умолч.	Режим записи	Пояснения
20	2020	SENSOR_TYPE	Вихревой (112)	_	Тип датчика. Для устройств digitalYEWFLO – "Vortex" (вихревой).
21	2021	SENSOR_RANGE	(Прим.1)	_	Верхний и нижний пределы диапазона датчика, код единиц измерения и число знаков после десятичной точки
22	2022	SENSOR_SN	Серийный номер	_	Серийный номер
23	2023	SENSOR_CAL_ METHOD	Объемный расход (100)	O/S (нерабоч.)	Алгоритм последней калибровки датчика. 100 = объемный расход 101 = статический вес
24	2024	SENSOR_CAL_ LOC	_	O/S (нерабоч.)	Задание/указание места последней калибровки датчика.
25	2025	SENSOR_CAL_ DATE	_	O/S (нерабоч.)	Задание/указание данных последней калибровки датчика.
26	2026	SENSOR_CAL_ WHO	_	O/S (нерабоч.)	Задание/указание лица, проводившего последнюю калибровку датчика.
27	2027	LIN_TYPE	Линейно пропорц. входу (1)		Тип линеаризации выхода датчика. Для устройства digitalYEWFLO – "linear with input" (линейно пропорциональный входу).
28	2028	SECONDARY _VALUE	0	O/S (нерабоч.)	Значение температуры.
29	2029	SECONDARY _VALUE_UNIT	°C (1001)	O/S (нерабоч.)	Единица измерения температуры (в соответствии с установкой единицы измерения для параметра XD_SCALE).
30	2030	PRIMARY _VALUE_FTIME	4 сек	AUTO	Временная константа сглаживания для расчета расхода – от 0 до 99 сек.
31	2031	TERTIARY _VALUE	0	_	Суммарный расход и его состояние.
32	2032	TERTIARY VALUE_UNIT	_	O/S (нерабоч.)	Единица измерения суммарного расхода. Изменяется в соответствии с изменением единицы измерения, заданной для параметра XD_SCALE. Варианты – 1034 (м³), 1038(л), 1088(кг), 1092(т), 1521(норм.м³), 1531(норм.л), 1526(станд.м³) и 1536(станд.л).
33	2033	LIMSW_1 _VALUE_D	_	_	Значение предельного переключателя 1 (ON/OFF — вкл./выкл.), срабатывающего в зависимости от цифрового значения целевого входного параметра, выбранного в качестве LIMSW_1_TARGET, и порогового значения LIMSW_1_SETPOINT с гистерезисом LIMSW_1_HYSTERESIS. Направления действия переключения определяется установкой для параметра LIMSW_1_ACT_DIRECTION.
34	2034	LIMSW_1 _TARGET	1 (PRIMARY _VALUE)	O/S (нерабоч.)	Целевой параметр предельного переключателя 1: 1 = PRIMARY_VALUE (первичное значение) 2 = SECONDARY_VALUE (вторичное значение)
35	2035	LIMSW_1 _SETPOINT	0	O/S (нерабоч.)	Задание порогового значения предельного переключателя 1. Если для параметра LIMSW_1_ACT_DIRECTION задана установка HIGH LIMIT (верхний предел), предельный переключатель 1 производит включение (ON) при превышении значения LIMSW_1_TARGET установки LIMSW_1_SETPOINT. Если для параметра LIMSW_1_ACT_DIRECTION задана установка LO LIMIT (нижний предел), предельный переключатель 1 произво- дит включение (ON) при падении значения LIMSW_1_TARGET ниже установки LIMSW_1_SETPOINT. При этом применяется единица измерения, заданная в качестве параметра LIMSW_1_UNIT.
36	2036	LIMSW_1_ACT _DIRECTION	1(HIGH LIMIT) (верхний предел)	O/S (нерабоч.)	Выбор режима срабатывания предельного переключ. 1: 1 = HIGH LIMIT (по достижению верхнего предела) 2 = LO LIMIT (по достижению нижнего предела)
37	2037	LIMSW_1 _HYSTERESIS	0	O/S (нерабоч.)	Задание гистерезиса предельного переключателя 1, применяемого для сброса LIMSW_1_VALUE_D на значение OFF (выкл.) после выхода значения LIMSW_1_TARGET за предел LIMSW_1_SETPOINT и перехода LIMSW_1_VALUE_D в состояние ON (вкл.) (предельный переключатель по достижению верхнего предела), либо после падения значения LIMSW_1_TARGET ниже предела LIMSW_1_SETPOINT и перехода LIMSW_1_VALUE_D в состояние ON (вкл.) (предельный переключатель по достижению нижнего предела).

Приложение 1. Список параметров функциональных блоков устройств digitalYEWFLO

Отн. индекс	Инд.	Наименование параметра	Заводская установка по умолч.	Режим записи	Пояснения	
38	2038	LIMSW_1_UNIT	_	_	Единица измерения для параметра LIMSW_1_TARG	ET.
39	2039	LIMSW_2_VALUE _D	0	_	Значение предельного переключателя 2 (ON/OFF – вкл./выкл.), срабатывающего в зависимости от цифр значения целевого входного параметра, выбранного качестве LIMSW_2_TARGET, и порогового значения LIMSW_2_SETPOINT с гистерезисом LIMSW_2_HYSTERESIS. Направления действия перечения определяется установкой для параметра LIMSW_2_ACT_DIRECTION.	В
40	2040	LIMSW_2 _TARGET	1 (PRIMARY _VALUE)	O/S (нерабоч.)	Целевой параметр предельного переключателя 2: 1 = PRIMARY_VALUE (первичное значение) 2 = SECONDARY_VALUE (вторичное значение)	
41	2041	LIMSW_2 _SETPOINT	0 1(HIGH LIMIT)	O/S (нерабоч.)	Задание порогового значения предельного переключа. Если для параметра LIMSW_2_ACT_DIRECTION з установка HIGH LIMIT (верхний предел), предельный переключатель 2 производит включение (ON) при превышении значения LIMSW_2_TARGET установки LIMSW_2_SETPOINT. Если для параметра LIMSW_2_ACT_DIRECTION задана установка LO LIM (нижний предел), предельный переключатель 2 прои дит включение (ON) при падении значения LIMSW_2_TARGET ниже установки LIMSW_2_SETPO При этом применяется единица измерения, заданная качестве параметра LIMSW_2_UNIT. Выбор режима срабатывания предельного переключ	адана й ИIT изво- DINT. я в
42	2042	LIMSW_2_ACT _DIRECTION	(верхний предел)	O/S (нерабоч.)	1 = HIGH LIMIT (по достижению верхнего предела) 2 = LO LIMIT (по достижению нижнего предела)	
43	2043	LIMSW_2 _HYSTERESIS	0	O/S (нерабоч.)	Задание гистерезиса предельного переключателя 2, применяемого для сброса LIMSW_2_VALUE_D на значение OFF (выкл.) после выхода значения LIMSW_2_TARGET за предел LIMSW_2_SETPOINT и перехода LIMSW_2_VALUE_D в состояние ON (вкл.) (предельный переключатель по достижению верхнег предела), либо после падения значения LIMSW_2_TARGET ниже предела LIMSW_2_SETPOI перехода LIMSW_2_VALUE_D в состояние ON (вкл.) (предельный переключатель по достижению нижнего предела).	и o NT и
44	2044	LIMSW_2_UNIT	_	_	Единица измерения для параметра LIMSW_2_TARG	ET.
45	2045	ALARM _PERFORM	0x1030	AUTO	Последовательность разрядов (бит), каждый из кото работает как переключатель для включения и выклюсигнализации. Для выключения конкретной сигнализ введите "0" в соответствующий разряд данного пара (см. Приложение 3).	чения ации
46	2046	ARITHMETIC _BLOCK	1 (не использ.)	_	Указание на использование блока арифметических вычислений.	
47	2047	SENSOR _STATUS	_	_	Указание на наличие в конфигурации расходомера встроенного датчика температуры: 1 = стандартная конфигурация 2 = встроенный датчик температуры.	
48	2048	TERMOMETER _FUNCTION	1 (только текущий контроль) (Прим.5)	O/S (нерабоч.)	5 = LIQUID/Mass (жидкость/массовый расход) 6 = не используется	:м. .5.6.5 абл.
49	2049	FLUID_TYPE	1 (LIQUID: Volume) (Прим.5)	O/S (нерабоч.)	3адание типа среды: 1 = LIQUID/Volume (жидкость/объемный расход) 2 = GAS/STEAM (газ/пар) 3 = LIQUID/Mass (жидкость/массовый расход) 4 = GAS/STEAM:Mass (газ/пар: массовый расход) 5 = GAS:STD/Normal (газ: стандарт./норм. усл-я)	.19
50	2050	TEMPERATURE _UNIT	°С (1001) (Прим.5)	O/S (нерабоч.)	Единица измерения температуры.	
51	2051	PROCESS _TEMP	15 (Прим.5)	О/S (нерабоч.)	Задание нормальной рабочей температуры процесса Диапазон установки: от -999.9 до 999.9	a.
				O/S	Задание температуры в стандартном режиме процес	_

Приложение 1. Список параметров функциональных блоков устройств digitalYEWFLO

Отн. индекс	Инд.	Наименование параметра	Заводская установка по умолч.	Режим записи	Пояснения
53	2053	DENSITY_UNIT	кг/м ³ (1097) (Прим.5)	O/S (нерабоч.)	Единица измерения плотности.
54	2054	PROCESS _DENSITY	1024 (Прим.5)	O/S (нерабоч.)	Плотность технологической среды в нормальном рабочем режиме. Диапазон установки: от 0.00001 до 32000.
55	2055	BASE_DENSITY	1024 (Прим.5)	O/S (нерабоч.)	Плотность технологической среды в стандартном рабочем режиме. Диапазон установки: от 0.00001 до 32000.
56	2056	PRESSURE _UNIT	МПа (1545) (Прим.5)	O/S (нерабоч.)	Единица измерения давления – МПа (1545) или КПа (1547).
57	2057	PROCESS _PRESSURE	0.1013 (Прим.5)	O/S (нерабоч.)	Нормальное абсолютное рабочее давление процесса. Диапазон установки: от 0.00001 до 32000.
58	2058	BASE_PRESSURE	0.1013 (Прим.5)	O/S (нерабоч.)	Абсолютное давление в стандартном рабочем режиме. Диапазон установки: от 0.00001 до 32000.
59	2059	DEVIATION	1 (Прим.5)	O/S (нерабоч.)	Коэффициент отклонения для технологической среды. Диапазон установки: от 0.001 до 10.0.
60	2060	SECONDARY _VALUE_FTIME	4 сек	AUTO	Временная константа сглаживания для расчета расхода – от 0 до 99 сек.
61	2061	CABLE_LENGTH	0	O/S (нерабоч.)	Длина кабеля между датчиком расхода и удаленным усилителем. Для устройств digitalYEWFLO задается установка "0". Диапазон установки: от 0 до 30 (м).
62	2062	FIRST_TEMP _COEF	0	O/S (нерабоч.)	Первый температурный коэффициент для компенсации плотности жидкости. Диапазон установки: от -32000 до 32000. Единица измерения: 1/TEMP_UNIT.
63	2063	SECOND_TEMP _COEF	0	O/S (нерабоч.)	Второй температурный коэффициент для компенсации плотности жидкости. Диапазон установки: от -32000 до 32000. Единица измерения: 1/TEMP_UNIT ² .
64	2064	SIZE_SELECT	25 мм (2) (Прим.5)	O/S (нерабоч.)	Размер расходомера: 1 = 15 мм (1/2"); 2 = 25 мм (1"); 3 = 40 мм (1.5"); 4 = 50 мм (2"); 5 = 80 мм (3"); 6 = 100 мм (4"); 7 = 150 мм (5"); 8 = 200 мм (6"); 9 = 250 мм (7"); 10 = 300 мм (8");
65	2065	BODY_TYPE	Стандарт (1)	O/S (нерабоч.)	Тип корпуса расходомера: 1 = стандартный; 2 = высокого давления; 3 = низкорасходный (1); 4 = низкорасходный (2).
66	2066	VORTEX_ SENSOR_TYPE	Стандарт (1)	O/S (нерабоч.)	Тип вихревого датчика: 1 = стандартный; 2 = высокотем- пературный; 3 = низкотемпературный.
67	2067	K_FACTOR _UNIT	p/L (1)	O/S (нерабоч.)	Единица измерения К-фактора.
68	2068	K_FACTOR	68.6	O/S (нерабоч.)	К-фактор комбинированного измерительного устройства при 15°C. Диапазон установки: от 0.00001 до 32000.
69	2069	LOW_CUT _FLOW	0.46687 (мин. расход газа для размера 25 мм [1"])	O/S (нерабоч.)	Нижний уровень отсечки сигнала расхода. Диапазон установки: от "минимальный расход х 0.5" до XD_SCALE.EU_100. Применяется единица измерения, заданная для параметра PRIMARY_VALUE_RANGE.
70	2070	UPPER_ DISPLAY_MODE	1	AUTO	Данные, отображаемые в верхней строке ЖК-дисплея: 1 = FLOW RATE (%): мгновенный расход в процентах 2 = FLOW RATE: мгновенный расход в указанных единицах измерения 3 = TEMP (%): температура в процентах (только для моделей с опцией MV).
71	2071	LOWER_ DISPLAY_MODE	1	AUTO	Данные, отображаемые в нижней строке ЖК-дисплея: 1 = BLANK (пусто) 2 = TOTAL: суммарный расход 3 = TEMP: температура (только для моделей с опцией MV).
72	2072	DISPLAY _CYCLE	1 (500 мс)	O/S, AUTO	Цикл обновления экрана ЖК-дисплея, кратный 500 мс. Диапазон установки: от 1 до 10 (= от 0.5 до 5 сек).

Приложение 1. Список параметров функциональных блоков устройств digitalYEWFLO

Отн. индекс	Инд.	Наименование параметра	Заводская установка по умолч.	Режим записи	Пояснения
73	2073	USER_ADJUST	1	O/S (нерабоч.)	Устанавливаемый пользователем поправочный коэффициент. Замеренный расход умножается на этот коэффициент, и результат выдается в качестве выходного значения. Диапазон установки: от 0.00001 до 32000.
74	2074	REYNOLDS _ADJUST	1 (коррекция не выполня- ется)	O/S (нерабоч.)	Включение коррекции по числу Рейнольдса: 1 = коррекция не выполняется; 2 = коррекция выполняется.
75	2075	VISCOCITY _VALUE	1 (Прим.5)	O/S (нерабоч.)	Задание коэффициента вязкости технологической жидкости. Этот параметр необходимо задавать, если активизирована функция REYNOLDS_ADJUST, так как коэффициент вязкости участвует в расчете числа Рейнольдса. Диапазон установки: от 0.00001 до 32000 [МПа·Па].
76	2076	GAS_EXPANSION _FACT	1 (функция не активна)	O/S (нерабоч.)	Включение коррекции с учетом расширения для сжимае- мой среды: 1 = коррекция не выполняется; 2 = коррекция выполняется.
77	2077	FLOW_ADJUST	1 (функция не активна)	O/S (нерабоч.)	Включение коррекции инструментальной погрешности для сжимаемой среды: 1 = коррекция не выполняется; 2 = коррекция выполняется.
78	2078	FLOW_ADJ _FREQ	0	O/S (нерабоч.)	Задание пяти частот прерывания для коррекции погрешности прибора в формате массива. Диапазон установки: от 0.0 до 32000 (единицы – Гц [1077]).
79	2079	FLOW_ADJ_DATA	0	O/S (нерабоч.)	Задание поправочных значений, соответствующих пяти частотам прерывания для коррекции погрешности прибора в формате массива. Диапазон установки: от -50.00 до 50.00 (единицы - % [1342]).
80	2080	TRIGGER _LEVEL	1	O/S (нерабоч.)	Пусковой уровень. Диапазон установки: от 0.1 до 20.0.
81	2081	NOISE_ BALANCE_MODE	1 (Автоматич. настройка)	O/S (нерабоч.)	Указание режима регулировки коэффициента балансировки шума: 1 = Автоматическая балансировка шума; 2 = Ручная балансировка шума; 3 = Регулировка коэффициента балансировки шума выполняется, когда текущее значение расхода равно нулю; по завершении регулировки параметр возвращается к установке "2" (ручной режим).
82	2082	NOISE_RATIO	_	_	Коэффициент балансировки шума. Если для параметра NOISE_BALANCE_MODE задана установка "1" (автоматическая балансировка), этот параметр недоступен для изменения. Если выбрана установка "2" (ручная балансировка), возможно задание желаемого фиксированного коэффициента.
83	2083	SIGNAL_LEVEL	1	O/S (нерабоч.)	Уровень сигнала. Диапазон установки: от0.1 до 20.0.
84	2084	FLOW _VELOCITY	_	_	Указание текущей скорости потока в м/с (1061). Значение периодически обновляется.
85	2085	SPAN _VELOCITY	1	_	Указание скорости потока по диапазону в м/с (1061). Значение периодически обновляется. (Для моделей с опцией МV, если для параметра ТНЕRMOMETER_FUNCTION задана установка "1" (только текущий контроль) или 6 (не используется), для данного параметра устанавливается значение, рассчитываемое по значениям плотности в нормальном рабочем режиме и нормальной рабочей температуры, указанным пользователем).
86	2086	VORTEX _FREQUENCY	_	_	Указание текущей частоты турбулизации в Гц (1077). Значение периодически обновляется.
87	2087	SPAN_FREQ	_	_	Указание частоты турбулизации по диапазону в Гц (1077). Значение периодически обновляется. (Для моделей с опцией МV, если для параметра THERMOMETER_ FUNCTION задана установка "1" (только текущий контроль) или 6 (не используется), для данного параметра устанавливается значение, рассчитываемое по значениям плотности в нормальном рабочем режиме и нормальной рабочей температуры, указанным пользователем).
88	2088	FLUID_DENSITY	_	_	Указание плотности среды, рассчитываемой по температурным данным в единицах, определяемых параметром DENSITY_UNIT. Значение периодически обновляется.

Отн. индекс	Инд.	Наименование параметра	Заводская установка по умолч.	Режим записи	Пояснения
89	2089	SENSOR _ERROR_ RECORD	0	O/S, AUTO	Регистрация ошибок, относящихся к функционированию датчика. Если в течение месяца не возникает ни одной ошибки, происходит автоматический сброс регистрационной информации. Регистрируемые ошибки: выходной сигнал о перерасходе; ошибка задания диапазона; сбой предусилителя; сбой ЕЕРROM; сбой датчика; нестационарный шум; высокая вибрация; закупорка; нерегулярное изменения (флуктуация); выходной сигнал об избыточной температуре; перегрев; сбой датчика температуры; сбой преобразователя температуры. Диапазон установки: только "0". Задание "0" сбрасывает регистрационную информацию.
90	2090	MODEL	digitalYEWFLO	O/S, AUTO	Модель преобразователя, используемого в конструкции расходомера.
91	2091	ALARM_SUM	0	O/S, AUTO	Указание состояния всей сигнализации блока. Возможна только установка отключения.

