Manual do usuário


ROTA**MASS** Total Insight

Manual do Tipo Protegidos contra Explosão INMETRO

IM 01U10X04-00PT-R

Índice

1	Intro	Introdução								
	1.1	1 Escopo da aplicação								
	1.2	Docum	nentos contratuais	4						
	1.3	Explicação								
2	Plac	quetas de	e identificação	5						
	2.1	Sensor	do tipo integral	6						
	2.2	Transn	nissor do tipo integral	7						
	2.3	Sensor	do tipo remoto	8						
	2.4	Transn	nissor do tipo remoto	9						
3	Info	rmações	de compra	10						
	3.1	_	ção do código do modelo							
4	Inst	alacão		11						
-	4.1	-	s gerais de instalação							
	4.2	_	a dos cabos							
	4.3		ão do transmissor à prova de chamas							
5)							
J	5.1		gerais							
	5.2	•	ões à terra							
	5.3		os remotos intrinsecamente seguros							
	5.4		s de conexão do transmissor							
	5.4	5.4.1	Atribuição para comunicação HART							
		5.4.2	Atribuição para comunicação Fieldbus							
		5.4.3	Configuração para comunicação Ethernet-APL							
		5.4.4	Atribuição para comunicação Modbus							
	5.5	Diagra	mas de instalação	25						
		5.5.1	Tipo integral sem saídas E/S intrinsecamente seguras							
		5.5.2	Tipo integral com saídas E/S intrinsecamente seguras	26						
		5.5.3	Tipo integral para comunicação Fieldbus (intrinsecamente seguro)	27						
		5.5.4	Tipo integral para comunicação Ethernet-APL (intrinsecamente seguro)	28						
		5.5.5	Tipo remoto sem saídas E/S intrinsecamente seguras							
		5.5.6	Tipo remoto com saídas E/S intrinsecamente seguras							
		5.5.7	Tipo remoto para comunicação Fieldbus (intrinsecamente seguro)							
		5.5.8	Tipo remoto para comunicação Ethernet-APL (intrinsecamente seguro)	35						
6	Ope	eração, m	nanutenção e reparo	39						
	6.1	•	gerais							
	6.2	Substit	uição do sensor	40						
	6.3	Substit	uição do transmissor	42						
7	Apr	Aprovações e normas								
8	Dad	los técnic	cos	45						
	8.1	Tipo in	tegral	46						
	8.2	Tipo re	moto	48						
		8.2.1	Sensores Nano, CNG e LPG							
		8.2.2	Sensores Supreme, CNG, LPG, Intense e Giga	49						

	8.2.3	Sensores Intense T11S/21S	51
	8.2.4	Sensores Prime e Hygienic	52
	8.2.5	Transmissor	53
	8.2.6	Cabo de conexão	55
	8.2.7	Conexão ao sensor Rotamass 3	56
8.3	Código	Ex	57
	8.3.1	Determinação das máximas temperaturas por meio do código Ex	57
8.4	Especif	icação de temperatura conforme as classes de temperatura	62
	8.4.1	Identificação através do código do modelo	62
	8.4.2	Identificação através do código do modelo e do código Ex	66
	8.4.3	Rotamass Nano, CNG, LPG	67
	8.4.4	Rotamass Supreme, CNG, LPG e Intense	68
	8.4.5	Rotamass Giga	72
	8.4.6	Rotamass Intense T08/10K	
	8.4.7	Rotamass Intense T11/21S	78
	8.4.8	Rotamass Prime e Hygienic	79

Introdução Escopo da aplicação

1 Introdução

1.1 Escopo da aplicação

Este manual é válido para as seguintes famílias de produto Rotamass Total Insight:

- Rotamass Nano
- Rotamass Supreme
- Rotamass Giga
- Rotamass Prime
- Rotamass Intense
- Rotamass Hygienic
- Rotamass CNG
- Rotamass LPG
- Transmissor Rotamass Total Insight em combinação com quaisquer sensores Rotamass Total Insight ou Rotamass 3

A disponibilidade das famílias de produtos é definida pela especificação do produto fornecida.

1.2 Documentos contratuais

Os documentos a seguir fazem parte deste manual:

- Referência rápida
- Manual do usuário
- Manual de instruções do software
- Especificação do produto

1.3 Explicação

_ é utilizado como marcador de posição para um símbolo individual.

Manual do Tipo Protegidos contra Explosão INMETRO

Plaquetas de identificação

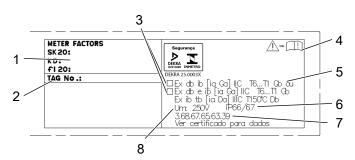
2 Plaquetas de identificação

No sensor, assim como no transmissor, estão aplicadas uma placa de identificação principal e uma placa de identificação adicional, que contêm informações diferentes.


AVISO

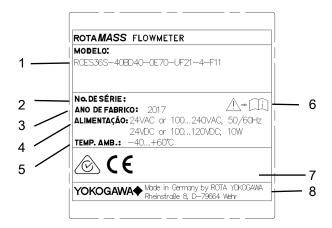
Para determinadas aplicações (como por ex., aplicações marítimas com a opção MC_), podem se aplicar restrições adicionais àquelas já listadas na placa de identificação, dependendo das respectivas regulamentações. O idioma das placas de identificação pode variar dependendo da opção selecionada (por ex., idioma russo com opção VE).

As variantes das placas de identificação estão descritas abaixo.

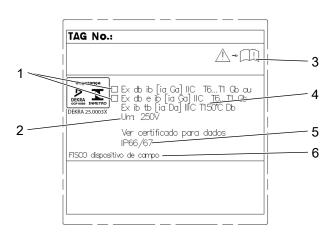

2.1 Sensor do tipo integral

Placa de identificação principal

- 1 Código do modelo
- 2 Número de série
- 3 Ano de fabricação
- 4 Faixa de temperatura ambiente
- 5 Material das partes molhadas
- 6 Direção da vazão
- 7 Aviso com o pedido de leitura da documentação
- 8 Faixa dos desenhos da declaração de conformidade
- 9 Endereço do fabricante
- 10 Pressão de teste
- 11 Pressão de processo máxima admissível com temperatura ambiente
- 12 Máxima temperatura de processo admissível

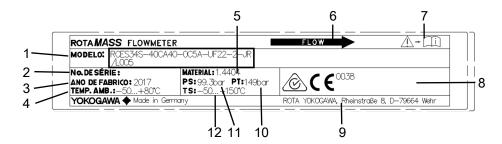

Placa de identificação adicional

- Constantes de calibração do sensor
- 2 Identificação específica do cliente
- 3 Espaço reservado para o uso do Ex db ou Ex db e
- 4 Aviso com o pedido de leitura da documentação
- Identificação do tipo de proteção, do grupo de explosão, das classes de temperatura e do nível de proteção do equipamento
- 6 Proteção IP
- 7 Código Ex
- 8 Máxima tensão efetiva AC ou DC

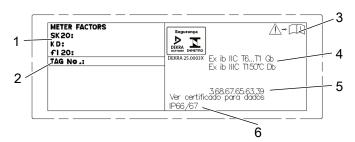

2.2 Transmissor do tipo integral

Placa de identificação principal

- 1 Código do modelo
- 2 Número de série
- 3 Ano de fabricação
- 4 Faixa de tensão de alimentação
- 5 Faixa de temperatura ambiente
- 6 Aviso com o pedido de leitura da documentação
- 7 Faixa dos desenhos da declaração de conformidade
- 8 Endereço do fabricante


Placa de identificação adicional

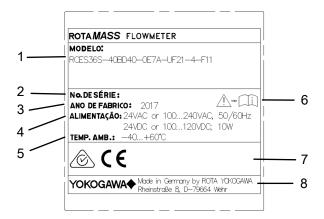
- 1 Espaço reservado para o uso do Ex db ou Ex db e
- 2 Máxima tensão efetiva AC ou DC
- 3 Aviso com o pedido de leitura da documentação
- 4 Identificação do tipo de proteção, do grupo de explosão, das classes de temperatura e do nível de proteção do equipamento
- 5 Proteção IP
- 6 Marcação Fieldbus


2.3 Sensor do tipo remoto

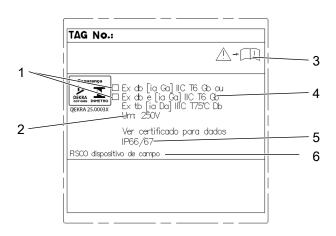
Placa de identificação principal

- 1 Código do modelo
- 2 Número de série
- 3 Ano de fabricação
- 4 Faixa de temperatura ambiente
- 5 Material das partes molhadas
- 6 Direção da vazão
- 7 Aviso com o pedido de leitura da documentação
- 8 Faixa dos desenhos da declaração de conformidade
- 9 Endereço do fabricante
- 10 Pressão de teste
- 11 Pressão de processo máxima admissível com temperatura ambiente
- 12 Máxima temperatura de processo admissível

Placa de identificação principal Placa de identificação adicional



- Constantes de calibração do sensor
- 2 Identificação específica do cliente
- 3 Aviso com o pedido de leitura da documentação
- 4 Identificação do tipo de proteção, do grupo de explosão, das classes de temperatura e do nível de proteção do equipamento
- 5 Código Ex
- 6 Proteção IP


2.4 Transmissor do tipo remoto

Placa de identificação principal

- 1 Código do modelo
- 2 Número de série
- 3 Ano de fabricação
- 4 Faixa de tensão de alimentação
- 5 Faixa de temperatura ambiente
- 6 Aviso com o pedido de leitura da documentação
- 7 Faixa dos desenhos da declaração de conformidade
- 8 Endereço do fabricante

Placa de identificação adicional

- 1 Espaço reservado para o uso do Ex db ou Ex db e
- 2 Máxima tensão efetiva AC ou DC
- 3 Aviso com o pedido de leitura da documentação
- 4 Identificação do tipo de proteção, do grupo de explosão, das classes de temperatura e do nível de proteção do equipamento
- 5 Proteção IP
- 6 Marcação Fieldbus

3 Informações de compra

3.1 Descrição do código do modelo

Especificações do produto

Todas as propriedades disponíveis do medidor de densidade e vazão mássica Coriolis Rotamass Total Insight são especificadas por meio de um código do modelo.


A posição do código do modelo relevante para a respectiva propriedade é apresentada e destacada em azul.

Uma descrição completa do código do modelo está incluída nas Especificações do produto (GS) da respectiva família do produto.

O código do modelo do Rotamass Total Insight está explicado abaixo.

As posições de 1 a 14 são obrigatórias e devem ser especificadas no momento da compra.

As opções do dispositivo (posição 15) também podem ser selecionadas e indicadas individualmente, separadas por barras.

- 1 Transmissor
- 2 Sensor
- 3 Tamanho do medidor
- 4 Material das partes molhadas
- 5 Tamanho da conexão de processo
- 6 Tipo de conexões de processo
- 7 Material da caixa do sensor
- 8 Faixa de temperatura do meio de processo
- 9 Precisão da densidade e vazão mássica
- 10 Design e invólucro
- 11 Aprovação Ex
- 12 Entrada dos cabos
- 13 Tipo de comunicação e E/S
- 14 Display
- 15 Opções

Instalação

4 Instalação

4.1 Regras gerais de instalação

PERIGO

Risco de explosão devido a descarga eletrostática ou descarga estática

Lesões fatais à ignição de atmosferas com risco de explosão

- Evitar cargas eletrostáticas devido a processos que geram fortes cargas.
- ► Instalar o aparelho na zona 1 ou 21 onde não existam processos que provoquem uma forte carga eletrostática, tais como:
 - ⇒ Esfregar com panos secos
 - ⇒ Atrito mecânico
 - ⇒ Pulverização de eletrons (sistemas de pintura eletrostática)

A modificação do medidor de vazão mássica Coriolis, assim como a utilização de peças não autorizadas são proibidas e tornam inválida a certificação.

O serviço e o reparo devem ser feitos por pessoal treinado pela Yokogawa!

- Só o pessoal qualificado está autorizado a instalar e a usar o aparelho em áreas indústriais.
- O manual deve ser lido e compreendido por todas as pessoas encarregadas do transporte, do armazenamento, da instalação, da instalação elétrica, do comissionamento, da operação, manutenção e eliminação do medidor de vazão mássica Coriolis em áreas com risco de explosão.
- Devem ser observadas as normas de segurança nacionais para a instalação do medidor de vazão mássica Coriolis em áreas com risco de explosão.
- Só devem ser utilizados fluidos contra os quais as partes molhadas sejam suficientemente resistentes.
- Deve ser assegurada a utilização de prensa-cabos apropriados, consulte Entrada dos cabos [> 12].
- A temperatura ambiente e a temperatura do processo não devem ultrapassar os respectivos valores máximos para a Especificação de temperatura conforme as classes de temperatura [▶ 62] vigente.
- O tipo integral, assim como o transmissor de tipo remoto, não devem ser isolados.

Instalação Entrada dos cabos

4.2 Entrada dos cabos

Os terminais de conexão do transmissor, para a conexão do sensor, devem ser certificados como Ex i. IP66/67. Para este terminal de conexão devem ser usados prensa-cabos e bujões certificados. A faixa de temperatura permitida para prensa-cabos e bujões deve ser de pelo menos -40 a +80 °C. Bujão para buchas redundantes e prensa-cabos são instalados na fábrica.

