Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>CV8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample format</td>
<td>Multiple well plate (6, 12, 24, 48, 96, 384, 1536 wells), glass slide</td>
</tr>
<tr>
<td>Image mode</td>
<td>Confocal mode: max. 4 color simultaneous recording Bright field/phase contrast (10x, 20x) for 6, 12, 24 well plates, digital phase contrast (10x, 20x)</td>
</tr>
<tr>
<td>Output data format</td>
<td>Image data: 16bit TIF, PNG Numerical data: CSV, original format</td>
</tr>
<tr>
<td>Excitation wavelength</td>
<td>405/445/488/561/640 nm, all solid laser, max. 5 lasers (Option) 365 nm LED</td>
</tr>
<tr>
<td>White light illumination</td>
<td>LED</td>
</tr>
<tr>
<td>Autofocus</td>
<td>Laser-based mode, image-based mode</td>
</tr>
<tr>
<td>Objectives</td>
<td>Max. 6 lenses are available, automatically switchable Dry: 2x, 4x, 10x, 20x, 40x Water immersion: 40x, 60x Phase contrast: 10x, 20x Long working distance: 20x</td>
</tr>
<tr>
<td>Confocal unit</td>
<td>Lens-enhanced wide-view dual Nipkow disk confocal scanner, 50 μm pinhole (Option) 25/50 μm pinhole disk exchanger</td>
</tr>
<tr>
<td>Camera</td>
<td>sCMOS (effective pixels: 2000X2000 pixel size: 6.5 μm), max. 4 cameras</td>
</tr>
<tr>
<td>Stage incubator</td>
<td>Temperature: 35-40℃ CO₂ supply box (CO₂: 5%, forced humidification)</td>
</tr>
<tr>
<td>Dispenser</td>
<td>(Option) Disposable tip type (96tip or 384tip type)</td>
</tr>
<tr>
<td>Bar code reader</td>
<td>(Option) 1 or 2 dimension</td>
</tr>
<tr>
<td>Workstations</td>
<td>Dual-monitor work station for system control, dual-monitor work station for data analysis</td>
</tr>
<tr>
<td>Analysis software (CellPathfinder)</td>
<td>Granularity, Neurite, Nuclear morphology, Nuclear translocation, Plasma membrane translocation, Machine learning, Label-free analysis, 3D analysis, Texture analysis, etc.</td>
</tr>
<tr>
<td>Operating environment</td>
<td>15-30℃, 30-70%RH (no condensation)</td>
</tr>
<tr>
<td>Power supply</td>
<td>Measurement unit: AC100-240V, 50/60Hz, 2KVA max Workstation for system control: AC100-240V, 50/60Hz, 1.3KVA max Workstation for data analysis: AC100-240V, 50/60Hz, 690VA max</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Measurement unit: W1280×D895×H1450 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>Measurement unit: 510Kg</td>
</tr>
</tbody>
</table>

Layout

<table>
<thead>
<tr>
<th>Top view</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Front view</td>
<td></td>
</tr>
</tbody>
</table>

Workstation for data analysis is not indicated above. Desk is not included in the system.

We offer the best after-service program to meet your requirement and budget. Our HCA experts will support you to obtain the best results easily.

Contact: csu_livecell_imaging@cs.jp.yokogawa.com

Reliable after-service / Powerful technical support

You should use the manual carefully in order to use the instrument correctly and safely. This product falls under the category of class 1 laser product.

CellVoyager and CSU are registered trademarks of Yokogawa Electric Corporation.
CellVoyager is sold under license from ThermoFisher Scientific patent portfolio related to High Content Screening and Analysis.

Specifications subject to change without notice.

All Rights Reserved, Copyright © 2017, Yokogawa Electric Corporation.

Printed in Japan, SOS
Live, high speed and high quality

Time lapse/kinetic assays
- Stage incubator enables live cell imaging over 3 days without supplying additional water
- Disposable tip type liquid dispenser for kinetic assays
- Hypoxia experiments and FRET
- Ionomycin was applied to A10 cells labeled with Fluo-4 during recording with 100ms intervals.

Calcium response
- Fast kinetic responses can be visualized by applying drugs during time lapse recordings.
- Users can choose the pinhole disk matching to the purpose of the experiments.
- Z-resolution in thick samples is improved by using 25 μm pinhole disk.

Analysis software
- Preset analysis menus for a variety of applications
- Flexible graph functions to display analysis results
- Direct link between chart and object images

Machine learning
- Software learns the features of the sample objects collected by users.
- DPC function is a powerful tool to analyze unstained bright field samples.

Stage incubator performance
- Cells were incubated in CV8000 for 68 hours. Proliferation rate was comparable to that in a CO₂ incubator.

Simultaneous recording of 4 channels
- Image fields in a 384 well plate
- 1 field/well, 4 camera simultaneous recording

Calcium response
- Users can choose the pinhole disk matching to the purpose of the experiments.
- Z-resolution in thick samples is improved by using 25 μm pinhole disk.

Validation technology

Over twenty years of experience
- Yokogawa CSU confocal scanner unit has been selected by top scientists, and more than 2800 units have been sold in the world.
- High-speed and low-phototoxic imaging are achieved by microlens-enhanced Nipkow disk system.

25/50 μm pinhole disk exchanger
- Users can choose the pinhole disk matching to the purpose of the experiments.
- Z-resolution in thick samples is improved by using 25 μm pinhole disk.

Analysis software
- Preset analysis menus for a variety of applications
- Flexible graph functions to display analysis results
- Direct link between chart and object images

Machine learning
- Software learns the features of the sample objects collected by users.
- DPC function is a powerful tool to analyze unstained bright field samples.

Water immersion objectives
- 40x and 60x water immersion objectives provide brighter and higher resolution images.
- Automated water supply

Image fields in a 384 well plate
- 1 field/well, 4 camera simultaneous recording

60x water immersion lens
- 40x and 60x water immersion objectives provide brighter and higher resolution images.
- Automated water supply

Label-free analysis
- DPC function is a powerful tool to analyze unstained bright field samples.

*1 Depends on conditions and samples.
*2 Optional
*3 1 field/well, 4-camera simultaneous recording
*4 As of September 2017
*5 Digital phase contrast