Flexibility, reliability and low maintenance are among the benefits provided by the EXA DC402G conductivity analyzer. Designed to meet the exacting requirements of measuring dual cell conductivity and resistivity in the modern industrial environment, it contains many features to ensure the best precision whatever the application. Differential, ratio, deviation, % passage or % rejection can be indicated and/or transmitted.

This 4-wire converter is housed in a robust IP65 field mountable case. Two mA outputs, four relays, digital communication and a clear LCD make the DC402G a truly comprehensive package. The DC402G features PI control on the auxiliary mA output and the pulse proportional relay outputs, thus avoiding the need for a separate controller.

The famous EXA sensor diagnostics are also present in the DC402G. Self-tuning of the excitation frequency and measuring pulses ensure optimum accuracy. The polarisation check gives on line indication of sensor fouling and early warning that maintenance is needed. A wide variety of temperature compensation possibilities (NaCl according to IEC 60746-3, manual TC, preprogrammed matrices and a freely programmable 5x5 matrix), provides a high-accuracy measurement with minimum effort.

Features
• Differential, ratio or calculated outputs
• Universal conductivity/resistivity, software switchable
• On-line sensor checking
• Self-tuning measuring signal
• Matrix temperature compensation for pure water applications
• Four fully configurable SPDT contact outputs
• Two fully configurable mA outputs
• Built-in PI controller
• Easy to use EXA control panel
• USP<645> monitoring

Applications
• Monitoring performances of cation exchange columns (Ratio output)
• Leak detection of heat exchanges (Deviation output)
• Monitoring performance of reverse osmosis columns (Percent rejection output)
• Controlling flowrate of wash water (Differential output)
• Controlling blow-down of cooling towers (Ratio output)
• Redundancy for accurate analysis (Deviation output)
• Monitoring very high purity systems (Differential Resistivity)
• Pharmaceutical water monitoring (USP<645>)

System Configuration

Sensors Cables Fittings Converters Accessories
What is dual conductivity?

Dual cell conductivity is a precise, comparative measurement. The EXA DC402G receives inputs from two conductivity cells located at different points in the process and compares them according to one of five programmed user-selectable formula

- Ratio \((a/b)\)
- Differential or linear difference \((a-b)\)
- Percent passage \((b/a \times 100)\)
- Percent rejection \(\{(a-b)/a \times 100\}\)
- Deviation \(\{(b/a) a \times 100\}\)

The output signal corresponds directly to the formulas. The EXA DC402G also displays the absolute value of each cell on a second display line, as desired by the user. The unit displays all values in conductivity units (µS/cm or mS/cm) percentage (%), or resistivity (MΩ·cm).

![Diagram showing dual conductivity](Image)

Fig. 1. Ratio output controls blow-down of cooling tower based on concentration factor.

![Diagram showing differential conductivity](Image)

Fig. 2. Differential output water flow to optimize washing efficiency.

Fig. 3. %-rejection or %-passage output indicates the efficiency of the Reverse Osmosis system.

Process temperature compensation

Automatic, according to NaCl tables (IEC-60746-3 tables)

From the factory, the DC402G is configured for non-linear temperature compensation according to NaCl tables which will give accuracy in most measurements. In this case no site adjustments are required. For applications where NaCl compensation is not sufficient, other compensation possibilities are presented below.

Matrix

The DC402G is equipped with a matrix type algorithm (conductivity as a function of concentration and temperature) for accurate temperature compensation in various applications.

For pure water applications the following choices can be made:

- HCl (cation) compensation (0 - 80ºC)
- Ammonia compensation (0 - 80ºC)
- Morpholine compensation (0 - 80ºC)

For higher conductivity ranges the choices are:

- HCl (1 - 5%, 0 - 60ºC)
- NaOH (1 - 5%, 0 - 100ºC)
- 25 points (5 x 5) user programmable matrix.

This matrix can easily be programmed from the service mode by entering 5 temperature points, followed by conductivity values for each concentration at the 5 temperatures.

![Graph showing matrix temperature compensation](Image)

Fig. 4. Example of matrix temperature compensation
Manual Temperature Coefficient

It is also possible to have a linear compensation with programmable coefficient. Both outputs can have their own independent TC.

At start-up a known temperature coefficient may be entered from the service mode, or the TC can be adjusted by calibration, using actual process solutions. The freely programmable reference temperature also contributes to a high accuracy measurement.