A caixa do transmissor é projetada no tipo de proteção contra ignição Ex db. Como opção, os terminais de conexão para a tensão de alimentação e as entradas/saídas também podem ser certificadas como Ex e. Para este efeito, devem ser usados prensacabos e bujões devidamente certificados. A faixa de temperatura permitida para prensacabos e bujões deve ser de pelo menos -40 a +80 °C. O tipo de proteção contra ignição deve ser indicado na placa de identificação, consulte para tal *Placas de identificação* [> 5].

Se o dispositivo for operado sem linhas de comunicação, devem ser instalados bujões corretamente classificados e certificados.

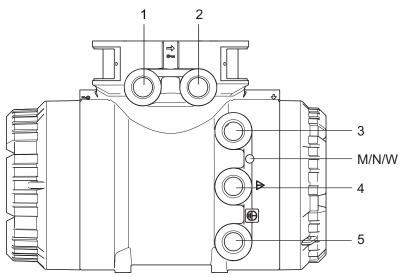
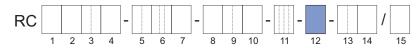



Fig. 1: Roscas para o prensa-cabo do transmissor

1 – 5 Posição da rosca, consulte a tabela abaixo
 M Identificação da rosca: ISO M20 × 1,5
 N ou W Identificação da rosca: ANSI 1/2" NPT

Entrada dos cabos Instalação

A ilustração a seguir mostra a respectiva posição do código do modelo:

Rosca Código do		Posição	Condição	de entrega	Notas
	modelo Posição 12	da rosca	Tipo integral	Tipo remoto	
		1	Bujão IP66/67, instalado na fábrica	Prensa-cabos de metal IP66/67, instalado na fábrica	_
	Bujão IP66/67, Bujão IP66/67, 2 instalado na instalado na fábrica fábrica		-		
ISO M20 × 1,5	4	3	Prensa-cabo certif INMETRO, pelo m fornecido a partir o invólucro do transi alumínio. Para car inoxidável, não é ii prensa-cabo no vo fornecimento	enos İP66/67, de fábrica para missor em caças de aço ncluído nenhum	
		4	INMETRO bujão certificado, com pelo menos IP66/67, adicionado na fábrica.		O usuário deve instalar, profissionalmente, um bujão ou prensa-cabo com pelo menos IP66/67, certificado como INMETRO de acordo com o tipo de proteção.
		5	Prensa-cabo certificado pela INMETRO, pelo menos IP66/67, fornecido a partir de fábrica para invólucro do transmissor em alumínio. Para carcaças de aço inoxidável, não é incluído nenhum prensa-cabo no volume de fornecimento		O usuário deve instalar, profissionalmente, um prensa- cabo com pelo menos IP66/67, certificado como INMETRO de acordo com o tipo de proteção.

Instalação Entrada dos cabos

Rosca	Código do	Posição	Condição	de entrega	Notas
	modelo Posição 12	da rosca	Tipo integral	Tipo remoto	
		1	Bujão IP66/67, instalado na fábrica	Prensa-cabos de metal IP66/67, instalado na fábrica	_
		2	Bujão IP66/67, instalado na fábrica	Bujão IP66/67, instalado na fábrica	usuário deve instalar, rofissionalmente, um prensa- abo com pelo menos IP66/67, ertificado como INMETRO de cordo com o tipo de proteção. usuário deve instalar, rofissionalmente, um bujão ou rensa-cabo com pelo menos P66/67, certificado como NMETRO de acordo com o po de proteção. usuário deve instalar, rofissionalmente, um prensa- abo com pelo menos IP66/67, ertificado como INMETRO de cordo com o tipo de proteção. temperatura real do a +100 °C para a opção de de dispositivo Y
ANSI 1/2" NPT	2	3	_		O usuário deve instalar, profissionalmente, um prensa- cabo com pelo menos IP66/67, certificado como INMETRO de acordo com o tipo de proteção.
		4	INMETRO bujão certificado, com pelo menos IP66/67, adicionado na fábrica.		O usuário deve instalar, profissionalmente, um bujão ou prensa-cabo com pelo menos IP66/67, certificado como INMETRO de acordo com o tipo de proteção.
		5	-		O usuário deve instalar, profissionalmente, um prensa- cabo com pelo menos IP66/67, certificado como INMETRO de acordo com o tipo de proteção.
O prensa-cabo no sensor é instalado a partir de fábrica. A temperatura real do prensa-cabo não deve ser inferior a -50 °C e não superior a +100 °C para a opção de dispositivo Lxxx, e não superior a 80 °C para a opção de dispositivo Y					
Bujões, que são instalados em roscas ANSI 1/2" NPT, não devem ser					PT, não devem ser

- Bujões, que são instalados em roscas ANSI 1/2" NPT, não devem ser removidos, pois a rosca será danificada e não atende aos requisitos à prova de explosão!
- Devem ser observadas as condições específicas de utilização dos acessórios (prensa-cabos / bujões) do certificado INMETRO.

4.3 Conexão do transmissor à prova de chamas

Modelos certificados Ex são equipados com uma caixa do transmissor à prova de chama.

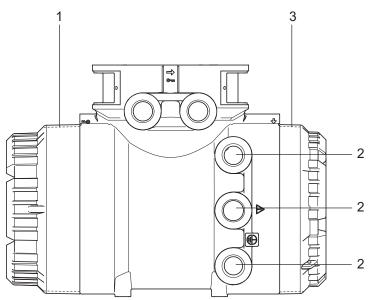


Fig. 2: Conexão do transmissor à prova de chamas

- 1 Rosca para tampa do display
- 2 Rosca para prensa-cabos ou bujões
- 3 Rosca para a tampa traseira

Tab. 1: Dados técnicos da conexão à prova de chamas

Rosca		Aclive em mm	Tolerâncias	Passo de rosca	Profundidade mínima de aparafusamento em mm
Tampa d	o display	2	6g/6H	≥ 7	≥ 14
Tampa traseira		2	og/on	2 7	2 14
Prensa- cabos	ISO M20 × 1,5	1,5	6H	≥ 10	≥ 15
	ANSI 1/2" NPT	1,814	segundo ANSI B 1.20.1	≥ 6	≥ 13,605

Cabeamento Regras gerais

5 Cabeamento

5.1 Regras gerais

A PERIGO

Conexão insuficiente para o sistema de compensação de potencial

Lesões fatais devido a choque elétrico ou ignição de áreas com risco de explosão.

- ▶ Para o sensor do tipo remoto, deve-se conectar o sensor através do borne de aterramento, fora do invólucro, ao sistema de compensação de potencial, consulte Circuitos remotos intrinsecamente seguros [> 18].
- Conectar o transmissor através do borne de aterramento, fora do invólucro, ao sistema de compensação de potencial, consulte Circuitos remotos intrinsecamente seguros [> 18].
- Conectar o cabo de aterramento do cabo de alimentação ao parafuso de aterramento dos terminais, consulte Circuitos remotos intrinsecamente seguros [> 18].
- Durante a instalação elétrica devem ser observadas as respectivas normas nacionais.
- O Rotamass deve ser incorporado no sistema de compensação de potencial da área com risco de explosão.
- A equalização de potencial deve ser assegurada em todo o circuito elétrico intrinsecamente seguro.
- A tensão de alimentação aos terminais L/+ e N/- deve ser estabelecida com uma tensão de ≤ 250 V.
- O parafuso de aterramento dos terminais deve ser bem apertado na rosca.
- Quando se utiliza o tipo de proteção Ex eb, devem ser usadas seções transversais de cabos de 0,8 a 2,5 mm² para os cabos da tensão de alimentação e para os cabos das entradas/saídas. Devem ser removidos de 5 a 6 mm da isolamento dos cabos.
- As conexões de cabo para as entradas/saídas devem ser feitas de acordo com as tabelas de conexão. No processo, deve ser assegurado que o tipo de conexão coincida com a respectiva posição do código do modelo que consta na placa de identificação.
- Os máximos parâmetros de entrada das saídas intrinsecamente seguras não devem ser excedidos.

Conexões à terra Cabeamento

5.2 Conexões à terra

ADVERTÊNCIA

Risco de ferimentos por choque elétrico devidoa uma conexão inadequada à terra

► Realizar a equalização de potencial nos bornes de aterramento providenciados para essa finalidade de acordo com a figura "Conexões à terra no transmissor e no sensor".

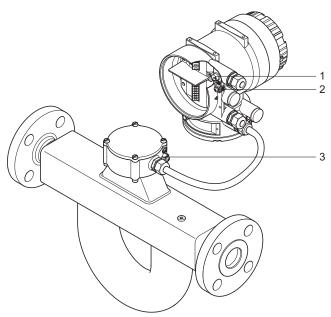


Fig. 3: Conexões ao terra do transmissor e do sensor

- Parafuso de aterramento dentro da caixa de terminais do transmissor para condutor de aterramento
- 2 Invólucro do borne de aterramento no transmissor para equalização de potencial
- 3 Invólucro do terminal de aterramento no sensor para equalização de potencial

5.3 Circuitos remotos intrinsecamente seguros

O volume de fornecimento inclui uma ferramenta de acionamento para conectar o cabo de conexão aos bornes de conexão.

Transmissor

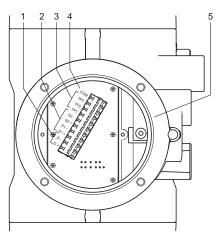
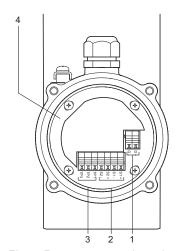



Fig. 4: Circuito do borne de conexão para o transmissor

- 1 Circuito de acionamento (D+/D-)
- 2 Circuitos do sensor (S1+/S1-, S2+/S2-)
- 3 Circuito de medição da temperatura (TP1, TP2, TP3)
- 4 Sinal de terra
- 5 Transmissor

Variante de conexão de sensor 1 + 2

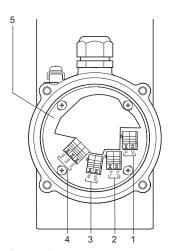


Fig. 5: Representação de variantes 1 + 2: Circuitos de borne de conexão para o sensor

Variante de conexão de sensor 1:					
1	Circuito de acionamento (D+/D-)	4	Sensor		
2	Circuitos do sensor (S1+/S1-, S2+/S2-)				
3	Circuitos de medição da temperatura (TP1, TP2, TP3)				
Variante de conexão de sensor 2:					
1	Circuito de acionamento (D+/D-)	4	Circuito de medição da temperatura (TP1, TP2, TP3)		
2	Circuito do sensor (S1+/S1-)	5	Sensor		
3	Circuito do sensor (S2+/S2-)				

Cabeamento

5.4 Bornes de conexão do transmissor

5.4.1 Atribuição para comunicação HART

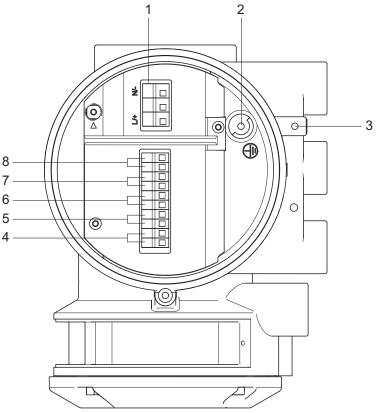
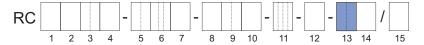



Fig. 6: Terminais de conexão para a conexão a dispositivos externos para HART e para a tensão de alimentação do transmissor

- 1 Bornes de conexão, tensão de alimentação
- 2 Parafuso de aterramento dos terminais
- 3 Borne de aterramento
- 4 Bornes de conexão para E/S1 +/-
- 5 Bornes de conexão para E/S2 +/-
- 6 Bornes de conexão para E/S3 +/-
- 7 Bornes de conexão para E/S4 +/-
- 8 WP: Terminal com senha de proteção

Para a conexão dos cabos deve ser observado o manual de instruções aplicável.