- Примечание 1: Значение меняется в соответствии с изменением значения SIZE_SELECT или единицы, заданной для параметра XD_SCALE соответствующего блока AI.
- Примечание 2: Возможно задание только значения, удовлетворяющего двум следующим условиям: CAL_POINT_LO < "вводимое значение" и SENSOR_RANGE.EU100 > "вводимое значение".
- Примечание 3: Возможно задание только значения, удовлетворяющего двум следующим условиям: CAL_POINT_HI < "вводимое значение" и SENSOR_RANGE.EU100 > "вводимое значение".
- Примечание 4: Возможно задание только единицы измерения расхода (см. также описание соответствующих параметров в данном руководстве пользователя).
- Примечание 5: Эти параметры задаются в соответствии с техническими условиями, оговоренными в листке технических данных заказа (WS 1F6A0-01E), если таковой прилагается. Если листок технических данных заказа не прилагается, параметры при поставке имеют установки, предусмотренные по умолчанию.

А1.4 Функциональный блок DI

Отн.	Инд	екс	Hamananan	Заводская	Dawwa	
инд.	-	-	Наименование параметра	установка по умолч.	Режим записи	Пояснения
0	6000	6100	Block Header (заголовок блока)		Признак блока = O/S	Информация о блоке, например, признак блока, редакция файла дескриптора устройства (DD) и время исполнения.
1	6001	6101	ST_REV	0	_	Уровень обновления статических данных, связанных с блоком ресурсов. Значение получает приращение при каждом изменении значения статического параметра.
2	6002	6102	TAG_DESC	(пробелы)	AUTO	Указанное пользователем описание предполагаемого применения блока
3	6003	6103	STRATEGY	1	AUTO	Используется системой верхнего уровня для определения группировки блоков. Эти данные не подлежат проверке и обработке со стороны блока.
4	6004	6104	ALERT_KEY	1	AUTO	Идентификационный номер модуля объекта. Эта информация может использоваться хостом для сортировки сигнализации и проч.
5	6005	6105	MODE_BLK	O/S (нерабоч.)	AUTO	Фактический, целевой, разрешенный и нормальный режимы блока.
6	6006	6106	BLOCK_ERR	_	_	Указание ошибок, имеющих отношение собственно к блоку.
7	6007	6107	PV_D	_	_	Первичное дискретное значение (или параметр процесса), используемое для выполнения функций блока.
8	6008	6108	OUT_D	_	MAN	Значение и состояние выхода блока.
9	6009	6109	SIMULATE_D	Disabled (функция выключена)	AUTO	Позволяет использовать вводимые вручную значения вместо входа предельного переключателя от блока преобразования. Если функция имитации выключена (Disable), блок отслеживает фактические значение и состояние. 1 = функция выключена; 2 = функция активна.
10	6010	6110	XD_STATE	0	I	Не используется для устройств digitalYEWFLO.
11	6011	6111	OUT_STATE	0		Не используется для устройств digitalYEWFLO.
12	6012	6112	GRANT_DENY	0x00	AUTO	Варианты управления доступом с главного компьютера (хоста) и с локальных пультов управления к параметрам настройки и сигнализации. Для получения доступа к изменению параметра используйте элемент "GRANT". После выполнения необходимой записи проверьте состояние элемента "DENY". Если запись успешно выполнена, этот элемент должен быть выключен.
13	6013	6113	IO_OPTS	0	O/S	Варианты входа/выхода блока.
14	6014	6114	STATUS_OPTS	0	(нерабоч.) O/S (нерабоч.)	Действия блока в зависимости от состояния блока. Для блоков DI устройств digitalYEWFLO действующим является только разряд 0 (инверсия состояний ON/OFF (вкл./выкл.).
15	6015	6115	CHANNEL	3 (DI1) 4 (DI2)	O/S (нерабоч.)	Номер логического канала блока преобразования, связанного с данным блоком. Для устройств digitalYEWFLO предусмотрена фиксированная установка "1".
16	6016	6116	PV_FTIME	0 сек	AUTO	Временная константа сглаживания для PV_D.
17	6017	6117	FIELD_VAL_D	_	_	Состояние сигнала предельного переключателя, приходящего от блока преобразования.
18	6018	6118	UPDATE_EVT	_	_	Отображение содержания события обновления (изменения задания) после его наступления.
19	6019	6119	BLOCK_ALM	_		Отображение содержания сигнализации блока после его срабатывания.
20	6020	6120	ALARM_SUM	0	AUTO	Текущая сигнализация.
21	6021	6121	ACK_OPTION	0xfff	AUTO	Выбор автоматического подтверждения приема сигнализации, связанной с блоком.
22	6022	6122	DISC_PRI	0	AUTO	Задание уровня приоритета сигнализации.
23	6023	6123	DISC_LIM	0	AUTO	Указание состояния входа для дискретной сигнализации. Указание состояния, относящегося к дискретной сигнали-
24	6024	6124	DISC_ALM	_	_	зации.

Приложение 2. Применение, настройка и изменение основных параметров

А2.1 Применение и выбор основных параметров

Элемент настройки (применимые параметры)	Описание
Кодовые метки	Задание признака физического устройства (PD) и признаков блоков. Допускается ввод строки длиной до 32 буквенно-цифровых символов в качестве каждого из признаков. См. раздел 5.4 "Задание признаков и адресов".
Задание калибровочного диапазона (параметр XD_SCALE блока AI)	Задание диапазона входа от блока преобразования для точек 0% и 100%, действующих внутри блока AI. Заводская установка по умолчанию предусматривает задание максимального диапазона расхода, указанного в листке технических данных заказа (WS 1F6A0-01E). Задаются четыре элемента данных: единица измерения диапазона, входное значение в точке 0% (всегда 0 для устройств digitalYEWFLO), входное значение в точке 100% (равное амплитуде потока), и положение десятичной точки.
Задание шкалы выходного значения (параметр OUT_SCALE блока AI)	Задание диапазона выхода от блока преобразования для точек 0% и 100%, действующих внутри блока AI. Возможно задание единицы и шкалы измерения, отличных от соответствующих параметров диапазона измерений. Задаются четыре элемента данных: единица измерения шкалы, выходное значение в точке 0% (т.е. нижний предел шкалы выхода), выходное значение в точке 100% (т.е. верхний предел шкалы выхода), и положение десятичной точки.
Задание режима выхода (параметр L_TYPE блока AI)	 Выбор функции расчета для каждого блока AI из следующих вариантов: Direct (прямая передача): Выходное значение блока преобразования подвергается только фильтрации без масштабного пересчета и вычисления квадратного корня (в диапазоне, заданном с использованием параметра XD_SCALE). Indirect (непрямая передача): Пропорциональный масштабный пересчет входного значения блока AI. Результат выдается в качестве выходного значения (в диапазоне, заданном с использованием параметра OUT_SCALE). IndirectSQRT: Для входного значения блока AI проводится вычисление квадратного корня. Результат выдается в качестве выходного значения (в диапазоне, заданном с использованием параметра OUT_SCALE). Эта установка не используется для устройств digitalYEWFLO. Данная установка для режима выхода применима также к шкале и единице измерений, используемых для показаний на ЖК-дисплее.
Задание временной константы сглаживания (параметр PRIMARY_VALUE_FTIME блока преобразования)	Задание временной константы сглаживания в секундах. Установка для параметра PRIMARY_VALUE_FTIME влияет не только на значение расхода, но и на результат суммирования. Для сравнения, установка для параметра PV_TIME в блоке AI работает как временная константа сглаживания для выходного значения (OUT) блока AI. В качестве функции сглаживания собственно для расходомера рекомендуется использовать параметр PRIMARY_VALUE_FTIME.
Задание режима отсечки по низкому уровню сигнала (параметр LOW_CUT_FLOW блока преобразования)	Данная установка используется для обнуления показаний расхода в зоне низкого расхода. Значение параметра LOW_CUT_FLOW (уровень отсечки) задается в тех же единицах, что используются для параметра PRIMARY_VALUE_RANGE. Для сравнения, установка для параметра LOW_CUT в блоке AI работает как уровень отсечки по низкому уровню сигнала для выходного значения (OUT) блока AI. В качестве функции отсечки собственно для расходомера рекомендуется использовать параметр LOW_CUT_FLOW.
Задание функции имитации (параметр SIMULATE блока AI / преобра- зования)	Возможна имитация работы блоков AI/DI с произвольным заданием входных значений и состояний. Данная функция используется для выполнения проверки методом обратной передачи или аналогичных действий. См. раздел 6.3 "Функция имитации".
Задание отображения LOD (параметры UPPER_DISPLAY_MODE, LOWER_DISPLAY_MODE и DISPLAY_CYCLE блока преобразования)	Задание единиц измерения для данных, отображаемых на ЖК-дисплее, и цикла обновления дисплея. Отрегулируйте значение параметра DISPLAY_CYCLE для улучшения разборчивости данных, так как при работе в низкотемпературной среде индикация может оказаться трудночитаемой.
Изменение калибровочного диапазона (параметры CAL_POINT и CAL_POINT_LO блока преобразования)	Задание точек 0% и 100% для калибровки, т.е. калибровочного диапазона. Выходное значение может быть откалибровано в точном соответствии с выходным значением эталонного измерительного устройства пользователя.

А2.2 Задание и изменение основных параметров

Данный раздел содержит описание процедуры задания и изменения параметров функциональных блоков. Доступ к параметрам различается в зависимости от используемой системы настройки конфигурации. Более подробная информация содержится в инструкции, прилагаемой к каждой системе настройки конфигурации.

Откройте доступ к параметру настройки режима функционального блока (MODE_BLK)

Задайте в качестве целевого (Target) режима (*Прим.1) установку "Auto" (автоматический), "Man" (ручной) или "O/S" (нерабочий) в соответствии с режимом записи настраиваемого параметра.

Откройте доступ к настраиваемому или изменяемому параметру.

Введите желаемую установку.

Установите в качестве целевого (Target) режима блока вновь установку "Auto" (*Прим.2)

Не следует выключать питание сразу после выполнения установки параметров. При сохранении установок параметров в памяти EEPROM выполняется остаточная обработка с целью повышения уровня надежности. Если отключить питание ранее чем через 60 сек после установки параметров, изменения могут на сохраниться, и параметры могут вернуться к исходным значениям.

Примечание 1: Режим блока включает следующие четыре режима, управляемые универсальным параметром, отображающим текущее состояние блока.

Target (целевой): рабочий режим блока. Actual (фактический): текущий рабочий режим

Permit (разрешенный): разрешенный для блока рабочий режим.

Normal (нормальный): обычный для блока рабочий режим.

Примечание 2: Ниже перечислены рабочие режимы блоков.

	Функц. блок Al	Блок преобразова- ния	Блок ресур- сов	Функц. блок DI
Автоматический (Auto)	Да	Да	Да	Да
Ручной (Man)	Да			Да
Нерабочий (O/S)	Да	Да	Да	Да

Примечание: В Приложении 1 "Параметры функциональных блоков устройства digitalYEWFLO" содержится подробная информация о режиме записи для каждого функционального блока.

А2.3 Настройка функциональных блоков AI

Устройство digitalYEWFLO имеет два функциональных блока аналогового входа (Al1 и Al2), для каждого из которых предусмотрены независимые параметры. Параметры каждого блока Al задаются индивидуально по мере необходимости.

Блок AI выполняет расчет выходного значения расхода (стандарт).

(1) – 1. Установка калибровочного диапазона.

Откройте доступ к параметру XD_SCALE. Установите желаемую единицу измерения как элемент <u>Unit Index</u> параметра XD_SCALE. Задайте верхнюю границу диапазона как элемент <u>EU at 100%</u> параметра XD_SCALE. Задайте нижнюю границу диапазона как элемент <u>EU at 0%</u> параметра XD_SCALE. Задайте положение десятичной точки как элемента <u>Decimal Point</u> параметра XD_SCALE.

Пример:

Задание диапазона измерения от 0 до 100 ${\rm m}^3/{\rm u}$:

Задайте установку "м³/ч" (1349)* для элемента <u>Unit Index</u> параметра XD_SCALE.
Задайте установку "100" для элемента <u>EU at 100%</u> параметра XD_SCALE.
Задайте установку "0" для элемента <u>EU at 0%</u> параметра XD_SCALE.

(1) - 2. Задание шкалы выходного сигнала

Откройте доступ к параметру OUT_SCALE. Установите желаемую единицу измерения как элемент <u>Unit Index</u> параметра OUT_SCALE. Задайте верхнюю границу диапазона как элемент <u>EU at 100%</u> параметра OUT_SCALE. Задайте нижнюю границу диапазона как элемент <u>EU at 0%</u> параметра OUT_SCALE. Задайте положение десятичной точки как элемента <u>Decimal Point</u> параметра

Пример: Задание диапазона выходного сигнала от 0.00 до 100.00 кг/ч:

Задайте установку "кг/ч" (1324)*¹ для элемента Unit Index параметра OUT_SCALE.

Задайте установку "100" для элемента <u>EU at</u> 100% параметра OUT_SCALE.

Задайте установку "0" для элемента <u>EU at 0%</u> параметра OUT_SCALE.

Задайте установку "2" для элемента <u>Decimal</u> Point параметра OUT_SCALE.

Блок AI2 выполняет расчет выходного сигнала температуры (по выбору).

(2) - 1. Задание калибровочного диапазона

Откройте доступ к параметру XD_SCALE.
Задайте верхнюю границу диапазона как элемент <u>EU at 100%</u> параметра XD_SCALE.
Задайте нижнюю границу диапазона как элемент <u>EU at 0%</u> параметра XD_SCALE.
Установите желаемую единицу измерения как элемент <u>Unit Index</u> параметра XD_SCALE.

Пример: Задание диапазона от 0 до 200°C:

Задайте установку "200" для элемента <u>EU at</u> 100% параметра XD_SCALE.

Задайте установку "0" для элемента <u>EU at 0%</u> параметра XD SCALE.

Задайте установку "1001" для элемента <u>Unit</u> Index параметра XD SCALE.*¹

(2) – 2. Задание шкалы выходного сигнала

Откройте доступ к параметру OUT_SCALE. Задайте выходное значение, соответствующее верхней границе диапазона как элемент <u>EU at 100%</u> параметра OUT_SCALE. Задайте выходное значение, соответствующее нижней границе диапазона как элемент <u>EU at 0%</u> параметра OUT_SCALE. Установите желаемую единицу измерения как элемент <u>Unit Index</u> параметра OUT_SCALE.

Пример: Задание диапазона от 0 до 100°C: Задайте "100" для элемента <u>EU at 100%</u> параметра XD_SCALE. Задайте "0" для элемента <u>EU at 0%</u> параметра

задайте — для элемента <u>ео асож</u> параметра XD_SCALE.

Задайте установку "1342"*1 для элемента <u>Unit</u> <u>Index</u> параметра XD_SCALE.*1

(3) Задание режима выходного сигнала

Откройте доступ к параметру L_TYPE. Задайте режим выходного сигнала:

- 1. Direct (выходной сигнал датчика)
- 2. Indirect (линейное преобразование)
- 3. IndirectSQRT (вычисление квадратного корня)*1
- *1: Режим IndirectSQRT в устройствах digitalYEWFLO не используется

(4) Имитация

Имитация работы функционального блока AI выполняется путем задания желаемого значения и состояния в качестве входного сигнала блока.

Для параметра SIM_ENABLE_MSG блока ресурсов задается установка REMOTE LOOP TEST SWITCH (включение разнесенной проверки цикла) (индекс 1044)

Открыв доступ к элементу включения / выключения (Enable/Disable) параметра SIMULATE, включите функцию имитации:

1: Функция выключена; 2: Функция активна.

Открыв доступ к элементу состояния имитации (SIMULATE Status), задайте желаемый код состояния.

Открыв доступ к элементу имитационного значения (SIMULATE Value), задайте желаемое входное значение.

При включении функции имитации блок AI в качестве входных сигналов использует состояние (SIMULATION Status) и значение (SIMULATION Value). При выключении функции имитации входными значениями для блока AI вновь становятся состояние и значение преобразователя (Transducer Status и Transducer Value). См. раздел 6.3 "Функция имитации".

^{*1} Единицы измерения задаются 4-значным числом. См. раздел 5.6.4 "Параметры функционального блока Al".

А2.4 Настройка блока преобразования

Для доступа к специализированным функциям блока преобразования устройства digitalYEW-FLO необходима интеграция описания устройства (DD) с используемым инструментарием настройки конфигурации. См. раздел "Интеграция DD".

(1) Задание временной константы сглаживания

Откройте доступ к параметру PRIMARY_VALUE_FTIME. Задайте желаемую временную константу (в секундах).

(2) Задание нижнего уровня отсечки по низкому уровню выходного сигнала

Откройте доступ к параметру OUTPUT_CUT_FLOW. Задайте желаемый уровень отсечки выходного значения расхода.

(3) Задание функций предельного переключения

Задайте предельные переключатели 1 и 2. Состояния предельных переключателей могут быть считаны с хоста как выходные сигналы блоков DI.

Откройте доступ к параметру LIMSW_1_TARGET и выберите параметр (расход или температуру), контролируемый предельным переключателем 1.

1: PRIMARY_VALUE

(расход)

2: SECONDARY_VALUE (температура)

Откройте доступ к параметру
LIMSW_1_ACT_DIRECTION и выберите направление действий предельного переключателя 1.

1: HI_LIMIT (переключение по достижению верхнего предела)

2: LO LIMIT (порождение до достукские)

2: LO_LIMIT (переключение по достжению нижнего предела)

Откройте доступ к параметру LIMSW_1_SETPOINT и выберите пороговое значение срабатывания предельного переключателя.

1: В случае необходимости можно изменить гистерезис вкл./выкл. путем изменения значения параметра LIMSW_!_HYSTERESIS (возможно задание только положительного значе-

Приведенная выше схема иллюстрирует процедуру настройки предельного переключателя 1. В случае необходимости процедура настройки предельного переключателя 2 проводится аналогично.

(4) Настройка ЖК-дисплея

Выберите данные, отображаемые на ЖК-дисплее, и цикл обновления дисплея.

Выберите данные, отображаемые в верхней строке ЖК-дисплея. Откройте доступ к параметру UPPER_DISPLAY_MODE и выберите нужный элемент.

1: FLOW RATE (%)

мгновенный расход) в

процентах

2: FLOW RATE

мгновенный расход в единицах измерения

3: TEMPERATURE(%)

температура в процентах (только для моделей с опцией MV, имеющих встроенный датчик температу-

)

Откройте доступ к параметру

LOWER_DISPLAY_MODE и выберите нужный элемент.