Signal Monitoring and Alarm

The EXA DC402G features a built-in check for electrode fouling and polarisation, which activates a contact “FAIL” signal and error message for operators. There is also an option to program an alarm on the 4-20 mA analog signal. The “FAIL” contact is used as a fail-safe alarm that also indicates power-down.

Three Process Contact Inputs

The EXA DC402G permits three user-programmable output contacts. As a default, 2 functions are defined as high and low alarm.

The switch function of the contacts can freely be set for:
- a calculated value (ratio, differential, %)
- a conductivity value (from cell A or B)
- a temperature value (from sensor A or B)

Some examples of user-selectable output functions:
- process alarm as a high or low trip function;
- proportional duty cycle control with adjustable cycle period and control assigned by a proportional range and setpoint;
- proportional frequency control with number of pulses and control assigned by the proportional range and setpoint.

Two Independent Current Outputs

Two 0-20 or 4-20 mA outputs for registration, indication or control functions.

The user can select from:
- the calculated comparative value
- the linearised conductivity/resistivity value (from cell A or B)
- the measured temperature value (from sensor A or B)
- the temperature difference between cell A and B/sensors A and B
- PI control on value from cell A or B.

The EXA DC402G features 4 additional output functions:
- a “HOLD” function that maintains process values until return of a normal operation
- a “BURN OUT” function that gives a HIGH or LOW output at fail status (22 mA or 3.5 mA)
- a programmable I/O output function that allows user to linearise the output(s) when used as a concentration analyzers
- output damping to stabilise the control or monitoring function.

Signal conditioning for highest accuracy

Two conductivity cells with cell constants between 0.01 to 50 cm⁻¹ can be connected to the EXA DC402G. For temperature compensation the instrument accepts inputs from Ni100, Pt100, Pt1000, 8k55, PB36 sensors. The self tuning preamplifier measures 0.1 µSxC up to 25 mSxC by measuring frequency optimisation and pulse sampling position.

C= cell constant in /cm.

![Fig. 5. Deviation output alarms directly after leakage in the heat exchanger.](image)

Fig. 6. Measuring range as function of the cell constant

<table>
<thead>
<tr>
<th>CONDUCTIVITY (mS/cm)</th>
<th>Output in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>1.00</td>
<td>100</td>
</tr>
</tbody>
</table>

![Fig. 7. Output linearization to concentration](image)
Custom Design Display
The main display shows the primary function (calculated value cell A) in 3 1/2 digits 13 mm (1/2") LCD.
On a second line a variety of data can be displayed (in 6 alpha numeric digits) including:
- measured conductivity value of cell A or B
- measured temperature of sensor A or B
- calibrated cell constant for cell A or B
- mA value of current output 1 or 2
- temperature compensation function for sensor A or B
- description of comparative function
- differential temperature (if additional comparative function is selected for current output 1 or 2).

USP<645> Monitoring
DC402G monitors water quality according to the USP<645> directive (United States Pharmacopeia).
Both compensated and uncompensated conductivity values can be read from the display, as can the solution temperature.
Alarms can be set to indicate that the signal is nearing the USP<645> limit, and there is a trip alarm to indicate that the limit is exceeded. USP<645> determines a level of uncompensated conductivity for each temperature.
The water must be below this level to be acceptable. This curve is pre-programmed into DC402G and is used in the setpoint calculations for the alarms and trip.

General Specifications
A. Input specifications
: Two inputs , each 2-electrode measurement with square wave excitation, using cell constants(C) from 0.008 to 50.0 cm⁻¹, with up to 60 meters (200ft) connection cable

B. Detection method
: Frequency, read-pulse position and reference voltage are dynamically optimized.

C. Input ranges
Minimum : 1 µS x C at process temperature (underrange 0.000 µS/cm).
Maximum : 25 mS x C at process temperature (overrange 30 mS x C).
- Resistivity : 0.00 kΩ - 999 MΩ/C at 25°C (77 °F) reference temperature.
Minimum : 40 Ω/C at process temperature (underrange 0.001 kΩ x cm).
Maximum : 1 MΩ/C at process temperature (overrange 999 MΩ x cm).
- Temperature
Pt1000 : -20 to +250°C (0 to 500 °F)
Pt100 and Ni100 : -20 to +200°C (0 to 400 °F)
8K55 NTC : -10 to +120°C (10 to 250 °F)
PB36 NTC : -20 to +120°C (0 to 250 °F)