As atribuições do borne de conexão para E/S são definidas de acordo com a variante de produto encomendada. A ilustração a seguir mostra a respectiva posição do código do modelo:

Tab. 2: Atribuição do borne de conexão para HART

Código do modelo		Atrib	uição dos	bornes de con	exão	
Posição 13	E/S1 +/-	E/S2 +/-	E/S3 +/-	E/S4 +/-	WP	
1.0	lout1	P/Sout1			C	
JA	Ativo	Passivo	_	_	Senha de proteção	
ID	lout1	P/Sout1	P/Sout2	lout2	Conha do protocão	
JB	Ativo	Passivo	Passivo	Ativo	Senha de proteção	
JC	lout1	P/Sout1	Sin	lout2	Sanha da protocão	
JC	Ativo	Passivo	SIII	Ativo	Senha de proteção	
JD	lout1	P/Sout1	Sout	P/Sout2	Conha do protocão	
JD	Ativo	Passivo	Passivo	Passivo	Senha de proteção	
JE	lout1	P/Sout1	Sin	P/Sout2	Conha do protocão	
JE	Ativo	Passivo	SIII	Passivo	Senha de proteção	
	1 14	D/0		P/Sout2		
JF	lout1	P/Sout1	Sin	Ativo	Senha de proteção	
	Ativo	Passivo		Resistência pull-up interna	ência · · · · ·	
	lout1	P/Sout1		P/Sout2		
JG	Ativo	Passivo	Sin	Ativo	Senha de proteção	
	lout1	P/Sout1	lout2	lin		
JH	Ativo	Passivo	Passivo	Ativo	Senha de proteção	
	lout1	P/Sout1	P/Sout2	lin	0	
JJ	Ativo	Passivo	Passivo	Ativo	Senha de proteção	
IIZ	lout1	P/Sout1	Cin	lin	Camba da musta são	
JK	Ativo	Passivo	Sin Ativo		Senha de proteção	
	lout1	P/Sout1	lout2	lin	Camba da musta são	
JL	Ativo	Passivo	Passivo	Passivo	Senha de proteção	
INA	lout1	P/Sout1	P/Sout2	lin	Conha do protocão	
JM	Ativo	Passivo	Passivo	Passivo	Senha de proteção	
JN	lout1	P/Sout1	Sin	lin	Senha de proteção	
JIN	Ativo	Passivo	SIII	Passivo	Serina de proteção	
JP	lout1	P/Sout1	lout2		Senha de proteção	
JF	Passivo	Passivo	Passivo	_	Serina de proteção	
JQ	lout1	P/Sout1	lout2	P/Sout2	Senha de proteção	
JQ	Passivo	Passivo	Passivo	Passivo	Serina de proteção	
	lout1	P/Sout1	lout2			
JR	Passivo	Passivo	Passivo	_	Senha de proteção	
		NAMUR P/Sout1		P/Sout2		
JS	lout1	Passivo	lout2	Passivo	Senha de proteção	
	Passivo	NAMUR	Passivo	NAMUR	1 3	

lout1 Saída de corrente analógica, sem HART

Iout2Saída de corrente analógicalinEntrada de corrente analógicaP/Sout1Saída de pulso ou do statusP/Sout2Saída de pulso ou do status

Sin Entrada do status Sout Saída do status

5.4.2 Atribuição para comunicação Fieldbus

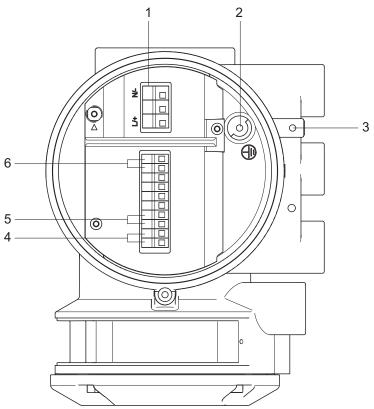
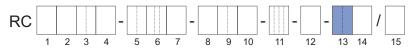



Fig. 7: Terminais de conexão para a conexão a dispositivos externos para Fieldbus e para a tensão de alimentação do transmissor

- 1 Bornes de conexão, tensão de alimentação
- 2 Parafuso de aterramento dos terminais
- 3 Borne de aterramento
- 4 Bornes de conexão para E/S1 +/-
- 5 Bornes de conexão para E/S2 +/-
- 6 WP: Terminal com senha de proteção

Para a conexão dos cabos deve ser observado o manual de instruções aplicável.

As atribuições do borne de conexão para E/S são definidas de acordo com a variante de produto encomendada. A ilustração a seguir mostra a respectiva posição do código do modelo:

Código do modelo	Atribuição dos bornes de conexão					
Posição 13	E/S1 +/-	E/S2 +/-	E/S3 +/-	E/S4 +/-	WP	
F	FOUNDATION	P/Sout1			Conha do protocão	
F_	Fieldbus	Passivo	_	_	Senha de proteção	
0	Drafib DA	P/Sout1			Canha da musta são	
G_	Profibus PA	Passivo	_	_	Senha de proteção	

P/Sout1 Saída de pulso ou do status passiva

_ Cifra

5.4.3 Configuração para comunicação Ethernet-APL

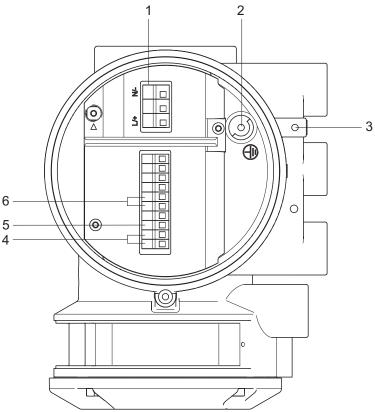
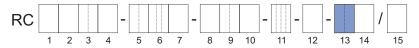



Fig. 8: Terminais de conexão para a conexão a dispositivos externos para Ethernet-APL e para a tensão de alimentação do transmissor

- 1 Bornes de conexão, tensão de alimentação
- 2 Parafuso de aterramento dos terminais
- 3 Borne de aterramento
- 4 Bornes de conexão para E/S1 +/-
- 5 Bornes de conexão para E/S2 +
- 6 Bornes de conexão para E/S3+/-

Para a conexão dos cabos deve ser observado o manual de instruções aplicável.

As atribuições do borne de conexão para E/S são definidas de acordo com a variante de produto encomendada. A ilustração a seguir mostra a respectiva posição do código do modelo:

Código do	Atribuição dos bornes de conexão					
modelo Posição 13	E/S1 +/-	E/S2 +	E/S3 +/-	E/S4 +/-	WP	
T_	Ethernet APL	Shield	P/Sout1 Passivo	_	_	

P/Sout1 Saída de pulso ou do status passiva

. Cifra

Cabeamento

5.4.4 Atribuição para comunicação Modbus

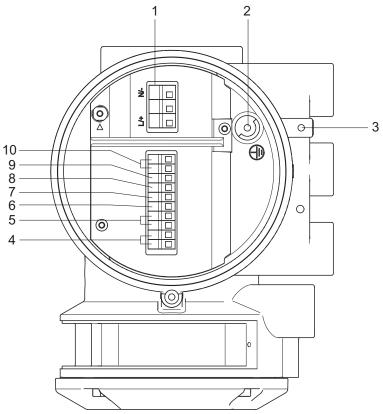
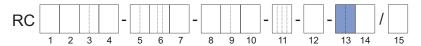



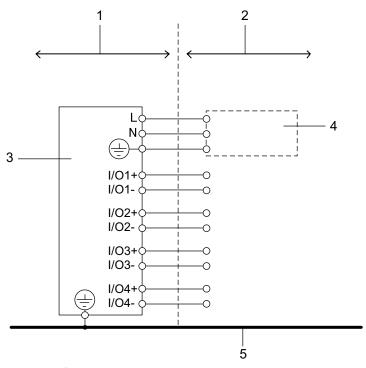
Fig. 9: Terminais de conexão para a conexão a dispositivos externos para Modbus e para a tensão de alimentação do transmissor

- 1 Bornes de conexão, tensão de alimentação
- 2 Parafuso de aterramento dos terminais
- 3 Borne de aterramento
- 4 Bornes de conexão para E/S1 +/-
- 5 Bornes de conexão para E/S2 +/-
- 6 Bornes de conexão para E/S3 +
- 7 Bornes de conexão para E/S3 -
- 8 Bornes de conexão para E/S4 +
- 9 Bornes de conexão para E/S4 -
- 10 WP: Terminal com senha de proteção

Para a conexão dos cabos deve ser observado o manual de instruções aplicável.

As atribuições do borne de conexão para E/S são definidas de acordo com a variante de produto encomendada. A ilustração a seguir mostra a respectiva posição do código do modelo:

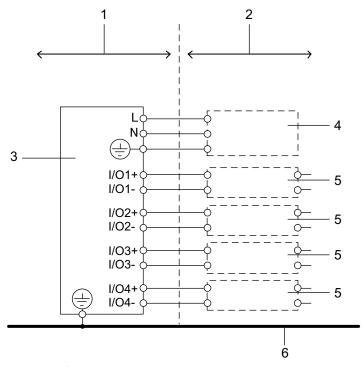
Tab. 3: Atribuição do borne de conexão para Modbus

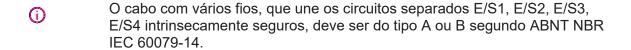

Código do	Atribuição dos bornes de conexão							
modelo posição 13	E/S1 +/-	E/S2 +/-	E/S3 +	E/S3 -	E/S4 +	E/S4 -	WP	
МО	_	P/Sout1 Passivo	_	Modbus C	Modbus B	Modbus A	Senha de proteção	
M2	lin Ativo	P/Sout1 Passivo	_	Modbus C	Modbus B	Modbus A	Senha de proteção	
M3	P/Sout2 Passivo	P/Sout1 Passivo	_	Modbus C	Modbus B	Modbus A	Senha de proteção	
M4	P/Sout2 Ativo	P/Sout1 Passivo	_	Modbus C	Modbus B	Modbus A	Senha de proteção	
M5	P/Sout2 Ativo Resistência pull-up interna	P/Sout1 Passivo	_	Modbus C	Modbus B	Modbus A	Senha de proteção	
M6	lout1 Ativo	P/Sout1 Passivo	_	Modbus C	Modbus B	Modbus A	Senha de proteção	
M7	lin Passivo	P/Sout1 Passivo	_	Modbus C	Modbus B	Modbus A	Senha de proteção	

lout Saída de corrente analógica, sem HART

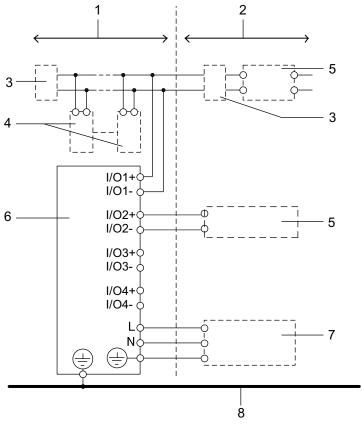
lin Entrada de corrente analógicaP/Sout1 Saída de pulso ou do statusP/Sout2 Saída de pulso ou do status

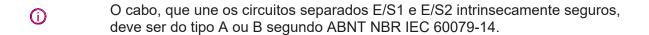
5.5 Diagramas de instalação

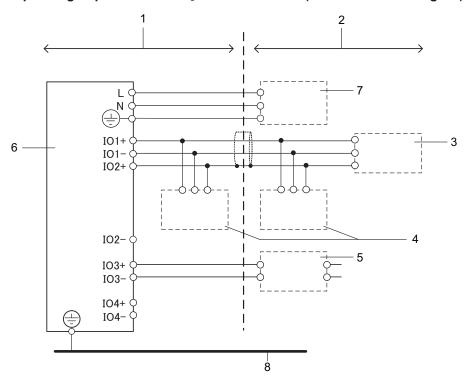

5.5.1 Tipo integral sem saídas E/S intrinsecamente seguras

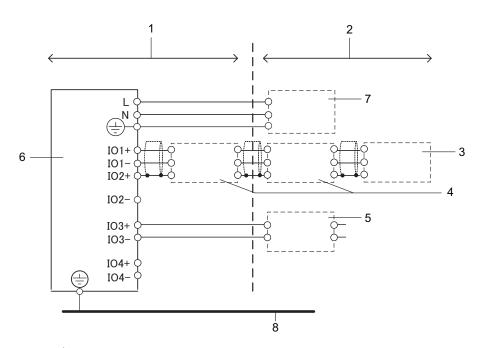

- 1 Área com risco de explosão
- 2 Área sem risco de explosão
- 3 Rotamass
- 4 Tensão de alimentação
- 5 Sistema de compensação de potencial

Cabeamento Diagramas de instalação


5.5.2 Tipo integral com saídas E/S intrinsecamente seguras


- 1 Área com risco de explosão
- 2 Área sem risco de explosão
- 3 Rotamass
- 4 Tensão de alimentação
- 5 Recurso associado
- 6 Sistema de compensação de potencial


5.5.3 Tipo integral para comunicação Fieldbus (intrinsecamente seguro)


- 1 Área com risco de explosão
- 2 Área sem risco de explosão
- 3 Terminação
- 4 Instrumento de campo
- 5 Recurso associado
- 6 Rotamass
- 7 Tensão de alimentação
- 8 Sistema de compensação de potencial

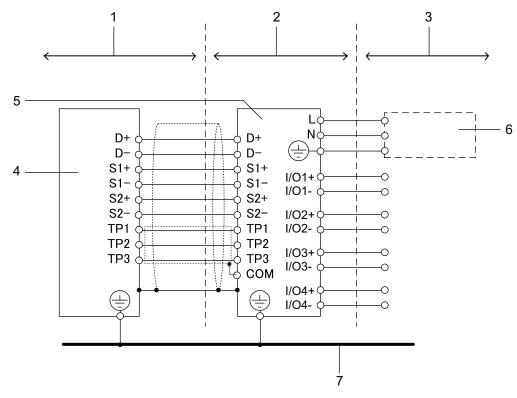
5.5.4 Tipo integral para comunicação Ethernet-APL (intrinsecamente seguro)

a) portas de dispositivos 2-WISE auxiliares conectadas com fios curtos (tocos) no cabo

b) portas de dispositivos 2-WISE auxiliares conectadas através de uma conexão em série no cabo

- 1 Área com risco de explosão
- 2 Área sem risco de explosão
- 3 Fonte de energia elétrica
- 4 Dispositivo auxiliar1

- 5 Recurso associado
- 6 Rotamass
- 7 Tensão de alimentação
- 8 Sistema de compensação de potencial


¹ Dispositivo auxiliar nem sempre é implementado.