1: BLANK (пусто)

2: TOTAL

3: TEMPERATURE(%)

суммарный расход температура в процентах (только для моделей с опцией MV, имеющих встроенный датчик температу-

ры)

Откройте доступ к параметру DISPLAY_CYCLE и задайте цикл обновления дисплея. Значение должно быть кратным 500 миллисекунд в диапазоне от 1 до 10 (т.е. от 500 мс до 5 с). Установка по умолчанию — 1 (т.е. 500 мс). Увеличение цикла позволяет повысить степень разборчивости данных, так как при работе в низкотемпературной среде показания прибора могут оказаться трудно читаемыми.

Параметры UPPER_DISPLAY_MODE и LOWER_DISPLAY_MODE блока преобразования (TR) и параметр L_TYPE блоков Al1 и Al2 позволяют назначить элементы данных, значения и единицы измерения, отображаемые на ЖК-дисплее, как показано в таблицах ниже.

Приложение 2. Применение, настройка и изменение основных параметров

Отображение в верхней строке ЖК-дисплея

UPPER_DISPLAY_ MODE	Отображаемые	е значения, единицы измерения и ф	рормат отображения
	Параметр L_TYPE блока AI1	= DIRECT	= INDIRECT
	Значение	Значение в процентах, рассчи-	Значение в процентах, рассчи-
		танное по элементу "Value"	танное по элементу "Value"
FLOW RATE (%)`		параметра OUT и параметру	параметра OUT и параметру
		XD_SCALE блока AI1 (Прим.1)	OUT_SCALE блока AI1 (Прим.1)
	Единицы измерения	%	
	Формат	Число с одним десятичным разрядо	DM
	Параметр L_TYPE блока AI1	= DIRECT	= INDIRECT
	Значение	Значение элемента "Value"	Значение элемента "Value"
		параметра OUT блока AI1	параметра OUT блока AI1
			(пропорционально пересчитанное
			по XD_SCALE и OUT.SCALE)
FLOW RATE	Единицы измерения	В соотв. с установкой для	В соотв. с установкой для
		элемента "Unit Index" параметра	элемента "Unit Index" параметра
		XD_SCALE блока AI1	OUT_SCALE блока AI1
	Формат	Определяется установкой для	Определяется установкой для
		"EU at 100" параметра XD_SCALE	"EU at 100" параметра
		блока AI1.	OUT_SCALE блока AI1.
	Параметр L_TYPE блока AI2	= DIRECT	= INDIRECT
	Значение	Значение в процентах, рассчи-	Значение в процентах, рассчи-
TEMPERATURE (01)		танное по знач. элемента "Value"	танное по знач. элемента "Value"
TEMPERATURE (%)		параметра OUT и XD_SCALE	параметра OUT и OUT_SCALE
		блока AI2 (Прим.1)	блока AI2 (Прим.1)
	Единицы измерения	%	
	Формат	Число с одним десятичным разрядо	DM

Прим. 1: Если для параметра L_TYPE задана установка "Direct", отображаемое процентное соотношение определяется по формуле: Значение = (Знач. "Value" парам. OUT – знач. "EU at 0" парам. XD_SCALE)/(знач. "EU at 100" парам. XD_SCALE - знач. "EU at 0" парам. XD_SCALE)×100.

Отображение в нижней строке ЖК-дисплея

LOWER_DISPLAY_ MODE	Отображаемые	значения, единицы измерения и формат отображения				
BLANK	Значение	пусто				
DLAINK	Единица измерения	пусто				
	Значение	Значение параметра TOTAL_VAL б	лока AI1			
TOTAL	Единицы измерения	Значение параметра TERTIARY_VALUE_UNIT блока преобразовани (Прим.3)				
	Формат	Определяется установкой для параметра TOTAL_RATE_VAL блока Al1.				
	Параметр L_TYPE блока Al2	= DIRECT	= INDIRECT			
TEMPERATURE	Значение	Знач. элемента "Value" параметра OUT блока AI2 (пропорционально пересчитанное по XD_SCALE)	Знач. элемента "Value" параметра OUT блока AI2 ((пропорционально пересчитанное по XD_SCALE и OUT.SCALE))			
	Единицы измерения	Знач. элемента "Unit Index" параметра XD_SCALE блока AI2. Знач. элемента "Unit Index" параметра OUT_SCALE блока A (но без указания "%")				
	Формат	Число с одним десятичным разрядо	DM			

Прим.3: В качестве единицы измерения суммарного расхода (TOTAL) отображается значение параметра TERTIARY_VALUE_UNIT блока преобразования, соответствующее значению элемента "Unit Index" параметра XD_SCALE блока AI1.

На ЖК-дисплее могут отображаться следующие единицы измерения: m^3 /мин, m^3 /ч, n/мин, n/ч, норм. m^3 /ч, кг/мин, кг/ч, т/мин и т/ч.

Прим.2: Если для параметра L_TYPE задана установка "Indirect", отображаемое процентное соотношение определяется по формуле: Значение = (Знач. "Value" парам. OUT – знач. "EU at 0" парам. OUT_SCALE)/(знач. "EU at 10" парам. OUT_SCALE - знач. "EU at 0" парам. OUT_SCALE)×100.

A2.5 Настройка функциональных блоков DI

Функциональные блоки выдают сигналы предельного переключения, получаемые от блока преобразования.

Два блока DI (DI1 и DI2) устройства digitalYEWFLO имеют независимые параметры. Параметры блоков DI задаются индивидуально по мере необходимости. Ниже дано описание процедуры настройки блока DI1 в качестве примера.

(1) Задание канала

Параметр CHANNEL блока DI определяет переключающий номер, передаваемый от предельного переключателя блока преобразования на блок DI (DI1:3, DI2:4), для устройства digitalYEWFLO.

(2) Задание временной константы сглаживания

Войдите в окно настройки параметра PV_TIME и задайте временную константу сглаживания (в секундах).

(3) Имитация

Имитация работы функционального блока DI выполняется путем задания желаемого значения и состояния в качестве входного сигнала блока.

Для параметра SIM_ENABLE_MSG блока ресурсов задается установка REMOTE LOOP TEST SWITCH (включение разнесенной проверки цикла) (индекс 1044)

Открыв доступ к элементу включения / выключения (Enable/Disable) параметра SIMULATE_D, включите функцию имитации:

1: Функция выключена; 2: Функция активна.

Открыв доступ к элементу состояния имитации (SIMULATE_D Status), задайте желаемый код состояния.

Открыв доступ к элементу имитационного значения (SIMULATE_D Value), задайте желаемое входное значение.

При включении функции имитации блок DI в качестве входных сигналов использует состояние (SIMULATION_D Status) и значение (SIMULATION_D Value). При выключении функции имитации входными значениями для блока DI вновь становятся состояние и значение преобразователя (Transducer Status и Transducer Value). См. раздел 6.3 "Функция имитации".

1. Значения параметров в случае отказа (для стандартной модели и модели, способной обрабатывать несколько переменных процесса, когда для параметра THERMOMETER_FUNCTION блока преобразования задана установка "Monitor Only" (только текущий контроль) или "Not Use" (не используется))

^{*} Комментарии, касающиеся содержания столбца "Сброс сигнализации" (установка по умолчанию)", даны в главе 3 данного приложения.

ЖК- диспл.	Сигнали зация	Блок ресурсов	Блок преобр.	Блок Al1	Блок Al2	Блок DI1	Блок DI2	Сброс сигнализа- ции (по умолч.)
AL-01	Отказ модуля усилителя (AMP.) (1)	_	BLOCK_ERR = сбой входа / аномальное сост-е параметра процесса (PV) XD_ERROR = сбой В/В Сост-е PV = аномальное ("Bad") — отказ устройства		аз устройства	Сост-е PV_D - неконкрети:	зировано	Невозможен
			Coct-e SV = аномальное ("Bad") – отказ устройства	Сост-е OUT = аномаль- ное– отказ устр-ва		Сост-е OUT_ аномальное тиз.		
AL-02	Отказ линии связи СОМ. (1)		ВLOCK_ERR = сбой входа / аномальное сост-е параметра процесса (PV) XD_ERROR = сбой В/В Сост-е PV = аномальное ("Bad") – отказ устройства Сост-е SV = аномальное ("Bad") – отказ устройства	Сост-е PV = ("Ваd") – отка Сост-е ОUТ ное– отказ у	аз устройства = аномаль-			Невозможен
AL-03	Отказ линии связи СОМ. (2)	_	BLOCK_ERR = необходим ремонт устройства XD_ERROR = неисправность электроники Сост-е PV = аномальное ("Вад") – отказ устройства Сост-е SV = аномальное ("Bad") – отказ устройства	Сост-е PV = аномальное ("Bad") – отказ устр-ва Сост-е OUT = аномаль- Сост-е OUT_D =		аз устр-ва _D =	Невозможен	
AL-04	Отказ модуля усилителя (AMP.) (2)	BLOCK_ERR = потеря стат. данных, потеря данных MV	Сост-е PV = аномальное ("Ваd") - неконкретизировано Сост-е SV = аномальное - ("Ваd") неконкретизировано	Сост-е PV = - неконкрети Сост-е OUT ное– неконкр	зировано = аномаль-	тиз. Сост-е PV_D - неконкретиз Сост-е OUT_ аномальн. –	D =	Невозможен
AL-05	Отказ датчика потока	_	BLOCK_ERR = необходим ремонт устройства XD_ERROR = механическая неисправность Сост-е PV = неопределенное ("Uncertain") — неточность преобразования показаний датчика	Сост-е PV = неопред. – неконкр. Сост-е OUT = неопред. – неконкр.	_	LIMSW_TAR преобр.) = PRIMARY_V Cост-е PV_D ленное — нек ровано. Сост-е OUT_неопределеннеконкретизи	ALUE = неопреде- онкретизи- D =	Возможен ("ON" – вкл.)

ЖК- диспл.	Сигнали зация	Блок ресурсов	Блок преобр.	Блок Al1	Блок Al2	Блок DI1	Блок DI2	Сброс сигнализа- ции (по умолч.)
AL-06	Отказ входного контура	l	ВLOCK_ERR = необходим ремонт устройства XD_ERROR = неисправность электроники Сост-е PV = неопределенное – неточность преобразования показаний датчика Сост-е SV = аномальное ("Bad") – отказ устройства	Сост-е PV = неопред. – неконкр. Сост-е OUT = неопред. – неконкр.	Сост-е PV = аномальн. – неконкр. Сост-е OUT = аномальн. – неконкр.	тиз.	PRIMARY D = неопред. изировано D = еконкретиз. D = - неконкре- D = - неконкре-	Возможен ("ON" – вкл.)
AL-07	Отказ пре- образова- теля температу- ры		BLOCK_ERR = необходим ремонт устройства XD_ERROR = неисправность электроники Сост-е SV = аномальное ("Bad") – отказ устройства	_	Сост-е PV = аномальн. – отказ устр. Сост-е OUT = аномальн. – отказ устр.	LIMSW_TARGET (блок преобр.) = SECONDARY_VALUE COCT-e PV_D = аномальное - неконкретизировано Coct-e OUT_D = аномальное — неконкретиз.		Невозможен
	Отказ пре- образова- теля температуры	_	BLOCK_ERR = необходим ремонт устройства XD_ERROR = механическая неисправность Сост-е SV = аномальное ("Bad") – отказ датчика		Сост-е PV = аномальн. – отказ устр. Сост-е OUT = аномальн. – отказ устр.	LIMSW_TAR преобр.) = SECONDAR Сост-е PV_С аномальное тизировано Сост-е OUT аномальное тиз.	Y_VALUE) = - неконкре- _D =	Невозможен
AL-20	Отсутствуют графики функц. блоков	_	_	-		-	_	
AL-21	Блок ресурсов в нерабочем режиме (O/S)	BLOCK_ERR = Hepaбо- чий режим (O/S)	Сост-е PV = аномальное – неконкретиз. Сост-е SV = аномальное – неконкретиз.	Coct-e PV = Coct-e OUT : Hoe – Hepa60 (O/S)		Сост-е PV_ фиксируето Сост-е OUT_ аномальное сост. (O/S)	ся _D =	Невозможен
AL-22	Блок преобразо- вания в нерабочем режиме (O/S)	_	ВLOCK_ERR = нерабочее состояние (O/S) Сост-е PV = аномальное ("Вад") — нерабочее состояние (O/S) Сост-е SV = аномальное ("Вад") — нерабочее состояние (O/S)		онкретиз.	мальное Сост-е PV_D = етиз. аномальн. ("Bad") – неконкретиз. омаль- Сост-е OUT_D =		Невозможен
AL-23	Блок AI1 в нерабочем режиме (O/S)	-	_	ВLOCK_ERR = Нерабоч. режим (O/S) Сост-е PV = фиксирует- ся Сост. OUT = аномальное – нерабоч. сост. (O/S)	_	тиз.	_	Возможен ("ON" – вкл.)
AL-24	Блок AI2 в нерабочем режиме (O/S)	_	_	_	ВLOCK_ERR = Нерабоч. режим (O/S) Сост-е PV = фиксирует- ся Сост. OUT = аномальное – нерабоч. сост. (O/S)	-	_	Возможен ("ОFF" – выкл.)

ЖК- диспл.	Сигнали зация	Блок ресурсов	Блок преобр.	Блок Al1	Блок Al2	Блок DI1	Блок DI2	Сброс сигнализа- ции (по умолч.)
AL-25	Блок DI1 в нерабочем режиме (O/S)	_	_	-	_	ВLOCK_ERR = нерабоч. режим (O/S) Сост. OUT_D = нерабоч. (O/S)	_	Возможен ("OFF" – выкл.)
AL-26	Блок DI2 в нерабочем режиме (O/S)		_	-	ВLOCK_ERR = нерабоч. режим (O/S) — Coct. OUT_D = нерабоч. (O/S)		Возможен ("OFF" – выкл.)	
AL-27	Блок ПИД- регулир-я в нерабочем режиме (O/S)		_	_	_	_	_	Возможен ("OFF" – выкл.)
AL-41	Скорость потока за пределами диапазона	_	Сост-е PV = неопред. ("Uncertain") – неточ- ность преобразования датчика	Сост-е PV = неопред. – неконкрет. Сост-е OUT = неопр. – неконкрет.	_	LIMSW_TAR преобр.) = PRIMARY_V Сост-е PV_С неконкретизи Сост-е OUT_ неконкрети	ALUE — неопр ировано — неопр.	Невозможен
AL-42	Диапазон расхода вы- ходит за установ- ленные пределы	-	ВLOCK_ERR = вскоре будет необходим ремонт устройства XD_ERROR = ошибка конфигурации Сост-е PV = неопред. — нарушение диапазона единицы измерения	Сост-е PV = неопред. – неконкрет. Сост-е OUT = неопр. – неконкрет.	_	LIMSW_TAR npeoбp.) = PRIMARY_V Coct-e PV_D неконкретизи - неконкрети	ALUE — неопр ировано — D = неопр.	Невозможен
AL-43	Выход температу- ры за пре- делы диапа- зона	I	Сост-е SV = неопред. ("Uncertain") – замена		Сост-е PV = неопред неконкрет. Сост-е OUT = неопред неконкрет.	LIMSW_TAR преобр.) = SECONDAR Coct-e PV_D неконкретизи Сост-е OUT_ неконкрети	Y_VALUE) = неопр. – ировано _D = неопр.	Невозможен
AL-51	Избыточная переходная вибрация	_	— Сост-е PV = неопред. – последнее рабочее значение	Сост-е PV = неопред. – неконкрет. Сост. ОUT = неопред. – неконкрет.	_	LIMSW_TAR npeoбp.) = PRIMARY_V Coct-e PV_D неконкретизи - неконкрети	ALUE) = неопр. – ировано _D = неопр.	Возможен ("ОFF" – выкл.)
AL-52	Избыточная вибрация	-	— Сост-е PV = аномальн.— неконкретизировано	Сост-е PV = аномальн. – неконкрет. Сост-е OUT = аномальн. – неконкрет.	_	LIMSW_TAR преобр.) = PRIMARY_V Сост-е PV_D аномальн. — Сост-е OUT_ аномальн. —	/ALUE) = неконкрет. _D =	Возможен ("OFF" – выкл.)

ЖК- диспл.	Сигнали зация	Блок ресурсов	Блок преобр.	Блок Al1	Блок Al2	Блок DI1	Блок DI2	Сброс сигнализа- ции (по умолч.)
						LIMSW_TAR преобр.) =	GET (блок	J.mesi ny
						PRIMARY_VALUE		
	Аномалия			Сост-е PV =	1	Сост-е PV_D		Возможен
AL-53	потока (закупорива-			неопред. –	_	неконкретиз	ировано	("OFF" –
	(закупорива- ние)		Сост-е PV = неопред.	неконкрет. Сост-е OUT	-	Сост-е OUT	D - Hoodb	выкл.)
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		("Uncertain") – неточ-	= неопр. –		– неконкрет		
			ность преобразования	неконкрет.			·	
			датчика					
						LIMSW_TAR преобр.) =	(GET (блок	
						PRIMARY_V	'ALUE	
	Аномалия			Сост-е PV =	1	Сост-е PV_D		Возможен
AL-54	потока	_		неопред. –	_	неконкретиз	ировано	("OFF" –
	(флуктуация)		0 51/	неконкрет. Сост-е OUT		Сост-е OUT	D - 1100EB	выкл.)
			Сост-е PV = неточ- ность преобразования	= неопр. –		– неконкрет	•	
			датчика	неконкрет.		Tionormport	nonpobarro	
	Превыше-		-					
AL-61	ние	_	_	_	_	_	_	Невозможен
AL-01	диапазона		_					Певозможен
	индикатора Блок AI1 в				ı			
	ручном							Возможен
AL-62	режиме	_	_		_	-	_	("ON" – вкл.)
	(MAN)							
A1 C2		BLOCK_ERR =		BLOCK_ERR = Включена				Возможен
AL-63	включена имитация	Включена имитации	_	имитации	_	_	_	("ON" – вкл.)
	Отсутствует	7						Возможен
AL-64	график	_	_		_	_	_	("ON" – вкл.)
	блока AI1							
	Блок AI2 в ручном							Возм.("OFF"
AL-65	режиме	_	_	_		_	_	– выкл.)
	(MAN)							
		BLOCK_ERR =			BLOCK_ERR			Возм.("OFF"
AL-66	включена имитация	Включена имитации	_	_	= Включена имитации	_	_	– выкл.)
	Отсутствует	имитации			ининтации			Возм.("OFF"
AL-67	график	_	_	_		_	_	— выкл.)
	блока AI2							,
A1 CO	Блок DI1 в							Возм.("OFF"
AL-68	руч. режиме (MAN)	_	_	_	_		_	— выкл.)
	В блоке DI1					BLOCK_ERR		Возм.("OFF"
AL-69	включена	_	_	_	_	= Включена	_	– выкл.)
	имитация					имитации		
AL-70	Отсутствует график	_	_	_	_		_	Возм.("OFF"
AL-70	блока DI1							– выкл.)
	Блок DI2 в							D ("OFF"
AL-71	ручн.	_	_	_	_	_		Возм.("OFF" – выкл.)
	режиме (MAN)							BBIIG1.)
	В блоке DI2						BLOCK_ERR	Возм.("OFF"
AL-72	включена	_	_	_	_	_	= Включена	– выкл.)
	имитация						имитации	22,
A1 70	Отсутствует							Возм.("OFF"
AL-73	график блока DI2	_	_	_	_	-		— выкл.)
	Блок ПИД-							
AL-74	регул. в	_	_		_			Возм.("OFF"
A-14	режиме	_	_	_		_	_	— выкл.)
	BYPASS							Возм.("OFF"
AL-75	Отказ блока	_	_	_	_	-	-	– выкл.)
	ПИД-регул.							,
I	Отказ блока	_	_	_	_	_	_	Возм.("OFF" – выкл.)
AL-76	ПИД-регул.							