D. Span
Conductivity/Resistivity
- Minimum span: 0.010 µS/cm; 0.001kΩ x cm up to 90% zero suppression.
- Maximum span: 1500 mS/cm; 999 MΩ x cm

Ratio (cell1/cell2)
- Minimum span: 0.0
- Maximum span: 19.99

Difference (cell1-cell2)
- Minimum span: 0.010 µS/cm
- Maximum span: 400 mS/cm

% Passage (100x[cell1/cell2])
- Minimum span : 0.0
- Maximum span: 199.9

% Rejection (100x((cell1-cell2)/cell1))
- Minimum span : 0.1
- Maximum span: 400

% Deviation (100x[(cell1-cell2)/cell1])
- Minimum span : 0.1
- Maximum span: 400

E. Transmission signals
: Two isolated outputs of 0/4-20 mA DC with common negative.
Maximum load: 600 Ω.
Auxiliary output can be chosen from conductivity, linearized conductivity/resistivity, temperature, differential temperature calculated value or PI control of conductivity/resistivity.
Burn up (22 mA) or Burn down (0/3.5 mA) to signal failure.

F. Temperature compensation
: Automatic, for temperature ranges mentioned under C (inputs).
- Reference temperature
: programmable from 0 to 100°C or 30 to 210 °F (default 25°C).

G. Compensation algorithm
: According IEC 60746-3 NaCl tables (default).
Two independent user programmable temperature coefficients, from 0% to 3.5% per°C (°F) by adjustment or calibration.
- Matrix compensation
: With conductivity function of concentration and temperature.
Choice of 5 preprogrammed matrices and a 25-points user-programmable matrix.

H. Display
: Custom liquid crystal display, with a main display of 3 1/2 digits 12.5 mm high. Message display of 6 alphanumeric characters, 7 mm high.
Warning flags and units (mS/cm, kΩ/cm, µS/cm and MΩ/cm) as appropriate.
I. Contact outputs
- General: Four (4) SPDT relay contacts with LED indicators. For S1, S2, and S3, the LED is on when relay is powered.

 NOTE: For S4 (FAIL) LED lights when power is removed (Fail safe).
Contact outputs configurable for hysteresis and delay time.

- Switch capacity: Maximum values 100 VA, 250 VAC, 5 Amps.

 Maximum values 50 Watts, 250 VDC, 5 Amps.

- Status: High/low process alarms, selected from conductivity, resistivity and temperature.
Contact output is also available to signal "Hold active"

- Control function
 - On / Off
 - PI pulsed: Proportional duty cycle control with integral term.
 - PI frequency: Proportional frequency control with integral term.
 (PI control on conductivity/ resistivity only) In addition FAIL alarm for system and diagnostic errors on S4.

J. Power supply
Supply voltage rating: 115, 230 VAC
Applicable range: 97.8 to 132.2 / 195.5 to 264.5 VAC
Supply frequency rating: 50 / 60 Hz
Applicable range: 50 Hz ± 5% / 60 Hz ± 5%
Power consumption: Maximum 10 VA for steady operation

K. Shipping details:
Package size W x H x D

 290 x 300 x 290 mm.
 11.5 x 11.8 x 11.5 in.
 Packed weight approx. 2.5 kg (5lb).

Operating Specifications
A. Performance: Conductivity
 - Linearity: ± 0.5 % FS
 - Repeatability: ± 0.5 % FS
 - Accuracy: ± 0.5 % FS

 Performance: Resistivity
 - Linearity: ± 0.5 % FS
 - Repeatability: ± 0.5 % FS
 - Accuracy: ± 0.5 % FS

 Performance: Temperature with Pt100Ω, Ni100Ω and PB36 NTC
 - Linearity: ± 0.3°C
 - Repeatability: ± 0.3°C
 - Accuracy: ± 0.3°C

Performance: Temperature with PT100Ω and 8k55Ω
 - Linearity: ± 0.4°C
 - Repeatability: ± 0.4°C
 - Accuracy: ± 0.4°C

Note: The following tolerances are added to above performance.
 mA output tolerance: ± 0.02 mA of "0/4 - 20 mA"
 Digital display tolerance: ± 1 digit

B. Ambient operating temperature
 - -10 to +55°C (14 to 131 °F)

C. Storage temperature
 - -30 to +70°C (-20 to 160 °F)

D. Humidity
 - 10 to 90% RH non-condensing

E. Housing
 - Cast aluminum case with chemically resistant coating, cover with flexible polycarbonate window.
 Case color is off-white and cover is moss green. Cable entry is via six PG13.5 nylon glands. Cable terminals are provided for up to 2.5 mm² finished wires. Weather resistant to IP65 / NEMA 4X / CSA Type 3S standards. Pipe wall or panel mounting, using optional hardware.