O cabo, que une os circuitos separados E/S1 e E/S3 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.

Para modelos com saída APL intrinsecamente segura: A rigidez dielétrica de pelo menos 500 V AC de tensão efetiva entre os circuitos intrinsecamente seguros de ES3 e do invólucro é limitada apenas pela proteção contra sobretensão.

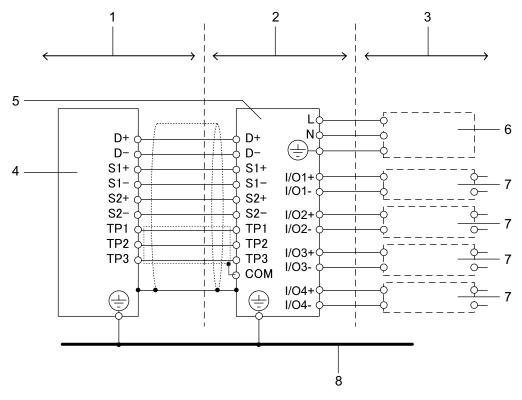
5.5.5 Tipo remoto sem saídas E/S intrinsecamente seguras

Opção L___

1	Área com risco de explosão
2	Área com risco de explosão ou área sem risco de explosão
3	Área sem risco de explosão
4	Sensor
5	Transmissor
6	Tensão de alimentação
7	Sistema de compensação de potencial
D+/D-	Circuito de acionamento
S1+/S1-, S2+/S2-	Circuitos do sensor
TP1, TP2, TP3	Circuitos de medição de temperatura

O cabo com vários fios, que une os circuitos separados D+/D-, S1+/S1-, S2+/S2e TP1/TP2/TP3 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14. Cabeamento Diagramas de instalação

Opção Y___

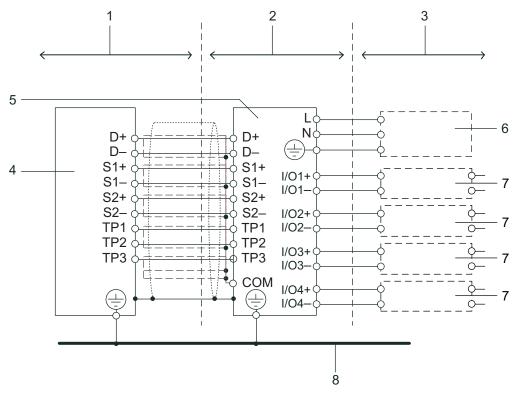

1	Área com risco de explosão
2	Área com risco de explosão ou área sem risco de explosão
3	Área sem risco de explosão
4	Sensor
5	Transmissor
6	Tensão de alimentação
7	Sistema de compensação de potencial
D+/D-	Circuito de acionamento
S1+/S1-, S2+/S2-	Circuitos do sensor
TP1, TP2, TP3	Circuitos de medição de temperatura

(i)

O cabo com vários fios, que une os circuitos separados D+/D-, S1+/S1-, S2+/S2-e TP1/TP2/TP3 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.

5.5.6 Tipo remoto com saídas E/S intrinsecamente seguras

Opção L___

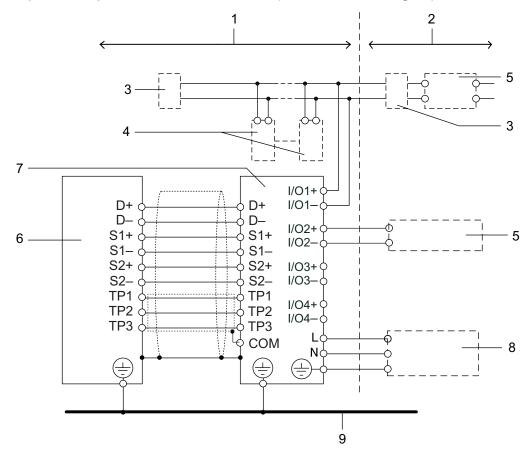


1	Área com risco de explosão
2	Área com risco de explosão ou área sem risco de explosão
3	Área sem risco de explosão
4	Sensor
5	Transmissor
6	Tensão de alimentação
7	Recurso associado
8	Sistema de compensação de potencial
D+/D-	Circuito de acionamento
S1+/S1-, S2+/S2-	Circuitos do sensor
TP1, TP2, TP3	Circuitos de medição de temperatura

- O cabo com vários fios, que une os circuitos separados E/S1, E/S2, E/S3, E/S4 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.
- O cabo com vários fios, que une os circuitos separados D+/D-, S1+/S1-, S2+/S2e TP1/TP2/TP3 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.

Cabeamento Diagramas de instalação

Opção Y___

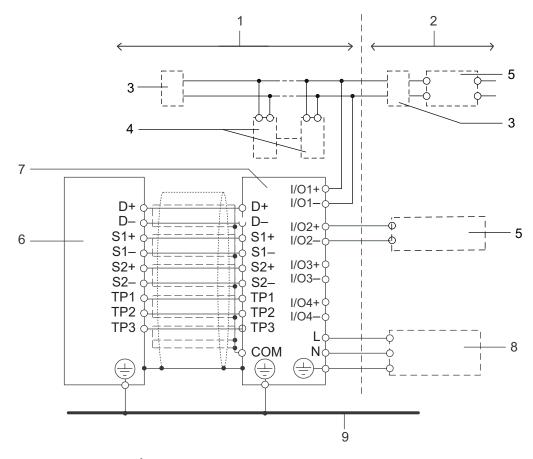

1	Área com risco de explosão
2	Área com risco de explosão ou área sem risco de explosão
3	Área sem risco de explosão
4	Sensor
5	Transmissor
6	Tensão de alimentação
7	Recurso associado
8	Sistema de compensação de potencial
D+/D-	Circuito de acionamento
S1+/S1-, S2+/S2-	Circuitos do sensor
TP1, TP2, TP3	Circuitos de medição de temperatura

- O cabo com vários fios, que une os circuitos separados E/S1, E/S2, E/S3, E/S4 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.
- O cabo com vários fios, que une os circuitos separados D+/D-, S1+/S1-, S2+/S2e TP1/TP2/TP3 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.

Diagramas de instalação Cabeamento

5.5.7 Tipo remoto para comunicação Fieldbus (intrinsecamente seguro)

Opção L___

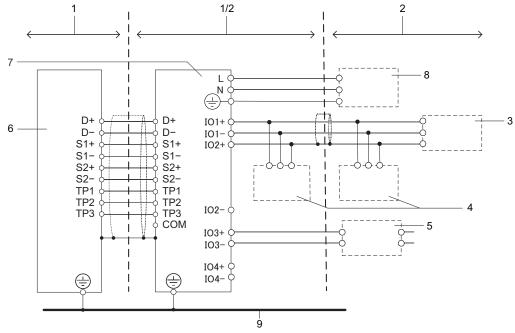


1	Área com risco de explosão
2	Área sem risco de explosão
3	Terminação
4	Instrumento de campo
5	Recurso associado
6	Sensor
7	Transmissor
8	Tensão de alimentação
9	Sistema de compensação de potencial
D+/D-	Circuito de acionamento
S1+/S1-, S2+/S2-	Circuitos do sensor
TP1, TP2, TP3	Circuitos de medição de temperatura

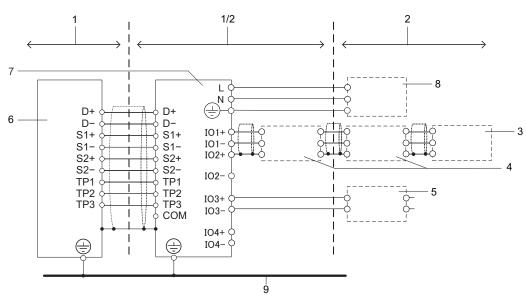
- O cabo, que une os circuitos separados E/S1 e E/S2 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.
- O cabo com vários fios, que une os circuitos separados D+/D-, S1+/S1-, S2+/S2e TP1/TP2/TP3 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.

Cabeamento Diagramas de instalação

Opção Y___



1	Área com risco de explosão
2	Área sem risco de explosão
3	Terminação
4	Instrumento de campo
5	Recurso associado
6	Sensor
7	Transmissor
8	Tensão de alimentação
9	Sistema de compensação de potencial
D+/D-	Circuito de acionamento
S1+/S1-, S2+/S2-	Circuitos do sensor
TP1, TP2, TP3	Circuitos de medição de temperatura

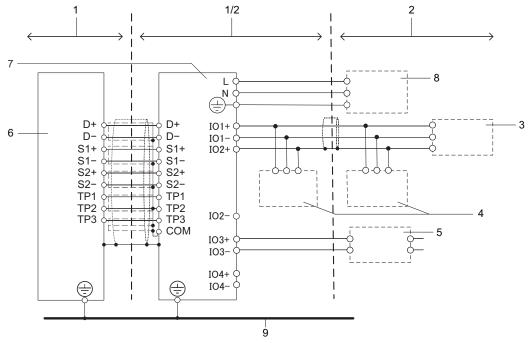

- O cabo, que une os circuitos separados E/S1 e E/S2 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.
- O cabo com vários fios, que une os circuitos separados D+/D-, S1+/S1-, S2+/S2-e TP1/TP2/TP3 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.

5.5.8 Tipo remoto para comunicação Ethernet-APL (intrinsecamente seguro)

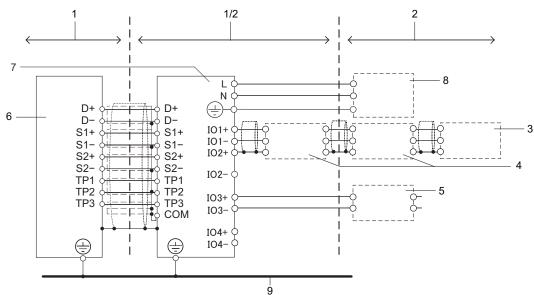
Opção L___

a) portas de dispositivos 2-WISE auxiliares conectadas com fios curtos (tocos) no cabo

b) portas de dispositivos 2-WISE auxiliares conectadas através de uma conexão em série no cabo


1	Área com risco de explosão
2	Área sem risco de explosão
3	Fonte de energia elétrica
4	Dispositivo auxiliar (nem sempre implementado)
5	Recurso associado
6	Sensor
7	Transmissor
8	Tensão de alimentação
9	Sistema de compensação de potencial
D+/D-	Circuito de acionamento
S1+/ S1-, S2+/S2-	Circuitos do sensor
TP1, TP2, TP3	Circuitos de medição de temperatura

Manual do Tipo Protegidos contra Explosão INMETRO


Cabeamento	Diagramas de instalação

(i)	O cabo, que une os circuitos separados E/S1 e E/S3 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.
0	O cabo com vários fios, que une os circuitos separados D+/D-, S1+/S1-, S2+/S2-e TP1/TP2/TP3 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.
0	Para modelos com saída APL intrinsecamente segura: A rigidez dielétrica de pelo menos 500 V AC de tensão efetiva entre os circuitos intrinsecamente seguros de ES3 e do invólucro é limitada apenas pela proteção contra sobretensão.

Opção Y___

a) portas de dispositivos 2-WISE auxiliares conectadas com fios curtos (tocos) no cabo

b) portas de dispositivos 2-WISE auxiliares conectadas através de uma conexão em série no cabo

1	Área com risco de explosão		
2	Área sem risco de explosão		
3	Fonte de energia elétrica		
4	Dispositivo auxiliar (nem sempre implementado)		
5	Recurso associado		
6	Sensor		
7	Transmissor		
8	Tensão de alimentação		
9	Sistema de compensação de potencial		
D+/D-	Circuito de acionamento		
S1+/ S1-, S2+/S2-	Circuitos do sensor		
TP1, TP2, TP3	Circuitos de medição de temperatura		

Manual do Tipo Protegidos contra Explosão INMETRO

Cabeamento	Diagramas de instalação

(i)	O cabo, que une os circuitos separados E/S1 e E/S3 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.
(i)	O cabo com vários fios, que une os circuitos separados D+/D-, S1+/S1-, S2+/S2-e TP1/TP2/TP3 intrinsecamente seguros, deve ser do tipo A ou B segundo ABNT NBR IEC 60079-14.
(i)	Para modelos com saída APL intrinsecamente segura: A rigidez dielétrica de pelo menos 500 V AC de tensão efetiva entre os circuitos intrinsecamente seguros de ES3 e do invólucro é limitada apenas pela proteção contra sobretensão.

Operação, manutenção e reparo

6 Operação, manutenção e reparo

6.1 Regras gerais

A PERIGO

Lesões fatais devido a choque elétrico

- Cortar a tensão de alimentação.
- ▶ Bloquear a tensão de alimentação contra ligação acidental.
- Verificar a tensão de alimentação.

⚠ PERIGO

Lesões fatais devido à ignição de atmosferas explosivas

- Aguardar 20 minutos antes de abrir a caixa, até que os capacitadores estejam descarregados e os componentes tenham esfriado.
- Evitar cargas eletrostáticas devido a processos que geram fortes cargas.

