Introduction

In the manufacturing process of Pharmaceutical, Chemical and Food & Beverage industries, the cleaning and sterilization of tanks and piping are done with various cleaning solutions, fresh or hot water and steam after manufacturing products. Clean-In-Place (CIP) is the system designed for automatic cleaning and disinfecting. The recovery of cleaning solutions contributes significantly to reduce chemical costs and wastewater processing costs. Yokogawa FLXA21 inductive conductivity transmitter has earned a reputation in the recovery of cleaning solutions because it can take measurements with good boundary surface precision over a wide range.

Expected Benefits

- Optimizes cleaning and sterilizing application for tanks and piping by use of CIP
- Reduces operating costs

Process Overview

CIP systems depend on the process differentiations of Pharmaceutical, Chemical and Food & Beverage. In addition, the cleaning solutions and chemicals are different. The chemicals that are generally used are hypochlorous acid, caustic soda, and nitrous acid. In a cleaning solution recovery system, the process lines and piping are cleaned with an initial cleaning solution. After that, the cleaning solution is cleaned with fresh water. The cleaning solution is recovered at that point, but since it gradually becomes diluted with fresh water, recovery is discontinued and the solution is discharged through a drainage line when the concentration of the cleaning solution drops below the standard value. The cleaning with different solutions or fresh water, the recovery of the cleaning solution, and the discharge of waste solution are repeatedly carried out. In addition, sterilization with steam or cleaning with distilled water or de-ionized water is performed as a final step in some cases.

CIP Process Flow

![CIP Process Flow Diagram]

Application conditions

1. Product: t: -10 to +60 °C p: < 1 MPa
2. Water: t: 4 to 20 °C p: < 1 MPa
3.a Hot alkali solution
 1.5% NaOH
 t: 80 to 90 °C
 p: < 1 MPa
3.b Hot acid solution
 1.5% HNO₃
 t: 80 to 90 °C
 p: < 1 MPa
4. Water
5.a Steam
 t: 130 to 140 °C
 p: < 1 MPa
5.b Disinfector
 t: 20 °C
 p: < 1 MPa
6. Water
 Note: Sequence 1 to 6

Waste

Measuring point

http://www.yokogawa.com/an/index.htm

All Rights Reserved, Copyright © 2006, Yokogawa Electric Corporation

AN 10001K01-01E
Solution Details

Measurement system

2-wire inductive conductivity system

- **Sensor**: ISC40G(J)-GG-T1-X
- **Flow-through type holder**: ISC40FF(J)
- **Analyzer**: FLXA21-D-P-S-AA-C5-NN-A-N-LA-N
- **Dedicated distributor for analyzer**: PH201G-A

Utilities

- **FLXA21 inductive conductivity analyzer**
 - Power supply voltage: 17 – 40 V DC (from distributor)
 - Power consumption: 0.9 VA maximum
- **PH201G distributor**
 - Power supply: 100 V: 20 to 130 V DC/80 to 138 V AC, 47 to 63 Hz
 - 220 V: 120 to 340 V DC/138 to 264 V AC, 47 to 63 Hz
 - Power consumption: 24 V DC: approx. 200 mA
 - 100 V AC: approx. 7 VA
 - 220 V AC: approx. 11 VA

Notes

- Temperature range of analyzer is -20 to 140°C

Field Data

1. Process conditions

<table>
<thead>
<tr>
<th></th>
<th>Concentration (%)</th>
<th>Temperature (°C)</th>
<th>Pressure MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>—</td>
<td>4 to 20</td>
<td>0 to 1</td>
</tr>
<tr>
<td>NaOH solution</td>
<td>1 to 5</td>
<td>80 to 90</td>
<td>0 to 1</td>
</tr>
<tr>
<td>HNO₃ solution</td>
<td>1 to 5</td>
<td>80 to 90</td>
<td>0 to 1</td>
</tr>
<tr>
<td>Steam</td>
<td>—</td>
<td>below 130</td>
<td>0 to 1</td>
</tr>
</tbody>
</table>

2. Features of ISC Inductive Conductivity Analyzer used in a CIP Process

1. Improved precision in boundary surface measurement.

 - (a) Equipped with a zero-suppression function according to output signal

 - **Example**: Output: 4 to 20 mA DC
 - **Range**: 100 to 300 mS/cm

2. Steam sterilization capability

 - Measurements can be performed at process solution temperatures of -10 to 130°C and pressures no greater than 2 MPa.