F. Data protection
 - EEPROM for configuration and logbook, and lithium battery for clock.

G. Watchdog timer
 - Checks microprocessor

H. Automatic safeguard
 - Return for measuring mode when no keystroke is made for 10 min.

I. Power interruption
 - Less than 50 milliseconds no effect.
 More than 50 milliseconds reset to measurement.

J. Operation protection
 - 3-digit programmable password.

K. Safety and EMC conforming standards
 - Safety: conforms to EN 61010-1
 - CSA C22.2 No. 1010.1 certified
 - EMC: EN 61326-1 Class A, Table 2
 (For use in industrial locations)
 EN 61326-2-3
 EN 61000-3-2 Class A
 EN 61000-3-3
 Installation altitude: 2000 m or less
 Category based on IEC 61010: II (Note)
 Pollution degree based on IEC 61010: 2 (Note)
 Note: Installation category, called over-voltage category, specifies impulse withstand voltage. Category II is for electrical equipment.
 Pollution degree indicates the degree of existence of solid, liquid, gas or other inclusions which may reduce dielectric strength. Degree 2 is the normal indoor environment.
Model and suffix codes

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix code</th>
<th>Option code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC402G</td>
<td></td>
<td></td>
<td>Dual Conductivity Converter</td>
</tr>
</tbody>
</table>

Type

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Option code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td></td>
<td>115V +/-15% AC, 50/60 Hz</td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td>230V +/-15% AC, 50/60 Hz</td>
</tr>
</tbody>
</table>

Language

<table>
<thead>
<tr>
<th>Options</th>
<th>Mounting Hardware</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/U</td>
<td>Pipe, wall mounting bracket (Stainless steel)</td>
</tr>
<tr>
<td></td>
<td>/PM</td>
<td>Panel mounting bracket (Stainless steel)</td>
</tr>
<tr>
<td>Hood</td>
<td>/H3</td>
<td>Hood for sun protection (Carbon steel)</td>
</tr>
<tr>
<td></td>
<td>/H4</td>
<td>Hood for sun protection (Stainless steel)</td>
</tr>
<tr>
<td>Tag Plate Conduit Adapter</td>
<td>/SCT</td>
<td>Stainless steel tag plate G 1/2</td>
</tr>
<tr>
<td></td>
<td>/AFTG</td>
<td>1/2 NP</td>
</tr>
<tr>
<td></td>
<td>/ANSI</td>
<td>ANSI</td>
</tr>
<tr>
<td></td>
<td>/X1</td>
<td>X1</td>
</tr>
</tbody>
</table>

*1 The housing is coated with epoxy resin.

Control and Alarm Functions

Control output (mA)

- PI control on the 2nd mA output. The 2nd mA output can be configured to give a P/I (proportional and integral) control output.
- adjustable parameters:
 - Setpoint, proportional range and integral time.

Process alarm

- The contact will be switched when the process value reaches a limit. This can either be a high or low limit.
- adjustable parameters:
 - Setpoint for the process value
 - Hysteresis of the switching action
 - Delay time of the relay (0 to 200 s)

PI duty cycle control

- The contact is used to control the time a solenoid dosing valve is opened. The proportional control is achieved by opening and closing the solenoid valve and varying the ratio of on and off time (on, off).
- adjustable parameters:
 - Setpoint, proportional range and integral time. Total period of the pulse period (5 to 100 s)

Fault alarm

- Contact S4 by default set to function as an alarm, indicating that the EXA has found a fault in the measuring loop. If the self diagnostics of the EXA indicate a fault or error, the FAIL contact will be switched.

PI pulse frequency control

- The contact is used to control a pulse-driven dosing pump. The frequency of pulses regulates the pump speed.
- adjustable parameters:
 - Setpoint, proportional range & integral time. Maximum pulse frequency (50 to 120/min.)

Cables and Terminals

The DC402G is equipped with terminals suitable for the connection of finished cables in the size range of 0.13 to 2.5 mm² (26 to 14 AWG).