A modificação do medidor de vazão mássica Coriolis, assim como a utilização de peças não autorizadas são proibidas e tornam inválida a certificação.


O serviço e o reparo devem ser feitos por pessoal treinado pela Yokogawa!

- Os parafusos de fixação da tampa só devem ser parafusados e desparafusados com uma chave Allen.
- Depois de fechar e antes do comissionamento, é necessário verificar se os parafusos de fixação estão apertados e se as tampas estão fechadas.

6.2 Substituição do sensor

Se um sensor Rotamass Total Insight defeituoso tiver que ser substituído, será necessário entrar em contato com o serviço ao cliente da Yokogawa.

Em geral, o código do modelo de um sensor de substituição pode ser diferente do modelo instalado. Neste caso, o código do modelo do sensor deve ser selecionado e verificado.

Tipo integral

Posição do código do modelo	Significado	Verificação dos critérios entre o código do modelo instalado e o sensor sobressalente
1	Transmissor	Sem restrições para áreas com risco de explosão
2	Sensor	Pode divergir da restrição, veja², o valor "3" está excluído
3	Tamanho do medidor	Se alterado, veja ¹
4	Material das partes molhadas	Sem restrições para áreas com risco de explosão
5	Tamanho da conexão de processo	Sem restrições para áreas com risco de explosão
6	Tipo de conexões de processo	Sem restrições para áreas com risco de explosão
7	Material da caixa do sensor	Sem restrições para áreas com risco de explosão
8	Faixa de temperatura do meio de processo	Se alterado, veja¹
9	Precisão da densidade e vazão mássica	Sem restrições para áreas com risco de explosão
10	Design e invólucro	Restrição a valores numéricos (0,1,2,)
11	Aprovação Ex	Deve ser idêntica
12	Entrada dos cabos	Sem restrições para áreas com risco de explosão
13	Tipo de comunicação e E/S	sem restrições para área com risco de explosão, exceto: saídas intrinsecamente seguras JP JU, F_ (_ Ímpar), G1, T_ (_ ímpar) devem ser idênticas
14	Display	Sem restrições para áreas com risco de explosão
15	Opções	Sem restrições para áreas com risco de explosão, exceto opção EPT deve ser idêntica

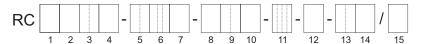
¹ Os códigos Ex devem ser comparados. Se forem diferentes, então vale². Se nenhum código ex estiver disponível, consulte a temperatura de processo padrão de um certificado de proteção contra explosão válido ou o manual do usuário aplicável para o modelo à prova de explosão.

² A temperatura de processo padrão do sensor sobressalente deve ser avaliada em conformidade com o código do modelo e o *Código Ex* [► 57]. Se nenhum código ex estiver disponível, consulte a temperatura de processo padrão de um certificado de proteção contra explosão válido ou o manual do usuário aplicável para o modelo à prova de explosão. Compare a temperatura de processo padrão com os requisitos da área com risco de explosão e realize uma avaliação.

Operação, manutenção e reparo

Tipo remoto

Posição do código do modelo	Significado	Verificação dos critérios entre o código do modelo instalado e o sensor sobressalente
1	Transmissor	Sem restrições para áreas com risco de explosão
2	Sensor	Pode divergir da restrição, veja², o valor "3" está excluído
3	Tamanho do medidor	Se alterado, veja¹
4	Material das partes molhadas	Sem restrições para áreas com risco de explosão
5	Tamanho da conexão de processo	Sem restrições para áreas com risco de explosão
6	Tipo de conexões de processo	Sem restrições para áreas com risco de explosão
7	Material da caixa do sensor	Sem restrições para áreas com risco de explosão
8	Faixa de temperatura do meio de processo	Se alterado, veja¹
9	Precisão da densidade e vazão mássica	Sem restrições para áreas com risco de explosão
10	Design e invólucro	Restrição a valores alfabéticos (A, B,); tipo B, D, F, K não deve ser alterado para o tipo A, C, E, J.
11	Aprovação Ex	Deve ser idêntica
12	Entrada dos cabos	Sem restrições para áreas com risco de explosão
13	Tipo de comunicação e E/S	Sem restrições para áreas com risco de explosão
14	Display	Sem restrições para áreas com risco de explosão
15	Opções	Sem restrições para áreas com risco de explosão, exceção: a opção EPT, Y deve ser idêntica, veja¹. Se a opção T mudar, veja¹.


¹ Os códigos Ex devem ser comparados. Se forem diferentes, então vale². Se nenhum código ex estiver disponível, consulte a temperatura de processo padrão de um certificado de proteção contra explosão válido ou o manual do usuário aplicável para o modelo à prova de explosão.

² A temperatura de processo padrão do sensor sobressalente deve ser avaliada em conformidade com o código do modelo e o *Código Ex [▶ 57]*. Se nenhum código ex estiver disponível, consulte a temperatura de processo padrão de um certificado de proteção contra explosão válido ou o manual do usuário aplicável para o modelo à prova de explosão. Compare a temperatura de processo padrão com os requisitos da área com risco de explosão e realize uma avaliação.

6.3 Substituição do transmissor

Se um transmissor Rotamass Total Insight defeituoso tiver que ser substituído, será necessário entrar em contato com o serviço ao cliente da Yokogawa.

Em geral, o código do modelo de um transmissor de substituição pode ser diferente do modelo instalado. Neste caso, o código do modelo do transmissor deve ser selecionado e verificado.

Tipo integral

Posição do código do modelo	Significado	Verificação dos critérios entre o código do modelo instalado e o transmissor sobressalente
1	Transmissor	Sem restrições para áreas com risco de explosão
2	Sensor	O valor "3" está excluído
3	Tamanho do medidor	Sem restrições para áreas com risco de explosão
4	Material das partes molhadas	Sem restrições para áreas com risco de explosão
5	Tamanho da conexão de processo	Sem restrições para áreas com risco de explosão
6	Tipo de conexões de processo	Sem restrições para áreas com risco de explosão
7	Material da caixa do sensor	Sem restrições para áreas com risco de explosão
8	Faixa de temperatura do meio de processo	Sem restrições para áreas com risco de explosão
9	Precisão da densidade e vazão mássica	Sem restrições para áreas com risco de explosão
10	Design e invólucro	Restrição a valores numéricos (0,1,2,)
11	Aprovação Ex	Deve ser idêntica
12	Entrada dos cabos	Sem restrições para áreas com risco de explosão
13	Tipo de comunicação e E/S	Sem restrições para áreas com risco de explosão, exceto: saídas intrinsecamente seguras: JP JU; F_ (_ ímpar), G1, T_ (_ ímpar) devem ser idênticas
14	Display	Sem restrições para áreas com risco de explosão
15	Opções	Sem restrições para área com risco de explosão, exceto: a opção EPT deve ser idêntica

Não é possível a substituição do transmissor por um instrumento da série Rotamass 3 do tipo integral.

Operação, manutenção e reparo

Tipo remoto

Posição do código do modelo	Significado	Verificação dos critérios entre o código do modelo instalado e o transmissor sobressalente
1	Transmissor	Sem restrições para áreas com risco de explosão
2	Sensor	Sem restrições para áreas com risco de explosão
3	Tamanho do medidor	Sem restrições para áreas com risco de explosão
4	Material das partes molhadas	Sem restrições para áreas com risco de explosão
5	Tamanho da conexão de processo	Sem restrições para áreas com risco de explosão
6	Tipo de conexões de processo	Sem restrições para áreas com risco de explosão
7	Material da carcaça do sensor	Sem restrições para áreas com risco de explosão
8	Faixa de temperatura do meio de processo	Sem restrições para áreas com risco de explosão
9	Precisão da densidade e vazão mássica	Sem restrições para áreas com risco de explosão
10	Design e invólucro	Restrição à designação alfabética (A, B,)
11	Aprovação Ex	Sem restrições para áreas com risco de explosão
12	Entrada dos cabos	Sem restrições para áreas com risco de explosão
13	Tipo de comunicação e E/S	Sem restrições para áreas com risco de explosão
14	Display	Sem restrições para áreas com risco de explosão
15	Opções	Sem restrições para áreas com risco de explosão, exceção: a opção EPT Y deve ser idêntica.

Transmissores de tipo remoto para a reposição de transmissores Rotamass 3 devem ser identificados pelo valor 3 na posição 2 do código do modelo.

7 Aprovações e normas

Número de certificado INMETRO

INMETRO DEKRA 25.0003X

Padrões aplicados

- ABNT NBR IEC 60079-0: 2020 versão corrigida: 2024
- ABNT NBR IEC 60079-1: 2016 versão corrigida: 2020
- ABNT NBR IEC 60079-7: 2018 versão corrigida: 2022
- ABNT NBR IEC 60079-11: 2013 versão corrigida: 2017
- ABNT NBR IEC 60079-31: 2022 versão corrigida: 2023
- ABNT IEC TS 60079-47: 2021
- Portaria Inmetro N ° 115:2022; Portaria Inmetro N ° 200:2021 (RGCP)

Requerente

Yokogawa América do Sul Ltda.

Alameda Xingu, 850, Alphaville

Barueri, São Paulo

Brasil

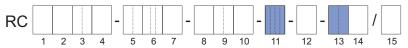
Tel. (55)-11-3513-1300

CNPJ: 53.761.60710001-50

8 Dados técnicos

Neste capítulo são descritos os dados técnicos Ex.

Os dados técnicos do transmissor de tipo integral, assim como do transmissor de tipo remoto são idênticos, com exceção da temperatura máxima da superfície, independentemente, da família de produtos. Os dados técnicos do sensor de tipo remoto são diferentes, dependendo da família de produtos.


- Tipo integral [▶ 46]
- Tipo remoto
 - Nano [▶ 48]
 - Sensores Supreme, Intense e Giga [▶ 49]
 - Sensores Prime e Hygienic [▶ 52]
 - Sensor CNG [▶ 48], [▶ 49]
 - Sensor LPG [▶ 48], [▶ 49]
 - Transmissor [▶ 53]
 - Cabo de conexão [▶ 55]
 - Conexão ao sensor Rotamass 3 [▶ 56]

Dados técnicos Tipo integral

8.1 Tipo integral

A marcação Ex é determinada pela aprovação Ex das características do produto, assim como pelas entradas e saídas.

A ilustração a seguir exibe a respectiva posição do código do modelo:

Marcação Ex

Aprovação Ex	Código do modelo Posição 11	Entradas e saídas	Código do modelo Posição 13	Marcação Ex
INMETRO aprovação para grupos de explosão IIC e IIIC	UF21	Não intrinsecamente seguro	JA, JB, JC, JD, JE, JF, JG, JH, JJ, JK, JL, JM, JN M0, M2, M3, M4, M5, M6, M7 F_1 G0 T_1	Ex db ib IIC T6T1 Gb ou Ex db eb ib IIC T6T1 Gb Ex ib tb IIIC T150 °C Db
		Intrinsecamente seguro	JP, JQ, JR, JS F_ ² G1 T_ ²	Ex db ib [ia Ga] IIC T6T1 Gb ou Ex db eb ib [ia Ga] IIC T6T1 Gb Ex ib tb [ia Da] IIIC T150 °C Db
INMETRO aprovação para grupos de explosão IIB e IIIC	UF22	Não intrinsecamente seguro	JA, JB, JC, JD, JE, JF, JG, JH, JJ, JK, JL, JM, JN M0, M2, M3, M4, M5, M6, M7 F_1 G0 T_1	Ex db ib IIB T6T1 Gb ou Ex db eb ib IIB T6T1 Gb Ex ib tb IIIC T150 °C Db
		Intrinsecamente seguro	JP, JQ, JR, JS F_ ² G1 T_ ²	Ex db ib [ia IIC Ga] IIB T6T1 Gb ou Ex db eb ib [ia IIC Ga] IIB T6T1 Gb Ex ib tb [ia Da] IIIC T150 °C Db

¹ _: dígito par ² _: dígito ímpar

Tipo integral Dados técnicos

Faixas de temperatura admissíveis

Faixa de temperatura padrão		
Faixa de temperatura do meio de processo	-50 – 150 °C	
Máxima temperatura da superfície	150 °C	
Faixa de temperatura ambiente	-40 – 60 °C	

Dados técnicos

Dados relativos à eletricidade	
Tensão de operação V _{AC}	$20.4 - 28.8 \ V_{AC} \ ou \ 80 - 250 \ V_{AC}$
Tensão de operação V _{DC}	$20.4 - 28.8 \ V_{DC} \ ou \ 90 - 130 \ V_{DC}$
Potência máxima	10 W
Categoria de sobretensão	II
Máxima tensão efetiva AC ou DC, circuito não intrinsecamente seguro \mathbf{U}_{m}	250 V

Máximos valores de entrada das saídas intrinsecamente seguras de corrente e de pulso

(comunicação HART)

	Saída de corrente	Saída de pulso
Tensão U _i	30 V	30 V
Corrente I _i	300 mA	300 mA
Potência P _i	1,25 W	1,25 W
Indutância L _i	12 µH	12 µH
Capacitância elétrica C _i	4,84 nF	14,6 nF

A rigidez dielétrica de pelo menos 500 V AC de tensão efetiva entre os circuitos intrinsecamente seguros e da caixa é limitada apenas pela proteção contra sobretensão.