1. Значения параметров в случае отказа (для стандартной модели и модели, способной обрабатывать несколько переменных процесса, когда функция THERMOMETER_FUNCTION используется для расчета плотности)

^{*} Комментарии, касающиеся содержания столбца **"Сброс сигнализации" (установка по умолчанию)"**, даны в главе 3 данного приложения.

ЖК- диспл.	Сигнали зация	Блок ресурсов	Блок преобр.	Блок Al1	Блок Al2	Блок DI1	Блок DI2	Сброс сигнализа- ции (по умолч.)
AL-01	Отказ модуля усилителя (AMP.) (1)	_	BLOCK_ERR = сбой входа / аномальное сост-е параметра процесса (PV) XD_ERROR = сбой B/B Сост-е PV = аномальное ("Bad") – отказ устройства Сост-е SV = аномальное ("Bad") – отказ устройства	Сост-е PV = ("Вад") — отка Сост-е ОUТ ное— отказ у	аз устройства = аномаль-	Сост-е PV_D = аномальн неконкретизировано Сост-е OUT_D = аномальное – неконкретиз.		Невозможен
AL-02	Отказ линии связи СОМ. (1)	_	ВLOCK_ERR = сбой входа / аномальное сост-е параметра процесса (PV) XD_ERROR = сбой В/В Сост-е PV = аномальное ("Bad") — отказ устройства Сост-е SV = аномальное ("Bad") — отказ устройства	Сост-е PV = аномальное ("Bad") – отказ устройства - неконкретизировано Сост-е OUT = аномальное - неконкренизировано Сост-е OUT_D = аномальное - неконкретиз.		Невозможен		
AL-03	Отказ линии связи СОМ. (2)	_	BLOCK_ERR = необходим ремонт устройства XD_ERROR = неисправность электроники Сост-е PV = аномальное ("Bad") – отказ устройства Сост-е SV = аномальное ("Bad") – отказ устройства	Сост-е PV = аномальное ("Bad") – отказ устр-ва ("В Сост-е OUT = аномальное отказ устр-ва ан		Сост-е PV_D = аномальн. ("Bad") – отказ устр-ва Сост-е OUT_D = аномальное – неконкре- тиз.		Невозможен
AL-04	Отказ модуля усилителя (AMP.) (2)	BLOCK_ERR = потеря стат. данных, потеря данных MV	Сост-е PV = аномальное ("Bad") - неконкретизиро- вано Сост-е SV = аномальное - ("Bad") неконкретизирова- но	Сост-е PV = аномальное - неконкретизировано Сост-е OUT = аномальное - неконкретизировано		Сост-е PV_D = аномальн неконкретизировано Сост-е OUT_D = аномальн неконкретиз.		Невозможен
AL-05	Отказ датчика потока	_	BLOCK_ERR = необходим ремонт устройства		-	LIMSW_TAR преобр.) = PRIMARY_V. Coct-e PV_D ленное – нек ровано. Coct-e OUT_ неопределен неконкретизи	ALUE = неопреде- онкретизи- D = iнoe –	Возможен ("ON" – вкл.)
AL-06	Отказ входного контура	_	ВLOCK_ERR = необходим ремонт устройства XD_ERROR = неисправность электроники Сост-е PV = аномальн. — неточность преобразования показаний датчика Сост-е SV = аномальное ("Bad") — отказ устройства	Сост-е PV = аномальн. — отказ устройства — Сост-е PV_D = аномальное - неконкретизировано Сост-е OUT = аномальн. — отказ устройства — аномальное — неконкретиз.		Невозможен		

ЖК- диспл.	Сигнализа ция	Блок ресурсов	Блок преобр.	Блок Al1	Блок Al2	Блок DI1	Блок DI2	Сброс сигнализа- ции (по умолч.)
AL-07	Отказ пре- образова- теля температу- ры	-	BLOCK_ERR = необходим ремонт устройства XD_ERROR = неисправность электроники Сост-е PV = аномальное ("Bad") – отказ устройства Сост-е SV = аномальное ("Bad") – отказ устройства	Сост-е PV = а отказ устр. Сост-е OUT = отказ устр.		Сост-е PV_D = аномальное - неконкретизировано Сост-е OUT_D = аномальное – неконкретиз.		Невозможен
AL-08	Отказ пре- образова- теля температуры	-	BLOCK_ERR = необходим ремонт устройства XD_ERROR = механическая неисправность Сост-е PV = аномальное ("Bad") – отказ датчика Сост-е SV = аномальное ("Bad") – отказ датчика	Сост-е PV = а отказ устр. Сост-е OUT : — отказ устр.	= аномальн.	Сост-е PV_D = аномальное - неконкретизировано Сост-е OUT_D = аномальное – неконкретиз.		Невозможен
AL-20	Отсутствуют графики функц. блоков	_	_	-	_	-		Невозможен
AL-21	Блок ресурсов в нерабочем режиме (O/S)	BLOCK_ERR = Hepaбо- чий режим (O/S)	Сост-е PV = аномальное – неконкретиз. Сост-е SV = аномальное – неконкретиз.	Coct-e PV = COCT-e OUT = HOE - HEPAGO (O/S)	= аномаль-	Сост-е PV_D = фиксируется Сост-е OUT_D = аномальное – нерабоч. сост. (O/S)		Невозможен
AL-22	Блок преобразо- вания в нерабочем режиме (O/S)	Ι	ВLOCK_ERR = нерабочее состояние (O/S) Сост-е PV = аномальное ("Вад") – нерабочее состояние (O/S) Сост-е SV = аномальное ("Вад") – нерабочее состояние (O/S)	Сост-е PV = 2 ("Bad") – неко Сост-е OUT = ное– неконкр	онкретиз.	Сост-е PV_D = аномальн. ("Bad") – неконкретиз. Сост-е OUT_D = аномальное – неконкретиз.		Невозможен
AL-23	Блок AI1 в нерабочем режиме (O/S)	-	—	ВLOCK_ERR = Нерабоч. режим (O/S) Сост-е PV = фиксирует- ся Сост. OUT = аномальное – нерабоч. сост. (O/S)	_	-	_	Возможен ("ON" – вкл.)
AL-24	Блок AI2 в нерабочем режиме (O/S)	-	_	_	ВLOCK_ERR = Нерабоч. режим (O/S) Сост-е PV = фиксирует- ся Сост. OUT = аномальное – нерабоч. сост. (O/S)	-	_	Возможен ("ОFF" – выкл.)
AL-25	Блок DI1 в нерабочем режиме (O/S)	_	_	-	_	BLOCK_ERR = нерабоч. режим (O/S)	_	Возможен ("OFF" – выкл.)
AL-26	Блок DI2 в нерабочем режиме (O/S)	_	_	-	_	_	BLOCK_ERR = нерабоч. режим (O/S)	Возможен ("OFF" – выкл.)
AL-27	Блок ПИД- регулир-я в нерабочем режиме (O/S)	_	_			_	Возможен ("OFF" – выкл.)	

ЖК- диспл.	Сигнали- зация	Блок ресурсов	Блок преобр.	Блок Al1	Блок Al2	Блок DI1	Блок DI2	Сброс сигнализа- ции (по умолч.)
AL-41	Скорость потока за пределами диапазона	_	Сост-е PV = неопред. ("Uncertain") – неточ- ность преобразования датчика	Сост-е PV = неопред. – неконкрет. Сост-е OUT = неопр. – неконкрет.	_	LIMSW_TARGET (блок преобр.) = PRIMARY_VALUE Сост-е PV_D = неопр неконкретизировано Сост-е OUT_D = неопр неконкретизировано		Невозможен
AL-42	Диапазон расхода вы- ходит за установ- ленные пределы	_	ВLOCK_ERR = вскоре будет необходим ремонт устройства XD_ERROR = ошибка конфигурации Сост-е PV = неопред. – нарушение диапазона единицы измерения	Сост-е PV = неопред. – неконкрет. Сост-е OUT = неопр. – неконкрет.	_	LIMSW_TARGET (блок преобр.) = PRIMARY_VALUE Сост-е PV_D = неопр неконкретизировано Сост-е OUT_D = неопр неконкретизировано		Невозможен
AL-43	Выход температу- ры за пределы диапазона	_	Сост-е PV = неопред. ("Uncertain") — неконкрет. Сост-е SV = неопред. ("Uncertain") — замена	Сост-е PV = неконкрет. Сост-е OUT : неконкрет.		Сост-е PV_D = неопр. – неконкретизировано Сост-е OUT_D = неопр. – неконкретизировано		Невозможен
AL-51	Избыточная переходная вибрация	_	— Сост-е PV = неопред. – последнее рабочее значение	Сост-е PV = неопред. – неконкрет. Сост. OUT = неопред. – неконкрет.	_	LIMSW_TARGET (блок преобр.) = PRIMARY_VALUE Сост-е PV_D = неопр. — неконкретизировано Сост-е OUT_D = неопр. — неконкретизировано		Возможен ("ОГГ" – выкл.)
AL-52	Избыточная вибрация	_	— Cocт-е PV = аномальн.— неконкретизировано	Сост-е PV = аномальн. – неконкрет. Сост-е OUT = аномальн.	_	LIMSW_TARGET (блок преобр.) = PRIMARY_VALUE Coct-e PV_D = аномальн. – неконкрет. Coct-e OUT_D = аномальн. – неконкрет.		Возможен ("OFF" – выкл.)
AL-53	Аномалия потока (закупорива- ние)	_	Сост-е PV = неопред. ("Uncertain") – неточ- ность преобразования датчика	- неконкрет. Сост-е PV = неопред неконкрет. Сост-е OUT = неопр неконкрет.	_	LIMSW_TARGET (блок преобр.) = PRIMARY_VALUE Сост-е PV_D = неопр неконкретизировано Сост-е OUT_D = неопр неконкретизировано		Возможен ("OFF" – выкл.)
AL-54	Аномалия потока (флуктуация)	_	Сост-е PV = неточ- ность преобразования датчика	Сост-е PV = неопред. – неконкрет. Сост-е OUT = неопр. – неконкрет.	_	LIMSW_TARGET (блок преобр.) = PRIMARY_VALUE Сост-е PV_D = неопр неконкретизировано Сост-е OUT_D = неопр неконкретизировано		Возможен ("ОFF" – выкл.)
AL-61	Выход дисплея за пределы диапазона	_		-	_	_		Невозможен
AL-62	Блок AI1 в ручном режиме (MAN)	_	_		_	_		Возможен ("ON" – вкл.)

ЖК- диспл.	Сигнали- зация	Блок ресурсов	Блок преобр.	Блок Al1	Блок Al2	Блок DI1	Блок DI2	Сброс сигнализа- ции (по умолч.)
AL-63	В блоке AI1 включена имитация	BLOCK_ERR = Включена имитации	-	BLOCK_ERR = Включена имитации	_	-		Возможен ("ON" – вкл.)
AL-64	Отсутствует график блока AI1	_	_		1	_		Возможен ("ON" – вкл.)
AL-65	Блок AI2 в ручном режиме (MAN)	_	_	_		_		Возм.("OFF" – выкл.)
AL-66	В блоке Al2 включена имитация	BLOCK_ERR = Включена имитации	_	_	BLOCK_ERR = Включена имитации	_		Возм.("OFF" – выкл.)
AL-67	Отсутствует график блока AI2	_	_	_		_		Возм.("OFF" – выкл.)
AL-68	Блок DI1 в ручн. режиме (MAN)	_	-	_	_		_	Возм.("OFF" – выкл.)
AL-69	В блоке DI1 включена имитация	_	_	_	_	BLOCK_ERR = Включена имитации	_	Возм.("OFF" – выкл.)
AL-70	Отсутствует график блока DI1	_	_	_	_		_	Возм.("OFF" – выкл.)
AL-71	Блок DI2 в ручн. режиме (MAN)	_	_	_		_		Возм.("OFF" — выкл.)
AL-72	В блоке DI2 включена имитация	_	_	_	_	_	BLOCK_ERR = Включена имитации	Возм.("OFF" – выкл.)
AL-73	Отсутствует график блока DI2	_	_	_		_		Возм.("OFF" – выкл.)
AL-74	Блок ПИД- регул. в режиме BYPASS	_	_	_		_	_	Возм.("OFF" – выкл.)
AL-75	Отказ блока ПИД-регул.	_	_	_			_	Возм.("OFF" – выкл.)
AL-76	Отказ блока ПИД-регул.	_	_	_	_	_	_	Возм.("OFF" – выкл.)

1. Сброс сигнализации.

Некоторая сигнализация может быть выключена с использованием выключателей, предусмотренных для параметра

ALARM PARFORM блока преобразования.

(1) Переключающие разряды

Как показано в таблице ниже, отдельные разряды параметра ALARM_PERFORM, имеющего относительный индекс 45, работают как переключатели, включающие или выключающие отдельную сигнализацию. Для отключения желаемой сигнализации следует ввести "0" в соответствующий разряд. Включение сигнализации производится вводом "1".

(2) Установки по умолчанию

См. таблицу ниже.

Разряд параметра ALARM_PERFORM	Соответствующая сигнализация	Заводская установка по умолчанию (0 = сигн. выключена; 1 = сигн. включена)		
Разряд 15	Не используется			
Разряд 14	Не используется			
Разряд 13	Не используется			
Разряд 12	С AL-62 по AL-64 (сигналы, имеющие отношение к блоку Al1)	1		
Разряд 11	С AL-65 по AL-67 (сигналы, имеющие отношение к блоку Al2)	0		
Разряд 10	С AL-68 по AL-70 (сигналы, имеющие отношение к блоку DI1)	0		
Разряд 9	С AL-71 по AL-73 (сигналы, имеющие отношение к блоку DI2)	0		
Разряд 8	Разряд 8 С AL-74 по AL-76 (сигналы, имеющие отношение к блоку ПИД- регулирования)			
Разряд 7	Не используется			
Разряд 6	Соответствует параметру К45 устройства digitalYEWFLO, не относящегося к типу, использующему связь Fieldbus. Выходной сигнал вырабатывается при выявлении состояния "High Vibration" (сильная вибрация) в ходе выполнения самодиагностики.			
Разряд 5	AL-05 (неисправность датчика потока)	1		
Разряд 4	Разряд 4 AL-06 (неисправность датчика потока)			
Разряд 3	AL-51 (неисправность датчика потока)	0		
Разряд 2	AL-52 (неисправность датчика потока)	0		
Разряд 1	AL-53 (неисправность датчика потока) 0			
Разряд 0	0			

Указанные состояния разрядов, устанавливаемые по умолчанию, составляют 0x1030 в качестве значения параметра ALARM_PERFORM по умолчанию.

Приложение 4. Принципиальные схемы функциональных блоков

А4.1 Функциональный блок АІ

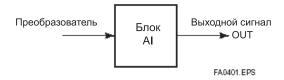


Рис.A4-1. Вход / выход блока AI

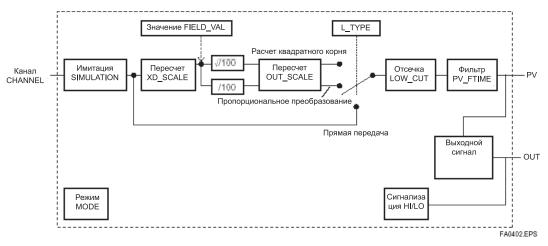


Рис.A4-2. Принципиальная схема блока AI

А4.2 Функциональный блок DI

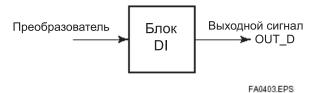
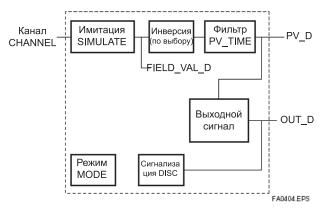
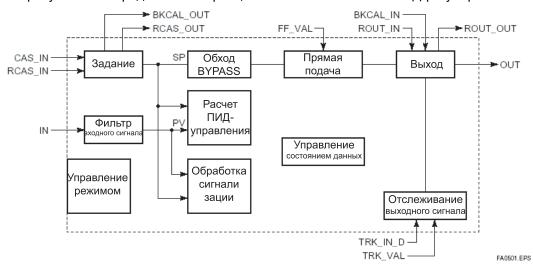


Рис.А4-3. Вход / выход блока DI




Рис.А4-2. Принципиальная схема блока DI

Приложение 5. Блок ПИД-регулирования

Блок ПИД-регулирования выполняет расчет управляющего воздействия по величине отклонения замеренного значения параметра процесса (PV) от значения задания (SV). ПИД-регулирование обычно используется для управления с постоянным значением задания и для каскадного управления.

А5.1 Принципиальная схема

На рисунке ниже представлена принципиальная схема блока ПИД-регулирования

А5.2 Функции блока ПИД-регулирования

В таблице ниже перечислены функции блока ПИД-регулирования

Функция	Описание
Расчет ПИД-управления	Расчет управляющего выхода в соответствии с алгоритмом ПИД-регулирования
Управляющий выход	Преобразование изменения управляющего выхода ∆MV в регулируемое значение MV,
	выдаваемое в качестве фактического выходное значение
Переключение направления	Переключение направления управляющего действия, т.е. направления изменения
управляющего выхода	управляющего выхода в зависимости от изменения значения отклонения, с прямого на
	обратное.
Обход управляющего	При включении данной функции происходит масштабный пересчет значения задания (SV) в
действия	соответствии с диапазоном выхода (OUT). Результат выдается в качестве выходного
	значения.
Прямая передача	Добавление значения FF_VAL (вход на блок ПИД-регулирования) к результату расчета
-	ПИД-управляющего действия.
Отслеживание замеренного	Приравнивание значение задания (SP) к замеренному значению параметра процесса (PV).
значения	
Ограничители задания	Ограничение значения задания (SP) предварительно заданными верхним и нижним
	пределами, а также ограничение скорости изменения, когда блок ПИД-регулирования
	находится в автоматическом режиме (Auto).
Отслеживание внешнего	Масштабный пересчет значения TRK_VAL по диапазону выхода (OUT). Результат выдается
выхода	в качестве выходного значения.
Изменение режима	Изменение режима блока . Варианты: O/S, IMan, LO, Man, Auto, Cas, Rcas.
Мягкая передача управления	Предотвращение резкого изменения управляющего выхода (OUT) при изменении режима
	блока и при переключении соединения с управляющего выхода (OUT) на вторичный
	функциональный блок в каскадной организации.
Инициализация и ручной	Изменение режима блока на IMan и приостановка управляющего действия при возникнове-
переход на аварийный режим	нии конкретных условий.
Ручной переход на аварийный	Изменение режима блока на ручной (Man) и аварийное прерывание управляющего
режим	действия.
Автоматический переход на	Изменение режима блока, функционирующего в каскадном режиме (Cas), на автоматиче-
аварийный режим	ский (Auto) и продолжение выполнения управляющего действия с использованием задания,
	устанавливаемого оператором.
Сброс режима в случае сбоя	Изменение режима блока в соответствии с установкой, заданной для параметра SHED_OPT
компьютера	в случае сбоя компьютера.
Обработка сигнализации	Выработка и обработка сигнализации, обновление событий.