The glands will form a tight seal on cables of outside diameter in the range 6 to 12 mm (0.24 to 0.47 inch).
Cabling

Fig. 10. Glands to be used for cabling

System Configuration

Input and Output Connections

REFER TO INSTRUCTION MANUAL FOR CONNECTIONS

<table>
<thead>
<tr>
<th>Sensor inputs</th>
<th>mA Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>63</td>
<td>+ mA2</td>
</tr>
<tr>
<td>Screen</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>Sensor 1</td>
</tr>
<tr>
<td>Sensor 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relay Contacts</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>250VAC</td>
<td>100VAC</td>
</tr>
<tr>
<td>230VAC</td>
<td>50W</td>
</tr>
<tr>
<td>C</td>
<td>NC</td>
</tr>
<tr>
<td>250VAC</td>
<td>50W</td>
</tr>
<tr>
<td>115VAC</td>
<td>230VAC</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>115VAC</td>
<td>230VAC</td>
</tr>
</tbody>
</table>

Fig. 11. Grounding
External Dimensions

Dual Cell Conductivity Converter DC402G

Unit: mm (inch)

- **□ Hood (optional)**
 - Option code: \(/H\)

- **Four M6 screws, 8 (0.31) deep**
- **Adaptor for conduit work**
 - (option code: \(/AFTG, /ANSI\))

Cable inlet port (21 (0.83) dia. holes)
- Equivalent to DIN PG13.5 cable gland

- **A:** For sensor cable
- **B:** For sensor cable
- **C:** For output signal
- **D:** For contact output (S3 and S4)
- **E:** For contact output (S1 and S2)
- **F:** For power supply

Ground terminal
- (M4 screw)

Weight: Approx. 2 kg

Adaptor
- G 1/2 female (\(/AFTG\))
- 1/2 NPT female (\(/ANSI\))
Pipe/Wall Mounting Brackets (Option Code: /U) Weight: approximately 0.7 kg

Example of bracket used for pipe mounting

Nominal 50A (O.D 60.5mm) mounting pipe

Example of bracket used for wall mounting

Example of bracket used for panel mounting (Option Code: /PM) Weight: approximately 0.7 kg

Panel cutout dimensions

Unit: mm (inch)
Inquiry Specifications for Dual Cell Conductivity Converter System

Make inquiries by placing checkmarks (✓) in the pertinent boxes and filling in the blanks.

1. General information
 - Name of your company: ____________________________
 - Name of inquirer: ____________________________ Dept. or sect.: ____________ (telephone: ____)
 - Name of plant: ____________________________
 - Measuring point: ____________________________
 - Purpose of use: ✓ Indication □ Record □ Alarm □ Control
 - Power supply: ____________ V AC

2. Measuring conditions
 - (1) Liquid temperature: ________ to ________, normally ________ [°C]
 - (2) Liquid pressure: ________ to ________, normally ________ [kPa]
 - (3) Flow rate: ________ to ________, normally ________ [l/min.]
 - (4) Flow speed: ________ to ________, normally ________ [m/s]
 - (5) Slurry or contaminants: Absent □ Present
 - (6) Name of liquid: ____________________________
 - (7) Composition of liquid: ____________________________
 - (8) Other remarks: ____________________________

3. Installation environment
 - (1) Ambient temperature: ____________________________
 - (2) Location: □ Outdoors □ Indoors ____________________________
 - (3) Other remarks: ____________________________

4. Specification requirements
 - (1) Measuring range: □ ____________________________
 - (2) Output signal: □ 4-20 mA DC
 - (3) Detector: SC4A □ Two-electrode (0.02 cm⁻¹) □ Two-electrode (0.1 cm⁻¹)
 SC42 □ Two-electrode
 □ 0.01 cm⁻¹ □ 0.1 cm⁻¹ □ 1 cm⁻¹ □ 10 cm⁻¹
 SX42 □ Two-electrode
 □ 0.01 cm⁻¹ □ 0.1 cm⁻¹
 - (4) Detector mounting: SC4A □ Adapter □ Welding Socket □ Welding clamp
 SC42 □ Plug-in flow □ Flow Fitting □ Flange
 SX42 □ Flange □ Screw-in
 - (5) Sensor cable length: SC4A □ 3 m □ 5 m □ 10 m □ 15 m □ 20 m
 SC42 □ 1 m □ 2 m □ 5.5 m □ 10 m □ 15 m □ 20 m □ 25 m
 SX42 □ 1 m □ 2 m □ 5.5 m □ 10 m □ 15 m □ 20 m □ 25 m
 - (6) Other remarks: ____________________________