Máximos valores de entrada para saídas intrinsecamente seguras de Fieldbus e de saída pulso

(comunicação Fieldbus)

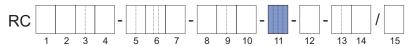
(comunicação i leidada)		
	Fieldbus	Saída de pulso
Tensão U _i	30 V	30 V
Corrente I _i	380 mA	300 mA
Potência P _i	5,32 W	1,25 W
Indutância L _i	10 µH	12 µH
Capacitância elétrica C _i	5 nF	14,6 nF
Instrumento de campo FISCO		

Máximos valores de entrada das saídas intrinsecamente seguras de Ethernet-APL e de pulso (comunicação Ethernet-APL)

	Ethernet-APL	Saída de pulso
Tensão U _i		30 V
Corrente I _i	Porta de carga 2-WISE	300 mA
Potência P _i		1,25 W
Indutância L _i		12 µH
Capacitância elétrica C _i		14,6 nF

A rigidez dielétrica de pelo menos 500 V AC de tensão efetiva entre os circuitos intrinsecamente seguros e da caixa é limitada apenas pela proteção contra sobretensão.

Condições ambientais	
Índice de proteção IP da caixa	IP66/IP67
Faixa de umidade relativa do ar	0 – 95 %
Grau de poluição admissível de acordo com IEC 61010-1	4 (em serviço)


Dados técnicos Tipo remoto

8.2 Tipo remoto

8.2.1 Sensores Nano, CNG e LPG

A marcação Ex é determinada através da característica do produto da aprovação Ex.

A ilustração a seguir mostra a respectiva posição do código do modelo:

Marcação Ex

Aprovação Ex	Código do modelo Posição 11	Marcação Ex
INMETRO aprovação para grupos de explosão IIC e IIIC	UF21	Ex ib IIC T6T1 Gb Ex ib IIIC T°C¹Db
INMETRO aprovação para grupos de explosão IIB e IIIC	UF22	Ex ib IIB T6T1 Gb Ex ib IIIC T°C¹Db

¹ Temperatura máxima da superfície de acordo com as tabelas "Temperaturas admissíveis"

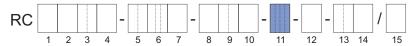
Faixas de temperatura admissíveis

As faixas de temperatura admissíveis exibidas abaixo se referem aos parâmetros de desempenho técnico do Rotamass. Para aplicações Ex, também são relevantes e devem ser respeitadas as classes de temperatura.

Em sensores CNG e LPG com tamanho inferior a 34 são válidas as seguintes faixas.

Faixa de temperatura padrão	
Faixa de temperatura do meio de processo	-50 – 150 °C
Máxima temperatura da superfície	150 °C
Faixa de temperatura ambiente, com opção L	-50 – 80 °C
Faixa de temperatura ambiente, com opção Y	-35 – 70 °C
Faixa de temperatura do aquecimento auxiliar	0 – 150 °C

Faixa de temperatura média	
Faixa de temperatura do meio de processo	-50 – 260 °C
Faixa de temperatura de processo, com opção de isolamento T	-50 – 260 °C
Faixa de temperatura ambiente, com opção L	-50 – 80 °C
Faixa de temperatura ambiente, com opção Y	-35 – 70 °C
Máxima temperatura da superfície	260 °C
Máxima temperatura da superfície, com opção de isolamento T	260 °C
Faixa de temperatura do aquecimento auxiliar	0 – 220 °C


Condições ambientais	
Índice de proteção IP da caixa	IP66/IP67
Faixa de umidade relativa do ar	0 – 95 %
Grau de poluição admissível de acordo com IEC 61010-1	4 (em serviço)

Tipo remoto Dados técnicos

8.2.2 Sensores Supreme, CNG, LPG, Intense e Giga

A marcação Ex é determinada através da característica do produto da aprovação Ex.

A ilustração a seguir mostra a respectiva posição do código do modelo:

Marcação Ex

Aprovação Ex	Código do modelo Posição 11	Marcação Ex
INMETRO aprovação para grupos de explosão IIC e IIIC	UF21	Ex ib IIC T6T1 Gb Ex ib IIIC T°C¹Db
grapes de explesae ne e me		
INMETRO aprovação para	UF22	Ex ib IIB T6T1 Gb
grupos de explosão IIB e IIIC		Ex ib IIIC T°C¹Db

¹ Temperatura máxima da superfície de acordo com as tabelas "Temperaturas admissíveis"

Faixas de temperatura admissíveis

Em sensores CNG e LPG com tamanho de 34 são válidas as seguintes faixas.

No caso de Intense 08K e 10K, só é aplicável a faixa de temperatura padrão.

Faixa de temperatura padrão	
Faixa de temperatura do meio de processo	-50 – 150 °C
Máxima temperatura da superfície	150 °C
Faixa de temperatura do aquecimento auxiliar	0 – 150 °C
Faixa de temperatura ambiente, com opção L	-50 – 80 °C
Faixa de temperatura ambiente, com opção Y	-35 – 80 °C

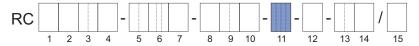
Faixa de temperatura baixa		
Temperatura do processo	-200 – 150 °C	
Máxima temperatura da superfície	150 °C	
Temperatura do aquecimento auxiliar	0 – 150 °C	
Faixa de temperatura ambiente, com opção L	-50 – 80 °C	
Faixa de temperatura ambiente, com opção Y	-35 – 80 °C	

Faixa de temperatura média	
Temperatura do processo	-50 – 220 °C
Máxima temperatura da superfície	220 °C
Temperatura do aquecimento auxiliar	0 – 220 °C
Faixa de temperatura ambiente, com opção L	-50 – 80 °C
Faixa de temperatura ambiente, com opção Y	-35 – 80 °C

Dados técnicos Tipo remoto

Faixa de alta temperatura		
		Temperatura do processo
Temperatura do processo	0 – 350 °C	
Máxima temperatura da superfície	350 °C	
Temperatura do aquecimento auxiliar	0 – 350 °C	
Faixa de temperatura ambiente,	-50 – 80 °C	até 230 °C
com opção L	-50 – 60 °C	de 230 °C até 350 °C
Faixa de temperatura ambiente,	-35 – 80 °C	até 230 °C
com opção Y	-35 – 60 °C	de 230 °C até 350 °C

Faixa de ultra alta temperatura		
		Temperatura do processo
Temperatura do processo	0 – 400 °C	
Máxima temperatura da superfície	400 °C	
Temperatura do aquecimento auxiliar	0 – 400 °C	
Faixa de temperatura ambiente,	-50 – 80 °C	até 230 °C
com opção L	-50 – 52 °C	de 230 °C até 400 °C
Faixa de temperatura ambiente,	-35 – 80 °C	até 230 °C
com opção Y	-35 – 32 °C	de 230 °C até 400 °C


Condições ambientais	
Índice de proteção IP da caixa	IP66/IP67
Faixa de umidade relativa do ar	0 – 95 %
Grau de poluição admissível de acordo com IEC 61010-1	4 (em serviço)

Tipo remoto Dados técnicos

8.2.3 Sensores Intense T11S/21S

A marcação Ex é determinada através da característica do produto da aprovação Ex.

A ilustração a seguir mostra a respectiva posição do código do modelo:

Marcação Ex

Aprovação Ex	Código do modelo Posição 11	Marcação Ex
INMETRO aprovação para grupos de explosão IIC e IIIC	UF21	Ex ib IIC T4T1 Gb Ex ib IIIC T°C¹Db
INMETRO aprovação para grupos de explosão IIB e IIIC	UF22	Ex ib IIB T4T1 Gb Ex ib IIIC T°C¹Db

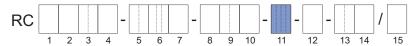
¹ Temperatura máxima da superfície de acordo com as tabelas "Temperaturas admissíveis"

Faixas de temperatura admissíveis

As faixas de temperatura admissíveis exibidas abaixo se referem aos parâmetros de desempenho técnico do Rotamass. Para aplicações Ex também devem ser consideradas as classes de temperatura relevantes.

Faixa de temperatura padrão	
Faixa de temperatura do meio de processo	-50 – 100 °C
Máxima temperatura da superfície	100 °C
Faixa de temperatura ambiente,	-50 – 80 °C

Condições ambientais	
Índice de proteção IP da caixa	IP66/IP67
Faixa de umidade relativa do ar	0 – 95 %
Grau de poluição admissível de acordo com IEC 61010-1	4 (em serviço)



Dados técnicos Tipo remoto

8.2.4 Sensores Prime e Hygienic

A marcação Ex é determinada através da característica do produto da aprovação Ex.

A ilustração a seguir mostra a respectiva posição do código do modelo:

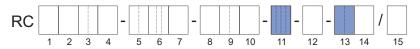
Marcação Ex

Aprovação Ex	Código do modelo Posição 11	Marcação Ex
INMETRO aprovação para grupos de explosão IIC e IIIC	UF21	Ex ib IIC T6T1 Gb Ex ib IIIC T°C¹Db
INMETRO aprovação para grupos de explosão IIB e IIIC	UF22	Ex ib IIB T6T1 Gb Ex ib IIIC T°C¹Db

¹ Temperatura máxima da superfície de acordo com as tabelas "Temperaturas admissíveis"

Faixas de temperatura admissíveis

As faixas de temperatura admissíveis exibidas abaixo se referem aos parâmetros de desempenho técnico do Rotamass. Para aplicações Ex também devem ser considerados o código Ex e as classes de temperatura relevantes.


Faixa de temperatura padrão		
		Temperatura do processo
Faixa de temperatura do meio de processo	-50 – 200 °C	
Máxima temperatura da superfície	200 °C	
Faixa de temperatura ambiente,	-50 – 80 °C	até 150 °C
com opção L	-50 – 60 °C	de 150 °C até 200 °C
Faixa de temperatura ambiente,	-35 – 80 °C	até 150 °C
com opção Y	-35 – 60 °C	de 150 °C até 200 °C

Condições ambientais	
Índice de proteção IP da caixa	IP66/IP67
Faixa de umidade relativa do ar	0 – 95 %
Grau de poluição admissível de acordo com IEC 61010-1	4 (em serviço)

Tipo remoto Dados técnicos

8.2.5 Transmissor

A marcação Ex é determinada pela aprovação Ex das características do produto, assim como pelas entradas e saídas. A ilustração a seguir exibe a respectiva posição do código do modelo:

Marcação Ex

Tab. 4: A marcação Ex depende do código do modelo para transmissores dos tipos remotos de todas as famílias de produtos

Aprovação Ex	Código do modelo Posição 11	Entradas e saídas	Código do modelo Posição 13	Marcação Ex
INMETRO aprovação para grupos de explosão IIC e IIIC	UF21	Não intrinsecamente seguro	JA, JB, JC, JD, JE, JF, JG, JH, JJ, JK, JL, JM, JN M0, M2, M3, M4, M5, M6, M7 F_1 G0 T_1	Ex db [ia Ga] IIC T6 Gb ou Ex db eb [ia Ga] IIC T6 Gb Ex tb [ia Da] IIIC T75 °C Db
		Intrinsecamente seguro	JP, JQ, JR, JS F_ ² G1 T_ ²	Ex db [ia Ga] IIC T6 Gb ou Ex db eb [ia Ga] IIC T6 Gb Ex tb [ia Da] IIIC T75 °C Db
INMETRO aprovação para grupos de explosão IIB e IIIC	UF22	Não intrinsecamente seguro	JA, JB, JC, JD, JE, JF, JG, JH, JJ, JK, JL, JM, JN M0, M2, M3, M4, M5, M6, M7 F_1 G0 T_1	Ex db [ia Ga] IIB T6 Gb ou Ex db eb [ia Ga] IIB T6 Gb Ex tb [ia Da] IIIC T75 °C Db
		Intrinsecamente seguro	JP, JQ, JR, JS F_ ² G1 T_ ²	Ex db [ia Ga] [ia IIC Ga] IIB T6 Gb ou Ex db eb [ia Ga] [ia IIC Ga] IIB T6 Gb Ex tb [ia Da] IIIC T75 °C Db

¹_ : dígito par ² _: dígito ímpar

intrinsecamente seguro U_m

Dados técnicos Tipo remoto

Dados técnicos

Temperaturas admissíveis	
Faixa de temperatura ambiente	-40 – 60 °C
Dados relativos à eletricidade	
Tensão de operação V _{AC}	20,4 - 28,8 V _{AC} ou 80 - 250 V _{AC}
Tensão de operação V _{DC}	$20,4 - 28,8 V_{DC}$ ou $90 - 130 V_{DC}$
Potência máxima	10 W
Categoria de sobretensão	II
Máxima tensão efetiva AC ou DC, circuito não	350 V

Máximos valores de entrada das saídas intrinsecamente seguras de corrente e de pulso (comunicação HART)

250 V

14,6 nF

	Saída de corrente	Saída de pulso
Tensão U _i	30 V	30 V
Corrente I _i	300 mA	300 mA
Potência P _i	1,25 W	1,25 W
Indutância L _i	12 µH	12 µH

A rigidez dielétrica de pelo menos 500 V AC de tensão efetiva entre os circuitos intrinsecamente seguros e da caixa é limitada apenas pela proteção contra sobretensão.