А5.3 Параметры блока ПИД-регулирования

ПРИМЕЧАНИЕ: В таблице ниже столбец "Запись" содержит указание режимов, в которых возможна запись соответствующих параметров. Пустая ячейка данного столбца указывает на то, что для соответствующего параметра запись возможна в любом режиме блока ПИД-регулирования. Знак "— " означает, что запись невозможна ни в одном из режимов.

Индекс	Наименование параметра	Заводская установка по умолч.	Запись	Эффективный диапазон	Описание
0	Block Header (заголовок блока)	TAG: "PID"	Признак блока = O/S		Аналогично блоку AI
1	ST_REV		_		Аналогично блоку AI
2	TAG_DESC	(пусто)			Аналогично блоку AI
3	STRATEGY	0			Аналогично блоку AI
4	ALERT_KEY	1		От 1 до 255	Аналогично блоку AI
5	MODE_BLK				
6	BLOCK_ERR		_		Аналогично блоку AI
7	PV		_		Замеренное значение; безразмерное значение как результат преобразования входного значения (IN) по значениям PV_SCALE и фильтрации.
8	SP	0	AUTO (авт.)	PV_SCALE ± 10%	Задание
9	OUT		МАП (ручн.)		Выходное значение
10	PV_SCALE	100 0 1342(%) 1 100	O/S (нерабоч.)		Значения верхнего и нижнего пределов шкалы для пересчета входного значения (IN). Значения верхнего и нижнего пределов
11	OUT_SCALE	0 1342(%) 1	O/S		шкалы для пересчета управляющего выхода (OUT) в значения в технических единицах измерения.
12	GRANT_DENY	0	AUTO		Аналогично блоку AI
13	CONTROL_OPTS	0	O/S		Задание для управляющего действия. См. раздел А5.13.
14	STATUS_OPTS	0	O/S		См. раздел А5.13.
15	IN	0			Вход регулируемого значения
16	PV_FTIME	0 сек	AUTO	≥ 0	Временная константа (сек) фильтрации с запаздыванием первого порядка, приме- няемой к входному значению (IN)
17	BYPASS	1 (off – выкл.)	MAN	1, 2	Выбор обхода расчета управления. 1 (выкл.): обход не выполняется. 2: (вкл.): обход выполняется.
18	CAS_IN	0			Каскадное задание.
19	SP_RATE_DN	1,#INF		> 0	Предел скорости линейного уменьшения задания (SP)
20	SP_RATE_UP	1,#INF		> 0	Предел скорости линейного увеличения задания (SP)
21	SP_HI_LIM	100		PV_SCALE ± 10%	Верхний предел задания (SP)
22	SP_LO_LIM	0		PV_SCALE ± 10%	Нижний предел задания (SP)
23	GAIN	1			Коэффициент передачи пропорционального регулятора (=100 / пропорциональный диапазон)
	RESET	10			Время интегрирования (сек)
25	BAL_TIME	0		> 0	Не используется
26	RATE	0		> 0	Время дифференцирования (сек)
27	BKCAL_IN	0			Эхосчитывание управляющего выхода
28	OUT_HI_LIM	100		OUT_SCALE ± 10%	Верхний предел управляющего выхода (OUT)
29	OUT_LO_LIM	0		OUT_SCALE ± 10%	Нижний предел управляющего выхода (OUT)
30	BKCAL_HYS	0.5(%)		От 0 до 50%	Гистерезис при снятии предела состояния выхода (OUT).
31	BKCAL_OUT	0	_		Значение эхосчитывания, пересылаемое параметру ВКСАL_IN блока верхнего уровня.
32	RCAS_IN	0			Задание, заданное в разнесенном режиме с компьютера и т.д.
33	ROUT_IN	0			Значение управляющего выхода, заданное в разнесенном режиме с компьютера и т.д.

Приложение 4. Принципиальные схемы функциональных блоков

Индекс	Наименование параметра	Заводская установка по умолч.	Запись	Эффект. диапазон	Описание
34	SHED_OPT	0			Действие, предусмотренное на случай сброса режима. Параметр SHED_OPT определяет изменение элементов "Target" и "Actual" (целевой и фактический режимы) параметра MODE_BLK в случае аномального (Bad) состояния параметров RCAS_IN или ROUT_IN, если для элемента "Actual" параметра MODE_BLK задана установка RCas или ROut. См. разд. A5.17.1.
35	RCAS_OUT	0	_		Разнесенное задание, посылаемое на компьютер и т.д.
36	ROUT_OUT	0	_		Значение разнесенного управляющего выхода.
37	TRK_SCALE	100 0 1342(%) 1	МАМ (ручн.)		Верхний и нижний пределы шкалы, используемой для преобразования значения отслеживания выхода (TRK_VAL) в безразмерную величину.
38	TRK_IN_D	0			Переключатель для отслеживания выхода. См. раздел 5.12.
39	TRK_VAL	0			Значение отслеживания выхода. Когда для элемента "Actual" (фактический) параметра MODE_BLK задана установка LO, в качестве выходного значения выдается результат масштабного пересчета значения TRK_VAL.
40	FF_VAL	0			Значение входа прямой передачи. Значение FF_VAL пересчитывается по шкале, установленной для выходного значения (OUT), и умножается на значение FF_GAIN. Результат добавляется к выходному значению ПИД-регулирования.
41	FF_SCALE	100 0 1342(%) 1	МАМ (ручн.)		Пределы шкалы для преобразования значения FF_VAL в безразмерное значение.
42	FF_GAIN	0	МАМ (ручн.)		Коэффициент, на который умножается FF_VAL.
43	UPDATE_EVT				Аналогично блоку AI
44	BLOCK_ALM		_		Аналогично блоку AI
45	ALARM_SUM	Функция включена			Аналогично блоку AI
46	ACL_OPTION	0			Аналогично блоку AI
47	ALARM_HYS	0.5%		От 0 до 50%	Гистерезис обнаружения и сброса сигнализации для предотвращения выработки всех сигналов и их повторного срабатывания через короткое время.
48	HI_HI_PRI	0		От 0 до 15	Порядок приоритета для сигнализации HI_HI_ALM.
49	HI_HI_LIM	1,#INF		PV_SCALE	Задание для сигнализации HI_HI_ALM.
50	HI_PRI	0			Порядок приоритета для сигнализации HI_ ALM.
51	HI_LIM	1,#INF			Задание для сигнализации HI_ALM.
52	LO_PRI LO LIM	0			Порядок приоритета для сигнализации LO_ALM.
53 54	LO_LIM LO_LO_PRI	-1,#INF 0			Задание для сигнализации LO_ALM.
55	LO_LO_LIM	-1,#INF			Порядок приоритета для сигнализации LO_LO_ALM. Задание для сигнализации LO_LO_ALM.
56	DV_HI_PRI	0			Порядок приоритета для сигнализации DV_HI_ALM
57	DV_HI_LIM	1,#INF			Задание для сигнализации DV_HI_ALM.
58	DV_LO_PRI	0		От 0 до 15	Порядок приоритета для сигнализации DV_LO_ALM
59	DV_LO_LIM	-1,#INF			Задание для сигнализации DV_LO_ALM.
60	HI_HI_ALM	_	_		Сигнализация, вырабатываемая при превышении параметром процесса (PV) предельного значения HI_HI_LIM, и чей порядок приоритета* определен параметром HI_HI_PRI. * Порядок приоритета: Единовременно может срабатывать только один сигнал. Если одновременно вырабатываются несколько сигналов, срабатывает тот из них, который имеет наивысший приоритет. При падении PV ниже значения [HI_HI_LIM – ALM_HYS] происходит сброс сигнализации HI_HI_ALM.
61	HI_ALM				См. выше.
62	LO_ALM		_		См. выше. Сброс сигнализации происходит, когда PV вырастает до уровня выше [LO_LIM + ALM_HYS].
63	LO_LO_ALM		_		См. выше.
64	DV_HI_ALM	_	_		Сигнализация, вырабатываемая при превышении значением [PV – SP] значения DV_HI_LIM. В остальном аналогично HI_HI_ALM.
65	DV_LO_ALM	_	_		Сигнализация, вырабатываемая при падении значения [PV – SP] ниже уровня DV_LO_LIM. В остальном аналогично LO_LO_ALM.

А5.4 Расчет ПИДрегулирования

ПИД-регулирование, реализуемое в устройстве digitalYEWFLO, предполагает выполнение алгоритма регулирования, пропорционального PV и по производной PV (называемого алгоритмом I-PD), и алгоритма регулирования по производной PV (PI-D), в зависимости от режима, как описано ниже.

А5.4.1 Алгоритм регулирования, пропорциональный PV и по производной PV (I-PD), и алгоритм регулирования по производной PV (PI-D)

Алгоритм регулирования I-PD, выражаемый приведенным ниже соотношением, обеспечивает стабильность управления при внезапном изменении задания, например, если пользователь вводит новое значение задания. Алгоритм I-PD также обеспечивает хорошую регулируемость процесса за счет выполнения пропорционального, интегрированного и дифференциального управляющих действий в ответ на изменение характеристик управляемого процесса, изменение нагрузки и возникновение возмущений.

Алгоритм I-PD используется для управления, когда блок ПИД-регулирования находится в автоматическом (Auto) или разнесенном каскадном (RCas) режиме. В каскадном (Cas) режиме, однако, вступает в действие алгоритм PI-D (по производной PV), так как в этом случае более важна реакция на изменение задания. Таким образом, происходит автоматическое переключение алгоритма регулирования в соответствии с изменением режима. Ниже приведены основные формулы расчета, заложенные в перечисленных алгоритмах.

Алгоритм, пропорциональный PV и по производной PV (I-PD):

$$\Delta \mathsf{MVn} = \mathsf{K} \Big\{ \Delta \mathsf{PVn} + \frac{\Delta \mathsf{T}}{\mathsf{T} \mathsf{i}} \left(\mathsf{PVn} - \mathsf{SPn} \right) + \frac{\mathsf{Td}}{\Delta \mathsf{T}} \Delta (\Delta \mathsf{PVn}) \Big\}$$

Алгоритм по производной PV (PI-D):

$$\Delta \text{MVn} = \text{K} \Big\{ \! \Delta (\text{PVn} - \text{SPn}) + \frac{\Delta T}{\text{Ti}} (\text{PVn} - \text{SPn}) + \frac{T\text{d}}{\Delta T} \Delta (\Delta \text{PVn}) \! \Big\}$$

где

∆MVn = приращение управляющего выхода

= изменение измеряемого (регули-ΔPVn руемого) значения = PVn - PVn-1

 ΔT = период регулирования = элемент "period_of_execution" (период выполнения в заголовке блока (Block

Header) K = коэффициент передачи пропорц. регулятора = GAIN (=100 / пропорц.

ΤI = время интегрирования = RESET

= время дифференцирования = RATE T_D

Нижние индексы n и n-1 обозначают время замера, т.е. значения PVn и PVn-1 самое последнее значение PV и значениеPV, полученное за предшествующий период регулирования, соответственно.

А5.4.2 Параметры ПИДрегулирования

В таблице ниже перечислены параметры ПИД-регулирования.

Параметр	Описание	Эффективный диапазон
GAIN	Коэффициент передачи пропорционального регулирования	от 0.05 до 20
RESET	Время интегрирования	от 0.1 до 1000 сек
RATE	Время дифференциро- вания	от 0 до ∞ (в сек)

А5.5 Управляющий выход

Итоговое управляющее выходное значение MV рассчитывается по приращению управляющего выхода ∆MVn, вычисляемого в ходе каждого периода управления в соответствии с упоминаемым выше алгоритмом. Блок ПИДрегулирования в устройстве digitalYEWFLO в качестве управляющего выхода вырабатывает выходное действие скоростного типа.

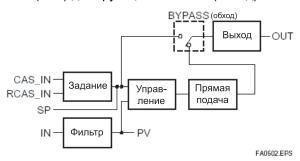
А5.5.1 Выходное действие скоростного типа

Блок ПИД-регулирования определяет значение управляющего выхода (OUT) путем прибавления приращения контрольного выхода ΔMVn , рассчитанного за текущий период управления, к значению BKCAL IN, обратно считываемому с выхода пункта назначения. Выходное действие скоростного типа выражается формулой:

OUT = BKCAL_IN -
$$\Delta$$
MVn'

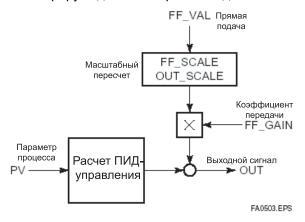
где $\Delta MVn'$ есть приращение ΔMVn , пересчитанное в масштабе, определяемом параметрами PV_SCALE и OUT_SCALE.

Примечание: MV означает результат расчета по алгоритму ПИД-регулирования


А5.6 Направление управляющего действия

Направление управляющего действия определяется установкой, заданной для параметра "Direct Acting" (прямое действие) функции CONTROL_OPTS.

Установка для параметра "Direct Acting"	Действие
True (истинно)	Выходное значение возрастает, если входное значение PV превышает задание SP
False (ложно)	Выходное значение убывает, если входное значение PV превышает задание SP


А5.7 Обход управляющего действия

Возможен обход расчета управляющего действия по ПИД-алгоритму с установкой значения задания (SP) в качестве управляющего выхода (OUT), как показано ниже. Обход расчета управляющего действия по ПИД-алгоритму достигается заданием установки "On" (вкл.) для функции BYPASS (обход).

А5.8 Прямая подача

Прямая подача представляет собой добавление компенсирующего входного сигнала FF_VAL к результату расчета управляющего действия по ПИД-алгоритму. Эта функция обычно используется для управления с прямой подачей. Приведенный ниже рисунок иллюстрирует действие прямой подачи.

А5.9 Режимы блока

Для задания режима блока используется параметр MODE BLK.

MODE DIV	"Torgot	Honopoù povere a rozoni iù
MODE_BLK	"Target	Целевой режим, в который
	(целевой)	переходит блок ПИД-
		регулирования.
	"Actual"	Текущий режим блока ПИД-
	(фактический)	регулирования.
	"Permitted"	Режимы, в которые блок
	(разрешенный)	ПИД-регулирования может
		перейти. Переход в режим,
		не указанный для этого
		элемента, запрещен.
	"Normal"	Режим, в котором обычно
	(нормальный)	находится блока ПИД-
		регулирования.

Для блока ПИД-регулирования предусмотрены восемь режимов.

Режим	Описание
ROut	Режим разнесенного выхода, в котором в качестве
	выходного значения блок ПИД-регулирования
	выдает установку, заданную для параметра
	ROUT_IN.
RCas	Разнесенный каскадный режим, в котором блок
	ПИД-регулирования выполняет расчет управления
	по значению задания (SP), устанавливаемому
	через разнесенное каскадное соединение,
	например, с компьютера, и результат расчета
	выдается в качестве выходного значения.
Cas	Каскадный режим, в котором блок ПИД-
	регулирования выполняет расчет управления по
	значению задания (SP), пересылаемому с другого
	функционального блока по каналу связи Fieldbus,
	и результат расчета выдается в качестве
	выходного значения.
Auto	Блок ПИД-регулирования выполняет автоматиче-
	ское управление и выдает результат расчета по
	ПИД-алгоритму в качестве выходного значения.
Man	Ручной режим, в котором блок ПИЛ-регулирования
	в качестве выходного значения выдает установку,
LO	вводимую пользователем вручную.
LLO	Блок ПИД-регулирования в качестве выходного
	значения выдает установку, заданную для
IMan	параметра TRK_VAL.
IIVIAII	Инициализация и ручное управление, предусмат-
	ривающее приостановку управляющего действия. Блок ПИД-регулирования входит в этот режим в
O/S	определенных условиях (см. раздел А5.14).
0/3	Нерабочий режим, в котором не выполняется ни
	расчет управления, ни управляющее действие, а в качестве выходного значения фиксируется
	величина, выдаваемая в качестве такового до
	перехода блока в нерабочий режим.
	перехода олока в пераоочии режим.

А5.9.1 Переход в другой режим

Режим назначе- ния	Условие выполнения перехода	Условие невыполнения перехода
O/S	1. Если для элемента "target" параметра МОDE_BLK задана установка "O/S" (или если установка "O/S" задана для элемента "target" в блоке ресурсов).	
IMan	2. Если выполняется заданное условие (см. раздел A5.14)	Не выполняет- ся , если выполнено условие 1.
LO	3. Если для параметра CONTROL_OPTS задана установка "Track Enable" (включена функция отслеживания), и значение TRK_IN_D — "true" (истинно).	Не выполняется, если выполнено условие 1 или 2, или оба сразу.
Man	4. Если для элемента "target" параметра MODE_BLK задана установка "Man", или в случае аномального (Bad) состояния параметра IN.	Не выполняет- ся, если выполнено одно или более из условий 1 ÷ 3.
Auto*	5. Если для элемента "target" параметра МОDE_BLK задана установка "Auto", а также если состояние параметра IN (состояние входа) не является аномальным (Bad).	Не выполняется, если выполнено одно или более из условий 1 ÷ 3.
Cas*:**	6. Если для элемента "target" параметра МОDE_BLK задана установка "Cas", а также если состояние параметров IN и CAS_IN не является аномальным (Bad).	Не выполняется, если выполнено одно или более из условий 1 ÷ 3.
RCas*:**	7. Если для элемента "target" параметра МОDE_BLK задана установка "RCas", а также если состояние параметров IN и RCAS_IN не является аномальным (Bad).	Не выполняется, если выполнено одно или более из условий 1 ÷ 3.
ROut*'**	8. Если для элемента "target" параметра МОDE_BLK задана установка "ROut", а также если состояние параметра ROUT_IN (состояние входа) не является аномальным (Bad).	Не выполняет- ся, если выполнено одно или более из условий 1 ÷ 3.
В соответ- ствии с ус- тановкой для SHED_OPT	9. Если состояние параметра RCAS_IN или ROUT_IN является аномальным (Bad) (указание на сбой компьютера; см. раздел А5.17.1).	

- * Для активизации перехода в режимы AUTO, CAS, RCAS и ROUT необходимо заблаговременно задать соответствующие целевые ("target") установки для параметра MODE.BLK.
- ** Для перехода в режимы CAS, RCAS или ROUT необходимо заблаговременно выполнить инициализацию каскадного соединения.

А5.10 Мягкая передача управления

Предотвращает резкое изменение управляющего выхода (OUT) при изменении режима блока (MODE_BLK) и при переключении соединения с управляющего выхода (OUT) на вторичный (в каскадном соединении) функциональный блок. Действие, реализующее мягкую передачу управления, различается в зависимости от значения параметра MODE BLK.

А5.11 Ограничители задания

Активные ограничители задания, налагающие предел на изменение значения задания (SP), различаются в зависимости от режима блока, как описано ниже.

А5.11.1 Блок ПИД-регулирования в режиме AUTO

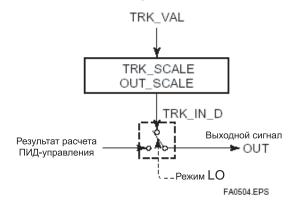
Если для параметра MODE_BLK задана установка AUTO, вступают в силу четыре ограничителя: верхний предел, нижний предел, предел скорости увеличения и предел скорости убывания.

Верхний/нижний пределы задания

- В качестве задания (SP) невозможен ввод величины, превышающей значение SP HI LIM.
- В качестве задания (SP) невозможен ввод величины ниже значения SP LO LIM.

Ограничители скорости изменения задания

Эти ограничители используются для ограничения величины приращения значения SP для обеспечения постепенного перехода к новому значению задания.


- Увеличение SP на протяжении одного цикла выполнения (элемент "period of execution" (период выполнения в заголовке блока (Block Header) ограничивается значением SP RATE UP.
- Уменьшение SP на протяжении одного цикла выполнения (элемент "period of execution" (период выполнения в заголовке блока (Block Header) ограничивается значением SP RATE DOWN..

А5.11.2 Блок ПИД-регулирования в режиме CAS или RCAS

При выборе элемента "Obey SP Limits if Cas or Rcas" (соблюдать пределы SP в режиме CAS или RCAS) параметра CONTROL_OPTS (см. раздел A5.13.1) вступают в силу верхний / нижний пределы задания, когда для параметра MODE_BLK задана установка CAS или RCAS.

А5.12 Внешнее отслеживание выхода

Внешнее отслеживание заключается в выдаче в качестве выходного значения установки для параметра TRK_VAL, вводимой извне блока ПИД-регулирования, как показано на рисунке ниже. Внешнее отслеживание выполняется, когда блок находится в режиме LO.

Для изменения режима блока на LO:

- (1) Выберите элемент "Track Enable" (включена функция отслеживания) параметра CONTROL_OPTS.
- (2) Задайте для параметра TRK_IN_D установку "true" (истинно).

Однако, чтобы перейти в режим LO из режима MAN, для параметра CONTROL_OPTS необходимо также задать установку "Track in Manual" (отслеживание в ручном режиме).

А5.13 Отслеживание замеренного значения

Отслеживание замеренного значения, называемое также отслеживанием SP-PV, заключается в приравнивании задания SP замеренному значению PV, когда фактическим режимом блока (MODE_BLK.actual) является режим MAN (ручной), для предотвращения резкого изменения управляющего выхода в результате перехода на режим AUTO (автоматический).

Когда первичный (в каскадном соединении) управляющий блок выполняет автоматическое или каскадное управление (режим AUTO или CAS), при изменении режима вторичного управляющего блока с CAS на AUTO происходит размыкание каскадного соединения и остановка управляющего действия первичного блока. В этом случае также можно приравнять значение задания SP первичного контроллера его входному значению в каскадном соединении CAS_IN.

В таблице ниже перечислены установки функции отслеживания замеренного значения, вводимые для параметра CONTROL_OPTS.

A5.13.1 Параметр CONTROL_OPTS

	<u> </u>
Опции параметра CONTROL_OPTS	Описание
Bypass Enable (включена функция обхода)	Этот параметр разрешает задание функции BYPASS.
SP-PV Track in MAN (отслеживание в режиме MAN) SP-PV Track in ROUT (отслеживание в режиме ROUT) SP-PV Track in LO or Iman (отслеживание в режиме LO или IMan)	Приравнивание SP к PV, когда для элемента "target" параметра МОDE_BLK задана установка "Man". Приравнивание SP к PV, когда для элемента "target" параметра МОDE_BLK задана установка "ROut". Приравнивание SP к PV, когда в качестве фактического (actual) режима задан режим LO или IMAN.
SP-PV Track retained Target (отслеживание SP-PV в соответствии с целевой установкой)	Приравнивание SP к RCas_IN, когда для элемента "target" (целевой режим) парам. MODE_BLK задана установка "RCas", или к CAS_IN, когда для элемента "target" парам. MODE_BLK задана установка "Cas", если фактич. режимом блока (actual) явл. IMan, LO, Мап или ROut.
Direct Acting (прямое действие)	Задание для блока ПИД- регулирования режима контроллера прямого действия.
Track Enable (включена функция отслеживания)	Включение функции внешнего отслеживания. Знач. TRK_VAL замещает выходное знач. (OUT), если параметр TRK_VAL_D принимает значение "true" (истинно), а целевым реж. (target) не является Man.
Track in Manual (отслеживание в ручном режиме)	Включение замещения выходного знач. (OUT) значением TRK_VAL, если целевым реж. (target) является Мап, а параметр TRK_VAL_D принимает знач. "true" (истинно). При этом фактич. (actual) реж. становится LO.
Use PV for BKCAL_OUT (использовать PV для BKCAL_OUT)	Задание значение PV в качестве BKCAL_OUT и RCAS_OUT вместо значения SP.
Obey SP limits if Cas or RCas (соблюдать пределы SP в реж. Cas или RCas)	Ввод в действие верхнего / нижнего пределов в режиме Cas или RCas.
No OUT limits in Manual (отмена ограничений для вых. знач. в режиме Man)	Выключение верхнего / нижнего пределов для выходного значения (OUT) в режиме Man.

А5.14 Инициализация и ручной переход на аварийный режим

Инициализация и ручной переход на аварийный режим состоит в выполнении действий по переводу блока ПИД-регулирования в режим IMAN и приостановке управляющего действия. Инициализация и ручной переход на аварийный режим происходит автоматически как реакция на аномальное состояние при возникновении следующих условий:

- Качественный показатель параметра BKCAL_IN указывает на аномалию (Bad).
- Качественный показатель параметра ВКСАL_IN указывает на исправное состояние (Good), А ТАКЖЕ Вторичным показателем состояния параметра ВКСАL IN является FSA, LO, NI или IR

Переход вручную на режим IMAN невозможен. Переход в режим IMAN происходит только при перечисленных выше условиях.

A5.14 Ручной переход на аварийный режим

Ручной переход на аварийный режим состоит в выполнении действия по переводу блока ПИД-регулирования в режим МАN (ручной) и приостановке управляющего действия. Ручной переход на аварийный режим происходит автоматически как реакция на аномальное состояние при выполнении следующего условия:

 Состояние параметра IN является аномальным (Bad), кроме случаев, когда включена функция обхода управляющего действия.

Для активизации функции ручного перехода на аварийный режим при возникновении указанного выше условия необходимо заблаговременно выбрать опцию "Target to Manual if BAD IN" (изменение целевой установки (target) для режима блока (MODE_BLK) на MAN в случае аномального состояния входа) параметра STATUS_OPTS.

В таблице ниже перечислены опции параметра STATUS_OPTS.

А5.15.1 Параметр STATUS_OPTS

Опции	Описание
параметра STATUS_OPTS	
IFS if BAD IN	Задание для вторичного показателя состояния параметра OUT установки IFS в случае аномального состояния входа (IN), кроме случаев, когда включена функция обхода ПИД-управления.
IFS if BAD CAS IN	Задание для вторичного показателя состояния параметра OUT установки IFS в случае аномального состояния входа (CAS_IN).
Use Uncertain as Good	Указание не рассматривать неопределенное (Uncertain) состояние параметра IN как аномальное (для предотвращения влияния состояния "Uncertain" на переход на другой режим).
Target to Manual if BAD IN	Автоматическое изменение элемента "target" (целевой режим) параметра МОDE_BLK на Мап в случае аномального (Bad) состояния параметра IN.
Target to next permitted mode if BAD CAS IN	Автоматическое изменение элемента "target" (целевой режим) параметра МОDE_BLK на Auto (или на Мап, если режим Auto не задан в числе разрешенных (Permitted) вариантов) в случае аномального (Bad) состояния параметра CAS_IN.

А5.16 Автоматический переход на аварийный режим

Автоматический переход на аварийный режим состоит в выполнении действия по переводу блока ПИД-регулирования с каскадного режима (CAS) в режим AUTO (автоматический) и продолжение автоматического ПИД-управления с использованием значения задания, установленного пользователем. Автоматический переход на аварийный режим происходит при выполнении следующего условия:

 Состояние параметра IN является аномальным (Bad), кроме случаев, когда включена функция обхода управляющего действия.

Для активизации функции автоматического перехода при выполнении указанного выше условия необходимо следующее:

- Заблаговременное задание опции "Target to next permitted mode if BAD CAS IN" параметра STATUS_OPTS, A TAKЖЕ
- Заблаговременное задание режима AUTO в числе разрешенных (permitted) режимов для параметра MODE_BLK.

А5.17 Сброс режима в случае сбоя компьютера

Когда состояние параметров RCAS_IN или ROUT_IN, вводимых с компьютера в качестве задания SP, становится аномальным (Bad), в то время как блок ПИД-регулирования работает в разнесенном каскадном режиме (RCAS) или режиме разнесенного выхода (ROUT), происходит сброс режима в соответствии с установками, заданными для параметра SHED_OPT.

А5.17.1 Параметр SHED_OPT

Установка для параметра SHED_OPTS определяет характеристики сброса режима, как описано ниже. Возможно задание только одного варианта.

Варианти и установки	Описание
Варианты установки для параметра SHED_OPT	Описание
Normal shed, normal	Задание в качестве фактич. (actual)
return	реж. для парам. MODE_BLK
(нормальный сброс,	установки "Cas*". Установка для
нормальный возврат)	целевого (target) реж. остается неизменной.
Normal shed, no return	Задание в качестве фактич. (actual)
(нормальный сброс	и целевого (target) режимов для
без возврата)	парам. MODE_BLK установки "Cas*".
Shed to Auto, normal	Задание в качестве фактич. (actual)
return	режима для парам. MODE_BLK
(сброс на Auto,	установки "Auto**". Установка для
нормальный возврат)	целевого (target) режима остается неизменной.
Shed to Auto, no return	Задание в качестве фактич. (actual)
(сброс на Auto без	и целев. (target) режимов для
возврата)	парам. MODE_BLK установки "Auto**".
Shed to Manual, normal	Задание в качестве фактич. (actual)
return	режима для парам. MODE_BLK
(сброс на Manual,	установки "Man". Установка для
нормальный возврат)	целевого (target) режима остается неизменной.
Shed to Manual, no	Задание в качестве фактич. (actual)
return	и целев. (target) режимов для
(сброс на Manual без возврата)	парам. MODE_BLK установки "Man".
Shed to retained target,	Если целевым (target) режимом является "Cas" - задание в качестве
normal return	
(сброс на удерживае-	фактич. (actual) режима для парам.
мый целевой режим,	MODE_BLK установки "Cas*".
нормальный возврат)	Установка для целевого (target)
	режима остается неизменной. Если
	"Cas" не является целевой
	установкой - задание в качестве
	фактич. (actual) режима для
	параметра MODE_BLK установки
	"Auto**". В обоих случаях установка
	для целевого (target) режима
Shed to retained target	остается неизменной.
Shed to retained target, no return	Если целевым (target) режимом является "Cas" – задание в
(сброс на удерживае-	качестве фактич. (actual) и
мый целевой режим	целевого (target) режимов для
без возврата)	параметра MODE_BLK установки
2305pa.a,	"Cas*". Если "Cas" не является
	целевой установкой – задание в
	качестве фактич. (actual) режима
	для параметра MODE_BLK
	установки "Auto**", а в качестве
	целевого (target) режима –
	установки`"Cas".

* Варианты режимов, в которые ПИД-блок может перейти, ограничены набором разрешенных (permitted) режимов, заданных для МОDE_BLK. Уровни приоритетов перечислены ниже. В действительности, если выбрана опция "Normal shed, normal return" параметра SHED_OPTS, при регистрации сбоя компьютера происходит изменение фактической (actual) установки параметра МОDE_BLK на вариант (CAS, AUTO или MAN) из числа разрешенных режимов, имеющий минимальный приоритет.

MAN	Высший уровень приоритета
AUTO	★
CAS	
RCAS	
ROUT	Низший уровень приоритета

** Только если "Auto" находится в числе разрешенных режимов. Если блок, находящийся выше по течению данных от рассматриваемого ПИД-блока, является управляющим блоком, переход ПИД-блока на режим CAS происходит в следующей

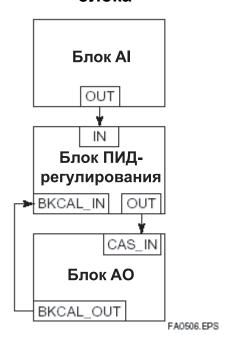
последовательности в зависимости от инициализации каскадного соединения: RCAS или ROUT ightarrow AUTO ightarrow CAS.

А5.18 Сигнализация

Существует два вида сигнализации, вырабатываемой блоком ПИД-регулирования: сигнализация блока и сигнализация процесса.

А5.18.1 Сигнализация блока (BLOCK_ALM)

Сигнализация блока BLOCK_ALM вырабатывается при возникновении любой из следующих ошибок (установки для параметра BLOCK_ERR) и извещает о содержании параметра BLOCK_ERR.


Значение параметра BLOCK_ERR	Описание
Input Failure (отказ входа)	Одно из перечисленных ниже состояний параметра IN (вход) блока ПИД-регулирования • "Bad – Device Failure" (аномальное состояние – отказ устройства) • "Bad – Sensor Failure" (аномальное состояние – неисправность датчика)
Out of Service (O/S) (нерабочее состояние)	Целевой (target) установкой для параметра MODE_BLK блока ПИД-регулирования является O/S (нерабочий режим).

А5.18.2 Сигнализация процесса

Существует шесть типов сигнализации процесса. Единовременно может срабатывать лишь один сигнал процесса, поэтому среди одновременно вырабатываемых сигналов срабатывает тот, который имеет наивысший приоритет. Уровень приоритета задается для каждого типа сигнализации процесса.

Сигнали зация про цесса	Причина возникновения	Параметр, содержащий установку уровня приоритета
HI_HI_ALM	Превышение PV значения HI_HI_LIM	HI_HI_PRI
HI_ALM	Превышение PV значения HI_LIM	HI_PRI
LO_ALM	Падение PV ниже уровня LO_LIM	LO_PRI
LO_LO_ALM	Падение PV ниже уровня LO_LO_LIM	LO_LO_PRI
DV_HI_ALM	Превышение разницей [PV-SP] значения DV_HI_ALM	DV_HI_PRI
DV_LO_ALM	Падение разницы [PV-SP] ниже уровня DV_HI_ALM	DV_LO_PRI

А5.19 Пример соединений блока

Планируя конфигурацию простого контура ПИД-регулирования с использованием комбинации устройства digitalYEWFLO с позиционером запирающего устройства канала Fieldbus, вмещающим блок аналогового выхода (AO), следуйте описанной ниже процедуре для выполнения установок соответствующих функциональных блоков, взаимодействующих по каналу связи Fieldbus.

- Соедините блок AI и ПИД-блок устройства digitalYEWFLO с блоком AO, как показано на рисунке выше.
- 2. Задайте для элемента "target" (целевой режим) параметра MODE_BLK ПИД-блока установку O/S (нерабочий), затем задайте подходящие установки для параметров GAIN, RESER и RATE.
- 3. Убедитесь, что установкой для элемента "actual" (фактический режим) параметра MODE_BLK блока AI является AUTO (автоматический).
- Задайте для элемента "target" (целевой режим) параметра MODE_BLK блока AO установку CAS AUTO (что означает "CAS и AUTO").
- 5. Убедитесь, что состояние (элемент "status") параметра BKCAL_IN ПИД-блока не является аномальным (т.е. не "Bad").
- 6. Убедитесь, что состояние (элемент "status") параметра IN ПИД-блока не является аномальным (т.е. не "Bad").
- 7. Убедитесь, что в качестве разрешенного режима (элемент "permitted") параметра

Приложение 6. Функции мастера связей

- MODE_BLK ПИД-блока задан режим AUTO (автоматический)
- 8. Задайте для элемента "target" (целевой режим) параметра MODE_BLK ПИД-блока установку AUTO.

По завершении выполнения всех шагов по порядку ПИД-блок и блок АО обмениваются соответствующей информацией и выполняют инициализацию каскадного соединения. При этом установка для фактического режима (элемент "actual") параметра MODE_BLK меняется на AUTO, и запускается процесс автоматического ПИД-регулирования.

Приложение 6. Функции мастера связей

А6.1 Активный планировщик связей

Активный планировщик связей (LAS) представляет собой детерминированное централизованное устройство управления связью в сегменте H1 канала Fieldbus. Сегмент H1 канала Fieldbus располагает лишь одним планировщиком LAS.

Устройство digitalYEWFLO поддерживает следующие функции планировщика LAS:

- PN-передача: идентификация нового устройства, подключаемого к данному сегменту канала Fieldbus. Аббревиатура "PN" означает "Probe Node узел измерительного устройства".
- РТ-передача: передача признака, определяющего право на передачу, устройству, подключаемому к данному сегменту канала Fieldbus. Аббревиатура "PT" означает "Pass Token – признак права передачи".
- CD-передача: запланированная передача устройству, подключенному к данному сегменту канала Fieldbus. Аббревиатура "CD" означает "Compel Data принудительная передача данных".
- Временная синхронизация: Периодическая рассылка временных данных на все устройства, подключенные к данному сегменту канала Fieldbus, и возврат временных данных в ответ на запрос от устройства.
- Коррекция активного списка: пересылка данных активного списка мастерам связей данного сегмента.
- Передача полномочий LAS: передача права функционирования в качестве планировщика LAS данного сегмента другому мастеру связей.

А6.2 Мастер связей

Мастером связей (LM) является любое устройство, включающее активный планировщик связей. На одном сегменте должен функционировать по меньшей мере один мастер связей. В случае отказа планировщика LAS, функционирующего на данном сегменте, функции LAS берет на себя другой мастер связей, действующий на этом же сегменте.

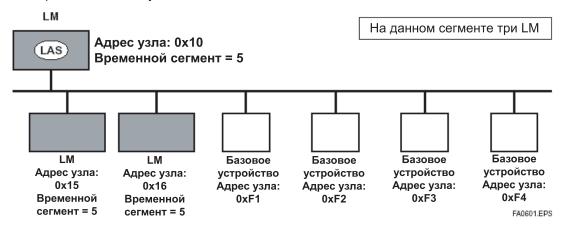


Рис. A6-1. Пример конфигурации канала связи Fieldbus – 3 мастера связей на одном сегменте.