4,84 nF

Máximos valores de entrada para saídas intrinsecamente seguras de Fieldbus e de saída pulso

(comunicação Fieldbus)

Capacitância elétrica Ci

	Fieldbus	Saída de pulso
Tensão U _i	30 V	30 V
Corrente I _i	380 mA	300 mA
Potência P _i	5,32 W	1,25 W
Indutância L _i	10 μH	12 µH
Capacitância elétrica C _i	5 nF	14,6 nF
Instrumento de campo FISCO		

Máximos valores de entrada das saídas intrinsecamente seguras de Ethernet-APL e de pulso (comunicação Ethernet-APL)

	Ethernet-APL	Saída de pulso
Tensão U _i		30 V
Corrente I _i		300 mA
Potência P _i	Porta de carga 2-WISE	1,25 W
Indutância L _i		12 µH
Capacitância elétrica C _i		14,6 nF

A rigidez dielétrica de pelo menos 500 V AC de tensão efetiva entre os circuitos intrinsecamente seguros e da caixa é limitada apenas pela proteção contra sobretensão.

Condições ambientais	
Índice de proteção IP da caixa	IP66/IP67
Faixa de umidade relativa do ar	0 – 95 %
Grau de poluição admissível de acordo com IEC 61010-1	4 (em serviço)

Tipo remoto Dados técnicos

8.2.6 Cabo de conexão

Para a conexão do sensor ao transmissor, em aplicações Ex, é imprescindível observar as seguintes especificações:

Cabo completo	
Faixa de temperatura, com opção L	-50 – 105 °C
Faixa de temperatura, com opção Y	-35 – 90 °C

Bornes de conexão/parte do cabo	Máxima indutância	Máxima capacidade
D+/D-, S1+/S1-, S2+/S2-	< 0,03 mH	< 90 nF
TP1, TP2, TP3	< 158 mH	< 11 µF

Cálculo do máximo comprimento admissível do cabo para opção L

O cabo de conexão fornecido possui os seguintes revestimentos de cabo:

Tipo de cabo	Bornes de conexão	Capacitância em nF/km		•		Indutância em mH/km
		Fio/Fio	Fio/Blindagem			
Coaxial	D+/D-, S1+/S1-, S2+/S2-	120	132	0,175		
AWG20	TP1, TP2, TP3	145	290	0,7		

Como máximo comprimento do cabo resulta de:

Bornes de conexão	Limitação	Cálculo		Limitação do comprimento
D+/D-, S1+/S1-, S2+/S2-	Indutância	0,03 mH / (0,175 mH/km)	=	171 m
D+/D-, S1+/S1-, S2+/S2-	Capacitância	90 nF / (132 nF/km)	=	682 m
TP1, TP2, TP3	Indutância	158 mH / (0,7 mH/km)	=	226 km
TP1, TP2, TP3	Capacitância	11 μF / (290 nF/km)	=	38 km
	Comprimento do admissível	o cabo máximo	=	171 m

Cálculo do máximo comprimento admissível do cabo para opção Y....

O cabo marinho fornecido possui os seguintes revestimentos de cabo:

Bornes de conexão	Capacitância	Indutância
	em nF/km	em mH/km
D+/D-, S1+/S1-, S2+/S2-,TP1, TP2, TP3	81	0,315

A indutância e a capacidade limitam nos terminais D+/D-, S1+/S1-, S2+/S2-.

Limitação	Cálculo		Limitação do comprimento
Indutância	0,03 mH / (0,315 mH/km)	=	95 m
Capacitância	90 nF / (81 nF/km)	=	1,1 km
Comprimento do cabo má	ximo admissível	=	95 m

Dados técnicos Tipo remoto

8.2.7 Conexão ao sensor Rotamass 3

Se um transmissor Rotamass Essential ou Ultimate tiver sido configurado para uso em um sensor Rotamass 3 do tipo remoto, por meio do código do modelo, devem ser observados os máximos valores de entrada e saída do sensor Rotamass 3; consulte o respectivo manual de instruções.

Tab. 5: Os máximos valores de saída, bornes de conexão do transmissor Rotamass Total Insight para o sensor Rotamass 3

Bornes de conexão	Tensão U _o em V					cia <i>P</i> 。 mW		ncia <i>L</i> 。 mH	Capacitância elétrica C _o em µF		
			IIC	IIB	IIC	IIB	IIC	IIB	IIC IIB		
D+/D-	14,	28	47	134,4	168	480	16	7,8	0,68	4,28	
S1+/S1- ou S2+/S2-	7,14		36,1		64,4		27		13,5		
TP1, TP2, TP3	7,1	7,14 10,7),7	19,1		3	10	13,5		

As faixas de temperatura de processo do sensor Rotamass 3 devem ser observadas.

A respectiva documentação do Rotamass 3 é válida para o respectivo sensor.

Para o transmissor é válida a faixa da temperatura de processo especificada neste documento, consulte *Transmitter* [> 53].

Código Ex Dados técnicos

8.3 Código Ex

O código Ex permite determinar, em combinação com as posições de código do modelo 2 e 10, as máximas temperaturas do processo e do ambiente para cada classe de temperatura, de acordo com o certificado Ex. Ele se encontra, respectivamente, na placa de identificação adicional do sensor, a não ser no Rotamass Nano e em todos os modelos projetados para altas temperaturas. Nestes aparelhos não está disponível nenhum código Ex, de modo que as faixas de temperatura de processo devem ser obtidas, diretamente, no capítulo *Temperatura de processo padrão por classes de temperatura* [62].

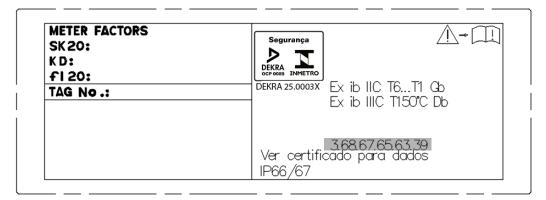


Fig. 10: Placa de identificação adicional com código Ex

Estrutura do código Ex

O código Ex é um código de 6 dígitos, com a seguinte estrutura:

- a Número de coluna, temperatura ambiente
- p6 Número de linha da máxima temperatura do processo para a classe de temperatura T6
- p5 Número de linha da máxima temperatura do processo para a classe de temperatura T5
- p4 Número de linha da máxima temperatura do processo para a classe de temperatura T4
- p3 Número de linha da máxima temperatura do processo para a classe de temperatura T3
- p2 Número de linha da máxima temperatura do processo para as classes de temperatura T1 e T2

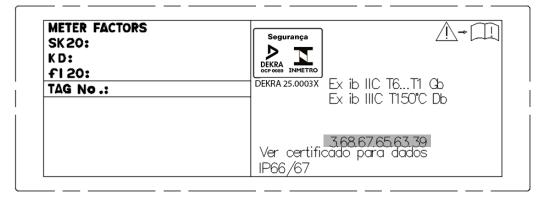
8.3.1 Determinação das máximas temperaturas por meio do código Ex

A seguir será explicada, com base em um exemplo concreto, a determinação das máximas temperaturas do processo e do ambiente, por meio do código Ex e do código do modelo.

As tabelas completas da faixa de temperatura de processo encontram-se no "Annex 1" do certificado IECEx. A opção L___ ou Y___ determina as tabelas a ou b para variantes remotas. Neste exemplo são exibidos apenas extratos delas.

A determinação das máximas temperaturas é realizada através dos seguintes passos:

- Determinação da máxima temperatura do processo T_{pro,max} baseada no código Ex, posições p6...p2
- ▶ Determinação da máxima temperatura ambiente T_{amb pre} baseada no seguinte critério:
 - Código do modelo, posições 2 e 10
 - Código Ex, posição a
 - Máximas temperaturas do processo averiguadas T_{pro max}


Dados técnicos Código Ex

Definição do problema

A temperatura do processo e a temperatura ambiente admissíveis para um Rotamass Supreme 34 devem ser determinadas por meio do código Ex e do código do modelo nas placas de identificação.

São indicados os códigos do modelo e código Ex a seguir:

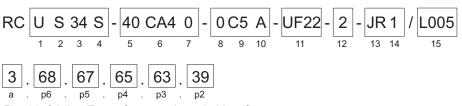


Fig. 11: Código Ex conforme a placa de identificação

Código Ex Dados técnicos

Determinação da máxima temperatura do processo T_{pro,max} Os valores do código Ex na placa de identificação p6 – p2 são os índices de linha, que determinam as máximas temperaturas do processo T_{pro,max} de acordo com a tabela 6 do certificado Ex. A classe de temperatura determina a coluna aplicável.

Tab. 6: Extrato da tabela de temperatura do processo do certificado Ex: "Tabela 6: Temperaturas do processo de acordo com o Código Ex"

códigos Ex	T _{pro, max} em °C: para classes de temperatura												
p2 a p6	T6	T5	T4	Т3	T2	T1							
39	20	35	70	135	179	179							
63	44	59	94	159	203	203							
65	46	61	96	161	205	205							
67	48	63	98	163	207	207							
68	49	64	99	164	208	208							

Para as classes de temperatura resultam os seguintes valores para a máxima temperatura do processo:

- Classe de temperatura T6 (coluna T6) e valor do código Ex p6 (valor = 68) definem a interseção: T_{pro, max} = 49 °C
- Classe de temperatura T5 (coluna T5) e valor do código Ex p5 (valor = 67) definem a interseção: T_{pro, max} = 63 °C
- Classe de temperatura T4 (coluna T4) e valor do código Ex p4 (valor = 65) definem a interseção: T_{pro, max} = 96 °C
- Classe de temperatura T3 (coluna T3) e valor do código Ex p3 (valor = 63) definem a interseção: T_{pro, max} = 159 °C
- Classe de temperatura T2 (coluna T2) e valor do código Ex p2 (valor = 39) definem a interseção: T_{pro, max} = 179 °C
- Classe de temperatura T1 (coluna T1) e valor do código Ex p2 (valor = 39) definem a interseção: T_{pro, max} = 179 °C

Estas máximas temperaturas do processo averiguadas devem ser usadas para a subsequente determinação das temperaturas ambientes.

Dados técnicos Código Ex

Determinação da máxima temperatura ambiente T_{amb pre} Para a determinação das máximas temperaturas ambientes é necessário o seguinte:

- Código do modelo, posições 2, 10 e 15
- Código Ex, posição a
- Máximas temperaturas do processo averiguadas T_{pro,max}

Fig. 12: Código Ex

Classe de temperatura	Máxima temperatura do processo T _{pro,max}
T6	49 °C
T5	63 °C
T4	96 °C
Т3	159 °C
T2	179 °C
T1	179 °C

Primeiro é necessário identificar a tabela correta, de acordo com o produto, para a temperatura ambiente. Para tal, os valores das posições 2 e 10 do código do modelo da placa de identificação são comparadas com os indicados no título da tabela 7 – 11 no anexo do certificado Ex. Uma concordância determina a tabela a ser utilizada.

Neste caso é válida a tabela 9a, visto que o código do modelo não contém a opção Y___. O primeiro digito do código Ex, a = 3, define as colunas utilizáveis T6 – T1 dentro da tabela da temperatura ambiente encontrada.

As máximas temperaturas do processo estabelecidas $T_{pro,max}$ definem as linhas utilizáveis dentro da tabela de temperatura ambiente localizada. Se um valor da máxima temperatura do processo não estiver na tabela, será usado o próximo maior valor de temperatura.

Máxima temperatura do processo determinada em °C	Próxima maior temperatura do processo em °C
49	50
63	65
96	100
159	160
179	180
179	180

Código Ex Dados técnicos

Tab. 7: Extrato da tabela de temperatura ambiente do certificado Ex: "Tabela 9a: Temperatura ambiente para modelos: RC_[2.]_--___[10.]-_-___/_
Aplicável para os seguintes valores do código do modelo: [2.] = S, G, C, L, T; [10.] = A, C, E, J"

	T _{amb pre} em °C															
a:			a = 2	2			a = 3				a = 4					
T _{pro} em °C	 T6	T5	T4	Т3	T2	T6	T5	T4	Т3	T2	T6	T5	T4	Т3	T2	
					T1					T1					T1	
50	 69	80	80	80	80	62	77	80	80	80	58	73	80	80	80	
65	 69	80	80	80	80	61	77	80	80	80	55	73	80	80	80	
100			80	80	80			80	80	80			80	80	80	
160				74	74				74	74				74	74	
180				65	65				65	65				65	65	

O valor determinado com base na tabela de temperatura ambiente é um valor provisório da temperatura ambiente. Este deve, então, ser comparado com a máxima temperatura do processo averiguada. O valor menor determina a máxima temperatura ambiente real.

Resultado

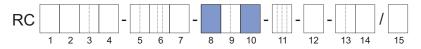
Máxima temperatura do processo determinada em °C	Classe de temperatura	Valor provisório determinado para a temperatura ambiente em °C	Máxima temperatura ambiente em °C
49	T6	62	49
63	T5	77	63
96	T4	80	80
159	T3	74	74
179	T2	65	65
179	T1	65	65

8.4 Especificação de temperatura conforme as classes de temperatura


A determinação das máximas temperaturas ambiente e de processo, dependendo dos grupos de explosão e da classe de temperatura, pode ser feita por meio do código do modelo ou do código do modelo em conjunto com o código Ex.