A6.3 Передача полномочий LAS

Существуют две процедуры вступления мастера связей (LM) в полномочия LAS (активного планировщика связей):

- LM, чье значение [V(ST)×V(TN)] является наименьшим на данном сегменте, не считая текущий LAS, удостоверяет отсутствие действующего LAS на данном сегменте, и, как в случае запуска сегмента или отказа действующего LAS, объявляет себя LAS, после чего вступает в полномочия LAS. (При этом LM дублирует предшествующее состояние LAS, как показано на рисунке)
- LM, чье значение [V(ST)×V(TN)] является наименьшим на данном сегменте, не считая действующий LAS, посылает действующему LAS запрос на передачу полномочий LAS, после чего вступает в полномочия LAS.

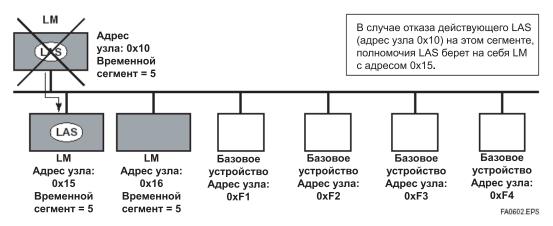


Рис. A6-2 Восстановление предшествующего состояния LAS

Настройка устройства digitalYEWFLO на восстановление предшествующего состояния LAS производится следующим образом.

ПРИМЕЧАНИЕ: Изменяя установки устройства digitalYEWFLO, добавьте это устройство к сегменту, на котором функционирует LAS. После изменения установок не выключайте питание устройства digitalYEWFLO по меньшей мере в течение 60 сек.

(1) Задайте узловой адрес устройства digitalYEWFLO. Обычно используется адрес от 0x10 до [V(FUN)-1].

Рис. А6-3. Диапазоны узловых адресов.

(2) Среди установок LAS устройства digitalYEWFLO задавайте значения V(ST), V(MRD) и V(MID), равные соответствующим наименьшим показателям возможностей всех устройств данного сегмента. Ниже показан пример.

Суб- индекс	Элемент	Устр-во digital YEWFLO	Устр. 1	Устр. 2	Устр. 3	Описание
1	SlotTime (ST) (временной сегмент)	4	8	10	20	Показатель возможностей для V(ST)
3	MaxResponse Delay (MRD) (максималь- ная задержка ответа)	3	6	3	5	Показатель возможностей для V(MRD)
6	MinInterPdu Delay (MID) (минималь- ная задержка между модулями данных протокола)	4	8	12	10	Показатель возможностей для V(MID)

В этом случае для параметров SlotTime (временной сегмент), MaxResponseDelay (максимальная задержка ответа) и MinInterPduDelay (минимальная задержка между модулями данных протокола) задаются следующие установки:

ConfiguredLinkSettingsRecord (устройство digitalYEWFLO, индекс 369 (SM))

Суб- индекс	Элемент	Установка (по умолч.)	Описание
1	SlotTime (ST)	20 (4095)	V(ST)
3	MaxResponseDelay (MRD)	6 (5)	V(MRD)
6	MinInterPduDelay (MID)	12 (12)	V(MID)

(2) Среди установок LAS устройства digitalYEWFLO задавайте такие значения V(FUN), V(NUN), чтобы они включали все узловые адреса устройств данного сегмента. (См. также рис. A6-3).

ConfiguredLinkSettingsRecord (устройство digitalYEWFLO, индекс 369 (SM))

Суб- индекс	Элемент	Установка (по умолч.)	Описание
4	FirstUnpolledNodeld	0x25	V(FUN)
7	NumConsecUnpolledNodeld	0xBA	V(NUN)

А6.4 Функции LM

Nº	Функция	Описание
		При запуске сегмента канала
		Fieldbus мастер связей (LM) с
		наименьшим в сегменте
١.	Инициализация LM	значением [V(ST)×V(TN)]
1		вступает в полномочия LAS.
		Каждый раз каждый LM
		проверяет наличие несущего
		1
		элемента в сегменте.
		Передача сообщения PN
	Запуск других узлов (PN-	(узел измерительного
	передача и передача	устройства) и сообщения
2	сообщения "Node Activation	SDPU по активизации узла
	SPDU" (сообщение SPDU	устройствам, возвращающим
	по активизации узла))	новое сообщение PR
	По актививации увла))	(ответный сигнал измери-
		тельного устройства).
		Последовательная передача
		признака РТ, определяющего
		право на передачу, устройст-
	РТ-передача (включая	вам, включенным в активный
3	текущий контроль	список, и текущий контроль
	последнего разряда (бита))	признака возврата (RT) и
	последного расрида (сита//)	последнего разряда (бита)
		сигнала, возвращаемого в
		ответ на РТ.
		Плановая передача в
4	СD-передача	заданные по графику
_	ОВ передача	моменты времени.
		Поддержка периодической
		передачи данных TD
		(баланса времени) и
5	Временная синхронизация	передачи ответного сигнала
		по запросу на временные
		данные (СТ)
		Установка графика. График
		корректируется только при
		посылке команды Domain
_		Download извне данного LM.
6	Сервер загрузки домена	(Версия графика обычно
		контролируется, однако
		никаких действий не
		предпринимается даже при
		изменении графика).
	Коррекция активного	Передача сообщений SPDU
7	списка	всем LM для коррекции
	o	активных списков.
8	Перепаца попискасний ГАС	Передача права на выполне-
0	Передача полномочий LAS	ние функций LAS другому LM.
0	Чтение/запись NMIB для	CM 22707 A6 5
9	LM	См. раздел А6.5
	Ответный сигнал на	
40	задержку полного обхода	Поддержка в текущей версии
10	(RR)	пока не предусмотрена.
	Ответ на сигнал DLPDU	
4.		Поддержка в текущей версии
11	Длинный адрес	пока не предусмотрена.
	I	

А6.5 Параметры LM

А6.5.1 Список параметров LM

В таблице ниже перечислены параметры LM устройства digitalYEWFLO.

Значения, указанные в столбце "**Доступ**", означают: RW = возможны чтение/запись; R = только чтение.

Индекс (SM)	Наименование параметра	Наименование суб-параметра (суб-индекс)	Заводская установка по умолчанию	Доступ	Замечания
362		CAPABILITIES_VARIABLE	0x04	RW	
363	(возможности мастера с DLME LINK MASTER			RW	
303	INFO_RECORD	1 MaxSchedulingOverhead	0	KVV	
	(информационная	2 DefMinTokenDelegTime	100		
	запись мастера связей DLME)	3 DefTokenHoldTime	300		
	DLIVIL)	4 TargetTokenRotTime	4096		
		5 LinkMaintTokHoldTime	400		
		6 TimeDistributionPeriod (период временного распределения)	5000		
		7 MaximumInactivityToClaimLasDelay	8		
		8 LasDatabaseStatusŚpduDistributionPeriod	6000		LAS: True (истинно) = 0xFF; не LAS: False (ложно) = 0x00
364	PRIMARY_LINK_MASTE		_	RW	ino Exte. i aloo (nomino) = exce
365	(признак главного масте LIVE_LIST_STATUS_AR		_	R	
	(массив состояния актив				
366	TIME ARRAY	0	0x0000x16, 0x012cx16	RW	
	(массив максимального времени удержания	1 Element 1 (элемент 1)	0x012cx5, 0x0000x27		
	признака)	2 Element 2 (элемент 2)	0x0000x32		
	. ,	3 Element 3 (элемент 3)	0x0000x32		
		4 Element 4 (элемент 4)	0x0000x32		
		5 Element 5 (элемент 5)	0x0000x32		
		6 Element 6 (элемент 6)	0x0000x32, 0x012c		
		7 Element 7 (элемент 7)	0x012cx32		
207	BOOT_OPERAT_FUNCT	8 Element 8 (элемент 8)	0x02	DW	0.04 (5
367	(функциональный класс	попас_ссазо : режима работы при загрузке)		RW	0x01 (базовое устройство); 0x02 (LM)
368	CURRENT_LINK_	0		R	, ,
	SETTING_RECORD	1 SlotTime (временной сегмент)			
	(действующие настройки связи)	2 PerDlpduPhlOverhead			
	indo pormu obrion)	3 MaxResponseDelay (максимальная			
		задержка ответа) 4 FirstUnpolledNodeld(первый			
		неопрошенный адрес)			
		5 ThisLink (идентификатор связи)			
		6 MinInterPduDelay (минимальная			
		задержка между модулями данных протокола)			
		7 NumConseeUnpolledNodeld			
		8 PreambleExtension (расширение			
		заголовка) 9 PostTransGapExtension			
		9 Post HansGapExtension 10 MaxInterChanSignalSkew (максимальная			
		межканальная расфазировка сигнала)			
		11 TimeSyncClass (класс временной			
200	CONFIGURED_LINK_	синхронизации)		DW	
369	SETTING RECORD	0 1 SlotTime (временной сегмент)	4095	RW	
	(сконфигурированные	2 PerDlpduPhlOverhead	4		
	настройки связи)	3 MaxResponseDelay (максимальная	5		
		задержка ответа) 4 FirstUnpolledNodeld (первый неопрошен-	37		
i		ный адрес) 5 ThisLink (идентификатор связи)	0		
		6 MinInterPduDelay (минимальная	12		
		задержка между модулями данных протокола)	12		
		7 NumConseeUnpolledNodeld	186		
		8 PreambleExtension (расширение заголовка)	2		
		9 PostTransGapExtension	1		
		10 MaxInterChanSignalSkew (максимальная межканальная расфазировка	0		
		сигнала) 11 TimeSyncClass (класс временной	4		
		синхронизации)			

Приложение 6. Функции мастера связей

Индекс	Наименование	Наименование	Заводская		
индекс (SM)	наименование параметра	суб-параметра	установка	Доступ	Замечания
` '	· · ·	(суб-индекс)	по умолчанию		
	PLME_BASIC_	0		R	
	CHARACTERISTICS (основные характери-	1 ChannelStatisticsSupported (поддержка статистики канала)	0x00		
	стики PLME)	2 MediumAndDataRatesSupported (носитель и скорость передачи данных)	0x49000000000000000		
		3 lecVersion (версия IEC)	1 (0x1)		
		4 NumOfChannels (число каналов)	1 (0x1)		
		5 PowerMode (режим питания)	0 (0x0)		
371	CHANNEL_STATES	0	,	R	
	(состояние каналов)	1 Channel 1 (канал 1)	0 (0x0)		
		2 Channel 2 (канал 2)	128 (0x80)		
		3 Channel 3 (канал 3)	128 (0x80)		
		4 Channel 4 (канал 4)	128 (0x80)		
		5 Channel 5 (канал 5)	128 (0x80)		
		6 Channel 6 (канал 6)	128 (0x80)		
		7 Channel 7 (канал 7)	128 (0x80)		
		8 Channel 8 (канал 8)	120 (0,000)		
372	PLME_BASIC_INFO	n		R	
312	(основные данные	1 InterfaceMode (режим интерфейса)	0 (0x0)	K	
	PLME)	2 LoopBackMode (режим обратной связи)	- ()		
	,	3 XmitEnabled (разрешение Xmit)	0 (0x0)		
		,	1 (0x1)		
		4 RcvEnabled (разрешение приема)	1 (0x1)		
		5 PreferredReceiveChannel (предпочти- тельный канал приема)	1 (0x1)		
		6 MediaTypeSelected (выбранный тип носителя)	73 (0x49)		
		7 ReceiveSelect (выбор приема)	1 (0x1)		
	LINK_SCHEDULE_ACTI			RW	
	(параметр активизации			_	
374	LINK_SCHEDULE_LIST	U 1 NumOfSchedules (кол-во графиков)		R	
	RECORD		0		
	(характеристики организации графика	2 NumOfSubSchedulesPerSchedule (кол-во подграфиков каждого графика)			
	связей)	3 ActiveScheduleVersion (версия активного графика)			
		4 ActiveScheduleOdIndex (Порядковый номер домена, где хранится активный график)	0		
		5 ActiveScheduleStartingTime (время старта активного графика)	0		
	DLME_SCHEDULE_	0		R	
	DESCRIPTOR.1	1 Version (версия)	0		
	(дескриптор 1 графика DLME)	2 MacrocycleDuration (продолжительность макроцикла)	0		
		3 TimeResolution (временное разрешение)	0		
376	DLME_SCHEDULE_	0	-	R	
	DESCRIPTOR.2	1 Version (версия графика LAS)	0		
	(дескриптор 2 графика DLME)	2 MacrocycleDuration (продолжительность макроцикла)	0		
		3 TimeResolution (временное разрешение)	0	 	
377	DOMAIN.1	(======================================		t	Чтение/запись невозможны.
	(домен 1)				Возможен доступ по запросу.
378	DOMAIN.2				Чтение/запись невозможны. Возможен доступ по запросу.

A6.5.2 Описание параметров LM

Ниже дано описание параметров LM передающего элемента устройства digitalYEWFLO.

Примечание: Не следует выключать питание устройства digitalYEWFLO ранее, чем через 60 сек после изменения установок параметров.

(1) DImeLinkMasterCapabilitiesVariable

Позиция разряда	і Значение І Описание		Знач.
B3: 0x04	График LAS в энергонезависимой памяти	Возможность (=1) или невозможность (=0) сохранения графика LAS в энергонезависимой памяти.	1
B2: 0x02	Поддержка регистрации последних значений.	Поддержка (=1) или отсутствие поддержки (=0) записи последних значений (LastValues-Record)	0
B1: 0x01	Поддержка записи статистики мастера связей	Поддержка (=1) или отсутствие поддержки (=0) записи статистики LM (DImeLinkMaster-StatisticsRecord)	0

(2) DlmeLinkMasterInfoRecord

Суб- индекс	Элемент	Размер (байт)	Описа- ние
1	MaxSchedulingOverhead	1	V(MSO)
2	DefMinTokenDelegTime	2	V(DMDT)
3	DefTokenHoldTime	2	V(DTHT)
4	TargetTokenRotTime	2	V(TTRT)
5	LinkMaintTokHoldTime	2	V(LTHT)
6	TimeDistributionPeriod	4	V(TDP)
7	MaximumInactivityToClaimLasDelay	2	V(MICD)
8	LasDatabaseStatusSpduDistributionPeriod	2	V(LDDP)

(3) PrimaryLinkMasterFlagVariable

Явное объявление полномочий LAS. Задание установки "true" (истинно) (0xFF) для этого параметра вынуждает устройство, к которому относится этот параметр, сделать попытку вступить в полномочия LAS. Однако, попытка записи установки "true" для этого параметра отклоняется, если установка "true" задана для аналогичного параметра, относящегося к любому другому устройству данного сегмента, имеющему меньший узловой адрес.

(4) LiveListStatusArrayVariable

Параметр размером 32 байт, где каждый разряд (бит) хранит информацию об активности устройств данного сегмента. Ведущий разряд (бит) соответствует адресу устройства 0х00, последний – адресу 0хFF. Ниже показан пример значения параметра LiveListStatusArrayVariable для случая, когда активными являются устройства сегмента связи Fieldbus с адресами 0х10 и 0х15.

(5) MaxTokenHoldTimeArray

Массив из 8 элементов по 64 байт, где каждые 2 байта хранят информацию о времени делегирования (задается как восьмиразрядное время), назначаемом для устройства. Время делегирования означает период времени, предоставляемый устройству через РТ-сообщение (признак, определяющий право передачи), посылаемое планировщиком LAS в ходе каждого цикла циркуляции признака.

Ведущие 2 байта соответствуют адресу устройства 0x00, а заключительные 2 байта - адресу 0xFF. Для получения доступа к этому параметру укажите суб-индекс.

(6) BootOperatFunctionalClass

Задание установки "1" для этого параметра позволяет перезапустить устройство, к которому относится этот параметр, в качестве базового устройства. Задание установки '2" позволяет перезапустить устройство в качестве мастера связей (LM).

(7) CurrentLinkSettingRecord и ConfiguredLinkSettingsRecord

Параметр CurrentLinkSettingRecord содержит информацию о действующих установках параметров шины. Параметр ConfiguredLinkSettingsRecord указывает на установки параметров шины, предусмотренные на случай использования устройства в качестве LAS. Таким образом, когда устройство выполняет функции LAS, указанные параметры имеют одинаковые значения.

Суб- индекс	Элемент	Размер (байт)	Описа- ние
1	SlotTime	2	V(ST)
2	PerDlpduPhlOverhead	1	V(PhLO)
3	MaxResponseDelay	1	V(MRD)
4	FirstUnpolledNodeld	1	V(FUN)
5	ThisLink	2	V(TL)
6	MinInterPduDelay	1	V(MID)
7	NumConseeUnpolledNodeld	1	V(NUN)
8	PreambleExtension	1	V(PhPE)
9	PostTransGapExtension	1	V(PhGE)
10	MaxInterChanSignalSkew	1	V(PhIS)
11	TimeSyncClass	1	V(TSC)

(8) DimeBasicInfo

Суб- индекс	Элемент	Размер (байт)	Описание
1	ClatTime	0	Показатель
1	SlotTime	2	возможностей для V(ST) устройства
2	PerDlpduPhlOverhead	1	V(PhLO)
3	MaxResponseDelay	1	Показатель возможностей для V(MRD) устройства
4	ThisNode	1	V(TN), адрес узла
5	ThisLink	2	∨(TL), идентифи- катор связи
6	MinInterPduDelay	1	Показатель возможностей для V(MID) устройства
7	TimeSyncClass	1	Показатель возможностей для V(TSC) устройства
8	PreambleExtension	1	V(PhPE)
9	PostTransGapExtension	1	V(PhGE)
10	MaxInterChanSignalSkew	1	V(PhIS)

(9) PlmeBasicCharacteristics

Суб- индекс	Элемент	Разм. (байт)	Знач.	Описание
1	ChannelStatis- ticsSupported (поддержка статистики канала)	1	0	Статистика не поддерживается
2	MediumAndData- RatesSupported (поддерживаемые носитель и скорость передачи данных)	8	0x49 00 00 00 00 00 00 00	Поддерживается проводной носитель, режим напряжения, скорость 31.25 Кбайт/сек
3	lecVersion (версия lec)	2	0x0403	Поддерживается IEC 4.3
4	NumOfChannels (число каналов)	1	1	
5	PowerMode (режим питания)	1	0	0: Питание от шины 1: Собственное энергообеспече- ние

(10) ChannelStates

Суб- индекс	Элемент	Разм. (байт)	Знач.	Описание
1	Channel 1 (канал 1)	1	0x00	"In Use" (используется), "No Bad since last read" (состояние не является аномальным с момента последнего считывания) "No Silent since last read" (не бездействует с момента последнего считывания), "No Jabber since last read" (не перегружен "мусором" с момента последнего считывания), ТхGооd (исправная передача), RxGood (исправный прием).
2	Channel 2 (канал 2)	1	0x80	"Unused" (не используется)
3	Channel 3 (канал 3)	1	0x80	"Unused" (не используется)
4	Channel 4 (канал 4)	1	0x80	"Unused" (не используется)
5	Channel 5 (канал 5)	1	0x80	"Unused" (не используется)
6	Channel 6 (канал 6)	1	0x80	"Unused" (не используется)
7	Channel 7 (канал 7)	1	0x80	"Unused" (не используется)
8	Channel 8 (канал 8)	1	0x80	"Unused" (не используется)

(11) PlmeBasicInfo

Суб- индекс	Элемент	Разм. (байт)	Знач.	Описание	
1	InterfaceMode (режим интерфей- ca)	1	0	0: Полудуплексный 1: Дуплексный	
2	LoopBackMode (режим обратной связи)	1	0	0: Отключен; 1: MAU; 2: MDS	
3	XmitEnabled (разрешение Xmit)	1	0x01	Канал 1 выключен	
4	RcvEnabled (разрешение приема)	1	0x01	Канал 1 выключен	
5	PreferredReceive- Channel (предпоч- тительный канал приема)	1	0x01	Канал 1 использует- ся для приема	
6	MediaTypeSelected (выбранный тип носителя)	1	0x49	Проводной носитель, режим напряжения, скорость 31.25 Кбайт/сек	
7	ReceiveSelect (выбор приема)	1	0x01	Канал 1 использует- ся для приема	

(12) LinkScheduleActivationVariable

Ввод номера версии графика LAS, ранее загруженного в память домена, в качестве значения этого параметра позволяет запустить выполнение соответствующего графика. Ввод значения "0" останавливает выполнение активного графика.

(13) LinkScheduleListCharacteristicsRecord

Суб- индекс	Элемент	Разм. (байт)	Описание
1	NumOfSchedules	1	Общее число графиков LAS, загруженных в память домена.
2	NumOfSubSched- ulesPerSchedule	1	Максимально возможное число подграфиков каждого графика. (в стеках связи компании Yokogawa предусмотрено фиксированное значение 1).
3	ActiveSchedule- Version	2	Номер версии графика, выполняемого в текущий момент.
4	ActiveSchedule- OdIndex	2	Порядковый номер домена, в памяти которого хранится график, выполняемый в текущий момент.
5	ActiveSchedule- StartingTime	6	Время начала выполнения текущего графика

(14) DImeScheduleDescriptor

Этот параметр представлен в количестве, соответствующем общему числу доменов. Каждый дескриптор содержит описание графика LAS, загруженного в память соответствующего домена. Для домена, в память которого график еще не загружен, все значения этого параметра равны нулю.

Суб- индекс	Элемент	Разм. (байт)	Описание
1	Version	2	Номер версии графика LAS, загруженного в память соответствующего домена.
2	MacrocycleDuration	4	Продолжительность макроцикла выполнения графика LAS, загруженного в память соответствующего домена.
3	TimeResolution	2	Временное разрешение, необходимое для выполне- ния графика LAS, загружен- ного в память соответст- вующего домена.

(15) Domain

Чтение/запись невозможны. Возможен доступ по запросу.

Запись графика LAS в домен возможна по команде "GenericDomainDownload", которая отдается с хоста.

А6.6 Ответы на часто задаваемые вопросы

- В1. При остановке LAS устройство digitalYEWFLO не выполняет восстановления его состояния и не вступает в полномочия LAS. Почему?
- O1-1. Настроено ли это устройство digitalYEWFLO на работу в качестве LM? Убедитесь, что для параметра "BootOperatFunctionalClass" (индекс 367) задана установка "2" (что означает выполнение функций LM).
- O1-2. Проверьте значения V(ST) и V(TN) всех LM данного сегмента и убедитесь, что они удовлетворяют следующим условиям:

digitalYEWFLO прочие LM $V(ST)\times V(TN)$ < $V(ST)\times V(TN)$

B2. Как настроить устройство digitalYEW-FLO на выполнение функций LAS?

O2-1. Убедитесь, что номера версий активных графиков действующего LAS и устройства digitalYEWFLO совпадают. Для этого откройте доступ к параметру "LinkScheduleListCharacteristicsRecord" (индекс 374 для устройства digitalYEW-FLO)

и проверьте установку для элемента - ActiveScheduleVersion (суб-индекс 3).

- O2-2. Чтобы объявить устройство digitalYEW-FLO активным планировщиком связей (LAS) и ввести его в полномочия LAS,
 - Задайте установку 0x00 ("false" ложно) для параметра PrimaryLink-MasterFlagVariable действующего I AS:
 - Задайте установку 0xFF ("true" истинно) для параметра PrimaryLink-MasterFlagVariable (индекс 364) устройства digitalYEWFLO.
- B3. К сегменту, на котором устройство digitalYEWFLO функционирует в качестве LAS, не удается подключить другое устройство. Почему?
- O3-1. Проверьте установки параметров шины, определяющие функционирование устройства digitalYEWFLO в качестве LAS, и возможности выполнения функций LAS устройства, которое не удается подключить:
 - V(ST), V(MID) и V(MRD) устройства digitalYEWFLO: ConfiguredLinkSettingsRecord (индекс 369)
 - V(ST), V(MID) и V(MRD) проблемного устройства: DlmeBasicInfo

Убедитесь в выполнении следующих условий:

 digitalYEWFLO
 проблемное устр-во

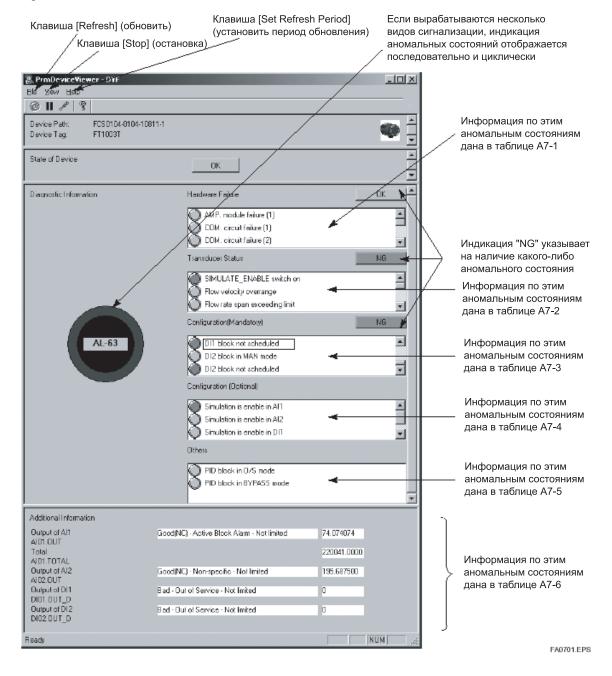
 V(ST)
 <</td>
 V(ST)

 V(MID)

 V(MRD)

- ОЗ-2. Убедитесь, что узловой адрес проблемного устройства не попадает в диапазон с 0х00 по 0х10, либо в число неиспользуемых (неопрашиваемых) узловых адресов, заданных настройками параметров LM устройства digitalYEWFLO, каковыми являются адреса с 0х00 по 0х10 или с V(FUN) по V(NUM). (См. раздел 5.2, "Описание сети").
- В4. На ЖК-дисплее изображение "— —", указывающее на отсутствие LAS на шине, либо на то, что устройство digitalYEWFLO не может установить связь с LAS. Что делать в этом случае?
- О4-1. Убедитесь, что к шине подключен активный планировщик связей (LAS). (Когда функции LAS выполняет устройство digitalYEWFLO, выполните шаги с (1) по (3), описанные в разделе A6-3).

O4-2. Обеспечьте необходимое соотношение между параметрами действующего LAS и параметрами возможностей устройства digitalYEWFLO (см. раздел 5.2 "Определение сети"):


LAS digitalYEWFLO $\begin{array}{ccc} V(ST) & > & V(ST) \geq 4 \\ V(MID) > & V(MID) \geq 4 \\ V(MRD) & > & V(MRD) \geq 12 \\ \end{array}$

О4-3. Убедитесь, что устройству digitalYEW-FLO назначен правильный адрес, который должен лежать либо в диапазоне от 0х00 до 0х10, либо находиться в числе неиспользуемых (неопрошенных) узловых адресов, определяемых установками параметров LM действующего LAS, т.е. от V(FUN) до V(FUN)+V(NUM) (см. раздел 5.2 "Определение сети").

Приложение 7. Окно DeviceViewer менеджера ресурсов (PRM)

Окно DeviceViewer обеспечивает отображение состояния и конфигурации аппаратной части по результатам самодиагностики, выполняемой устройством FF-H1. (см. IM 33Y05Q10-01E).

На рисунке ниже приведен пример окна DeviceViewer, отображающего состояние модуля digitalYEWFLO.

Приложение 7. Окно DeviceViewer менеджера ресурсов (PRM)

Таблица А7-1 Отказ аппаратной части

Причина сигнализации	Номер сигн.	Описание	Параметр
Отказ модуля усилителя АМР.(1)	AL-01	Неисправность памяти EEPROM (S). (AL-01)	RS DEVICE_STATUS_2 bit0
Отказ канала связи СОМ. (1)	AL-02	Отказ контура связи Fieldbus в усилителе (тип ошибки 1). (AL-02)	RS DEVICE_STATUS_2 bit0
Отказ канала связи СОМ. (2)	AL-03	Отказ контура связи Fieldbus в усилителе (тип ошибки 2). (AL-03)	RS DEVICE_STATUS_2 bit0
Отказ модуля усилителя АМР.(2)	AL-04	Неисправность памяти EEPROM (F). (AL-04)	RS DEVICE_STATUS_1 bit19
Неисправность датчика потока	AL-05	Неисправность датчика потока. (AL-05)	RS DEVICE_STATUS_2 bit3
Отказ входного контура	AL-06	Отказ входного контура усилителя. (AL-06)	RS DEVICE_STATUS_2 bit4
Отказ преобразователя температуры	AL-07	Отказ температурного контура усилителя. (AL-07)	RS DEVICE_STATUS_2 bit5
Отказ датчика температуры	AL-08	Отказ датчика температуры. (AL-08)	RS DEVICE_STATUS_2 bit6

Таблица А7-2 Состояние преобразователя

Причина сигнализации	Номер сигн.	Описание	Параметр
Функция SIMULATE_ENABLE включена		Переключатель SIMULATE_ENABLE в положении "ON" (вкл.)	RS DEVICE_STATUS_1 bit23
Скорость потока за пределами диапазона	AL-41	Скорость потока за пределами диапазона. (AL-41)	RS DEVICE_STATUS_4 bit7
Диапазон расхода выходит за установленные пределы	AL-42	Диапазон расхода выходит за установленные пределы. (AL-42)	RS DEVICE_STATUS_4 bit6
Температура за пределами диапазоне	AL-43	Температура за пределами диапазоне. (AL-43)	RS DEVICE_STATUS_4 bit5
Избыточная вибрация в ходе переходного процесса	AL-51	Избыточная вибрация в ходе переходного процесса (кратковременное нарушение режима). (AL-51)	RS DEVICE_STATUS_4 bit3
Избыточная вибрация	AL-52	Избыточная вибрация. (AL-52)	RS DEVICE_STATUS_4 bit2
Аномалия потока (закупоривание)	AL-53	Аномалия потока (закупоривание). (AL-53)	RS DEVICE_STATUS_4 bit1
Аномалия потока (флуктуация)	AL-54	Аномалия потока (избыточные колебания выходного сигнала). (AL-54)	RS DEVICE_STATUS_4 bit0
Превышение диапазона индикатора	AL-61	Превышение диапазона индикатора. (AL-61)	RS DEVICE_STATUS_4 bit8

Таблица А7-3 Конфигурация (обязательные сигналы)

Причина сигнализации	Номер сигн.	Описание	Параметр
Отсутствие графиков функциональных блоков	AL-20	Отсутствие графиков функциональных блоков. (AL-20)	RS DEVICE_STATUS_3 bit28
Блок ресурсов в состоянии O/S	AL-21	Блок ресурсов в нерабочем состоянии (O/S). (AL-21)	RS DEVICE_STATUS_1 bit22
Блок преобразования в состоянии O/S	AL-22	Блок преобразования в нерабочем состоянии (O/S). (AL-22)	RS DEVICE_STATUS_3 bit25
Блок AI1 в состоянии O/S	AL-23	Блок AI1 в нерабочем состоянии (O/S). (AL-23)	RS DEVICE_STATUS_3 bit24
Блок AI2 в состоянии O/S	AL-24	Блок AI2 в нерабочем состоянии (O/S). (AL-24)	RS DEVICE_STATUS_3 bit23
Блок DI1 в состоянии O/S	AL-25	Блок DI1 в нерабочем состоянии (O/S). (AL-25)	RS DEVICE_STATUS_3 bit22
Блок DI2 в состоянии O/S	AL-26	Блок DI2 в нерабочем состоянии (O/S). (AL-26)	RS DEVICE_STATUS_3 bit21
Блок AI1 в режиме MAN	AL-62	Блок AI1 в ручном режиме (MAN). (AL-62)	RS DEVICE_STATUS_3 bit18
Отсутствие графика блока AI1	AL-64	Отсутствие графика блока AI1. (AL-64)	RS DEVICE_STATUS_3 bit16
Блок AI2 в режиме MAN	AL-65	Блок AI2 в ручном режиме (MAN). (AL-65)	RS DEVICE_STATUS_3 bit14
Отсутствие графика блока AI2	AL-67	Отсутствие графика блока AI2. (AL-67)	RS DEVICE_STATUS_3 bit12
Блок DI1 в режиме MAN	AL-68	Блок DI1 в ручном режиме (MAN). (AL-68)	RS DEVICE_STATUS_3 bit10
Отсутствие графика блока DI1	AL-70	Отсутствие графика блока DI1. (AL-70)	RS DEVICE_STATUS_3 bit8
Блок DI2 в режиме MAN	AL-71	Блок DI2 в ручном режиме (MAN). (AL-71)	RS DEVICE_STATUS_3 bit6
Отсутствие графика блока DI2	AL-73	Отсутствие графика блока DI2. (AL-73)	RS DEVICE_STATUS_3 bit4

Таблица А7-4 Конфигурация (сигналы по выбору)

Причина сигнализации	Номер сигн.	Описание	Параметр
Включена функция имитации в блоке AI1	AL-63	Включена функция имитации в блоке AI1. (AL-63)	RS DEVICE_STATUS_3 bit17
Включена функция имитации в блоке AI2	AL-66	Включена функция имитации в блоке AI2. (AL-66)	RS DEVICE_STATUS_3 bit13
Включена функция имитации в блоке DI1	AL-69	Включена функция имитации в блоке DI1. (AL-69)	RS DEVICE_STATUS_3 bit9
Включена функция имитации в блоке DI1	AL-72	Включена функция имитации в блоке DI1. (AL-72)	RS DEVICE_STATUS_3 bit5

Таблица А7-5 Прочие сигналы

Причина сигнализации	Номер сигн.	Описание	Параметр
Блок ПИД-регулирования в режиме O/S	AL-27	Блок ПИД-регулирования в нерабочем режиме O/S. (AL-27)	RS DEVICE_STATUS_3 bit20
Блок ПИД-регулирования в режиме BYPASS	AL-21	Блок ПИД-регулирования в режиме BYPASS (обход). (AL-21)	RS DEVICE_STATUS_3 bit2

Таблица А7-6 Дополнительная информация

Сигнализация	Описание	Параметр
Выходной сигнал AI1	Первичное значение как результат выполнения функции блока AI1.	AI01.OUT
Суммарное значение	Суммарное значение/	AI01.TOTAL
Выходной сигнал AI2	Первичное значение как результат выполнения функции блока AI2.	AI02.OUT
Выходной сигнал DI1	Первичное значение как результат выполнения функции блока DI1.	DI01.OUT_D
Выходной сигнал DI2	Первичное значение как результат выполнения функции блока DI2.	DI02.OUT_D

Информация об изданиях

Hauмeнoвaние: Протокол Foundation Fieldbus для вихревого расходомера (модель DY) и вихревого преобразователя потока (модель DYA)

IM 01F06F0-01R № документа:

Издание	Дата	Примечания
1-e	Май 2003 г.	Новая публикация
2-е	Июль 2003 г.	

YOKOGAWA ELECTRIC CORPORATION

Центральный офис

2-9-32, Nakacho, Musashino-shi, Tokyo, 180-8750 JAPAN (Япония)

Торговые филиалы

Нагоя, Осака, Хиросима, Фукуока, Саппоро, Сендай, Ичихара, Тойода, Каназава, Такамацу, Окаяма и Китакюсю.

YOKOGAWA CORPORATION OF AMERICA

Центральный офис

2 Dart Road, Newnan, Ga. 30265, U.S.A. (США)

Телефон: 1-770-253-7000 Факс: 1-770-254-0928

Торговые филиалы

чэгрии-Фоллс, Элк-Гроув-Виллидж, Санта-Фе-Спрингс, Хоуп-Вэлли, Колорадо, Хьюстон, Сан Xoce

YOKOGAWA EUROPE B.V.

Центральный офис

Databankweg 20, Amersfoort 3812 AL, THE NETHERLANDS (Нидерланды) Телефон: 31-334-64-1611 Факс 31-334-64-1610

Торговые филиалы

Маарсен (Нидерланды), Вена (Австрия), Завентем (Бельгия), Ратинген (Германия), Мадрид (Испания), Братислава (Словакия), Ранкорн (Соединенное Королевство), Милан (Италия).

YOKOGAWAAMERICA DO SUL S.A.

Praca Acapuico, 31 - Santo Amaro, Sao Paulo/SP - BRAZIL (Бразилия)

Телефон: 55-11-5681-2400 Факс 55-11-5681-4434

YOKOGAWA ELECTRIC ASIA PTE. LTD.

Центральный офис

5 Bedok South Road, 469270 Singapore, SINGAPORE (Сингапур)

Телефон: 65-6241-9933 Факс 65-6241-2606

YOKOGAWA ELECTRIC KOREA CO., LTD.

395-70, Shindaebang-dong, Dongjak-ku, Seoul, 156-714 КОREA (Южная Корея) Телефон: 82-2-3284-3016 Факс 82-2-3284-3016

YOKOGAWA AUSTRALIA PTY. LTD.

Центральный офис (Сидней)Centrecourt D1, 25-27 Paul Street North, North Ryde, N.S.W.2113, AUSTRALIA (Австралия)

Телефон: 61-2-9805-0699 Факс: 61-2-9888-1844

YOKOGAWA INDIA LTD.

Центральный офис

40/4 Lavelle Road, Bangalore 560 001, INDIA (Индия)

Телефон: 91-80-2271513 Факс: 91-80-2274270

ООО «ИОКОГАВА ЭЛЕКТРИК СНГ»

Центральный офис

Грохольский пер.13, строение 2, 129090 Москва, РОССИЯ

Телефон: (+7 495) 933-8590, 737-7868, 737-7871

Факс (+7 495) 933- 8549, 737-7869 URL: http://www.yokogawa.ru E-mail: info@ru.yokogawa.com