8.4.1 Identificação através do código do modelo

As tabelas a seguir fornecem uma visão geral de onde as tabelas das temperaturas de processo padrão estão localizadas com base no código do modelo e no grupo de explosão.


Rotamass Nano, CNG, LPG

A ilustração a seguir exibe a respectiva posição do código do modelo:

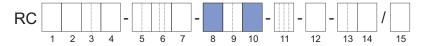
Faixa de temperatura do meio de processo	Código do modelo Posição 8	Modelo da caixa	Código do modelo Posição 10	Temperat processo pa os grupo explos	drão para os de
Padrão	0	Tipo remoto, terminais de conexão padrão	A, C, E, J	IIC, IIB	[67]
Padrão	0	Tipo remoto, eletrônica distante do tubo	B, D, F, K	IIC, IIB	[67]
Médio	2	Tipo remoto, eletrônica distante do tubo	B, D, F, K	IIC, IIB	[67]

Rotamass Supreme, CNG, LPG e Intense

Faixa de temperatura do meio de processo	Código do modelo Posição 8	Modelo da caixa	Código do modelo Posição 10	process para os g	ratura de o padrão grupos de osão
Padrão	0	Tipo integral	0, 1, 2	IIC IIB	[> 68] [> 68]
Padrão	0	Tipo remoto, terminais de conexão padrão	A, C, E, J	IIC IIB	[68] [69]
Padrão	0	Tipo remoto, eletrônica distante do tubo	B, D, F, K	IIC IIB	[69] [69]
Baixo alcance	1	Tipo remoto, eletrônica distante do tubo	B, D, F, K	IIC IIB	[> 70] [> 70]
Médio	2	Tipo remoto, eletrônica distante do tubo	B, D, F, K	IIC IIB	[> 70] [> 71]
Alto	3	Tipo remoto, eletrônica distante do tubo	B, D, F, K	IIC IIB	[71] [71]
Ultra alto	4	Tipo remoto, eletrônica distante do tubo	B, D, F, K	IIC IIB	[> 71] [> 71]

Manual do Tipo Protegidos contra Explosão INMETRO

Especificação de temperatura conforme as classes de temperatura


Dados técnicos

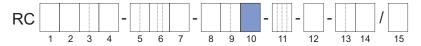
Intense

Código do modelo Posição 3 + 4	Modelo da caixa	Código do modelo Posição 10	Temperatura d padrão para os explos	grupos de
08K 10K	Tipo integral	0, 1, 2	IIC, IIB	[76]
08K	Tipo remoto, terminais de	A, C, E, J	IIC IID	D 761
10K	conexão padrão	A, C, ⊑, J	IIC, IIB	[> 76]
11S	Tipo remoto, terminais de	A C E I	IIC IID	n 701
21S	conexão padrão	A, C, E, J	IIC, IIB	[▶ 78]


Rotamass Giga

Faixa de temperatura do meio de processo	Código do modelo Posição 8	Modelo da caixa	Código do modelo Posição 10	Temperatura de processo padrão para os grupos de explosão
Padrão	0	Tipo integral	0, 1, 2	IIC [▶ 72] IIB [▶ 72]
Padrão	0	Tipo remoto, terminais de conexão padrão	A, C, E, J	IIC [▶ 72] IIB [▶ 73]
Padrão	0	Tipo remoto, eletrônica distante do tubo	B, D, F, K	IIC [▶ 73] IIB [▶ 73]
Médio	2	Tipo remoto, eletrônica distante do tubo	B, D, F, K	IIC [▶ 74] IIB [▶ 74]
Alto	3	Tipo remoto, eletrônica distante do tubo	B, D, F, K	IIC [▶ 74] IIB [▶ 74]
Ultra alto	4	Tipo remoto, eletrônica distante do tubo	B, D, F, K	IIC [▶ 75] IIB [▶ 75]

Dados técnicos


Rotamass Prime e Hygienic

Código do modelo Posição 3	Modelo da caixa	Código do modelo Posição 10	Opção de dispositivo	Código do modelo Posição 15	proc padrão grup	atura de esso para os os de osão
25 40	Tipo integral	0, 1, 2	_	_	IIC, IIB	[> 79]
25			Faixa de			
40	Tipo integral	0, 1, 2	temperatura ampliada	/EPT	IIC, IIB	[▶ 79]
50	Tipo integral	0, 1, 2	-	_	IIC, IIB	[P 79]
50	Tipo integral	0, 1, 2	Faixa de temperatura ampliada	/EPT	IIC, IIB	[» 80 <u>]</u>
80	Tipo integral	0, 1, 2	-	_	IIC IIB	[> 80] [> 80]
1H	Tipo integral	0, 1, 2	_	_	IIC, IIB	[81]
25 40	Tipo remoto, terminais de conexão padrão	A, C, E, J	-	_	IIC, IIB	[81]
25	Tipo remoto,		Faixa de			
40	terminais de conexão padrão	A, C, E, J	temperatura ampliada	/EPT	IIC, IIB	[81]
50	Tipo remoto, terminais de conexão padrão	A, C, E, J	-	_	IIC, IIB	[82]
50	Tipo remoto, terminais de conexão padrão	A, C, E, J	Faixa de temperatura ampliada	/EPT	IIC, IIB	[82]
80	Tipo remoto, terminais de conexão padrão	A, C, E, J	-	_	IIC IIB	[> 82] [> 83]
1H	Tipo remoto, terminais de conexão padrão	A, C, E, J	-	_	IIC, IIB	[» 83 <u>]</u>

8.4.2 Identificação através do código do modelo e do código Ex

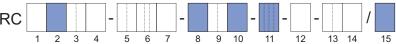
Com a tabela a seguir é possível identificar, com ajuda do código do modelo e do código Ex, a respectiva tabela de classificação da temperatura:

Família do produto	Código do modelo Posição 10	Código Ex	Veja tabela
	0, 1, 2	6.85.86.87.54.10	[68]
	0, 1, 2	2.78.79.81.54.10	[68]
	A, C, E, J	6.85.86.87.54.10	[68]
	A, C, E, J	2.78.79.81.54.10	[▶ 69]
Rotamass Supreme,	B, D, F, K	6.85.86.87.54.10	[69]
CNG, LPG e Intense	B, D, F, K	2.78.79.81.54.10	[69]
	B, D, F, K	3.79.80.82.54.10	[70]
	B, D, F, K	2.77.78.80.54.10	[70]
	B, D, F, K	6.85.86.87.89.80	[70]
	B, D, F, K	2.78.79.81.85.80	[> 71]
	0, 1, 2	7.89.89.90.54.10	[· 72]
	0, 1, 2	7.84.84.86.54.10	[72]
	A, C, E, J	7.89.89.90.54.10	[72]
Rotamass Giga	A, C, E, J	7.84.84.86.54.10	[73]
Rotalilass Giga	B, D, F, K	7.89.89.90.54.10	[73]
	B, D, F, K	7.84.84.86.54.10	[73]
	B, D, F, K	7.89.89.90.90.80	[74]
	B, D, F, K	7.84.84.86.87.80	[74]
	0, 1, 2	7.66.66.68.54.10	[▶ 79]
	0, 1, 2	1.83.83.84.54.10	[79]
	0, 1, 2	2.73.72.76.54.10	[▶ 79]
	0, 1, 2	1.91.91.91.54.10	[▶ 80]
	0, 1, 2	7.83.84.86.54.10	[80]
	0, 1, 2	6.83.84.86.54.10	[▶ 80]
Rotamass Prime e	0, 1, 2	7.87.87.88.54.10	[▶ 81]
Hygienic	A, C, E, J	7.66.66.68.66.60	[▶ 81]
	A, C, E, J	1.83.83.84.82.60	[▶ 81]
	A, C, E, J	2.73.72.76.80.60	[▶ 82]
	A, C, E, J	1.91.91.91.60	[▶ 82]
	A, C, E, J	7.83.84.86.89.60	[▶ 82]
	A, C, E, J	6.83.84.86.89.60	[▶ 83]
	A, C, E, J	7.87.87.88.89.60	[83]

8.4.3 Rotamass Nano, CNG, LPG

Código do modelo

Pos. 2: N, C, L Pos. 8: 0


Pos. 10: A, C, E, J, B,

D, F, K

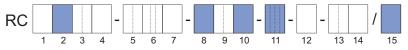
Pos. 11: UF21, UF22

Código Ex:

A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 8: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo
	Opção L	Opção Y	em °C (°F)
T6	65 (149)	65 (149)	65 (149)
T5	75 (167)	75 (167)	90 (194)
T4	80 (176)	74 (165)	130 (266)
Т3	80 (176)	72 (161)	150 (302)
T2	80 (176)	72 (161)	150 (302)
T1	80 (176)	72 (161)	150 (302)

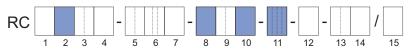

Código do modelo

Pos. 2: N, C, L

Pos. 8: 2

Pos. 10: B, D, F, K Pos. 11: UF21, UF22

Código Ex:

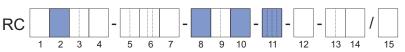

Tab. 9: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)			Máxima temperatura do processo
	Opção L	Opção Y sem opção T	Opção Y com opção T	em °C (°F)
T6	65 (149)	65 (149)	65 (149)	65 (149)
T5	75 (167)	75 (167)	75 (167)	90 (194)
T4	80 (176)	76 (168)	75 (167)	130 (266)
T3	80 (176)	75 (167)	71 (159)	180 (356)
T2	80 (176)	73 (163)	64 (147)	260 (500)
T1	80 (176)	73 (163)	64 (147)	260 (500)

8.4.4 Rotamass Supreme, CNG, LPG e Intense

Código do modelo Pos. 2: S, C, L, T

Pos. 8: 0 Pos. 10: 0, 1, 2 Pos. 11: UF21 Código Ex: 6.85.86.87.54.10 A ilustração a seguir exibe a respectiva posição do código do modelo:

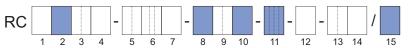


Tab. 10: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
Т6	43 (109)	66 (150)
T5	58 (136)	82 (179)
T4	60 (140)	118 (244)
Т3	60 (140)	150 (302)
T2	60 (140)	150 (302)
T1	60 (140)	150 (302)

Código do modelo Pos. 2: S, C, L, T

Pos. 8: 0 Pos. 10: 0, 1, 2 Pos. 11: UF22 Código Ex: 2.78.79.81.54.10 A ilustração a seguir exibe a respectiva posição do código do modelo:


Tab. 11: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T6	59 (138)	59 (138)
T5	60 (140)	75 (167)
T4	60 (140)	112 (233)
Т3	60 (140)	150 (302)
T2	60 (140)	150 (302)
T1	60 (140)	150 (302)

Código do modelo Pos. 2: S, C, L, T Pos. 8: 0

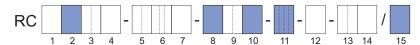
Pos. 10: A, C, E, J Pos. 11: UF21

Código Ex: 6.85.86.87.54.10

Tab. 12: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
Т6	41 (105)	41 (105)	66 (150)
T5	56 (132)	56 (132)	82 (179)
T4	80 (176)	62 (143)	118 (244)
Т3	78 (172)	49 (120)	150 (302)
T2	78 (172)	49 (120)	150 (302)
T1	78 (172)	49 (120)	150 (302)

Código do modelo Pos. 2: S, C, L, T


Pos. 8: 0

Pos. 10: A, C, E, J Pos. 11: UF22

Código Ex:

2.78.79.81.54.10

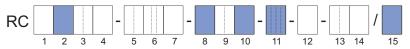
A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 13: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
Т6	59 (138)	59 (138)	59 (138)
T5	75 (167)	75 (167)	75 (167)
T4	80 (176)	65 (149)	112 (233)
Т3	78 (172)	49 (120)	150 (302)
T2	78 (172)	49 (120)	150 (302)
T1	78 (172)	49 (120)	150 (302)

Código do modelo

Pos. 2: S, C, L, T


Pos. 8: 0

Pos. 10: B, D, F, K

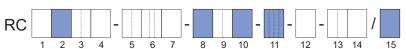
Pos. 11: UF21 Código Ex:

6.85.86.87.54.10

A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 14: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
T6	47 (116)	47 (116)	66 (150)
T5	62 (143)	62 (143)	82 (179)
T4	80 (176)	74 (165)	118 (244)
Т3	80 (176)	70 (158)	150 (302)
T2	80 (176)	70 (158)	150 (302)
T1	80 (176)	70 (158)	150 (302)


Código do modelo Pos. 2: S, C, L, T

Pos. 8: 0

Pos. 10: B, D, F, K

Pos. 11: UF22 Código Ex:

2.78.79.81.54.10

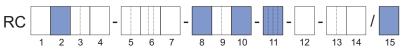
Tab. 15: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
Т6	59 (138)	59 (138)	59 (138)
T5	75 (167)	75 (167)	75 (167)
T4	80 (176)	74 (165)	112 (233)
Т3	80 (176)	70 (158)	150 (302)
T2	80 (176)	70 (158)	150 (302)
T1	80 (176)	70 (158)	150 (302)

Código do modelo:

Pos. 2: S Pos. 8: 1

Pos. 10: B, D, F, K Pos. 11: UF21 Código Ex: 3.79.80.82.54.10 A ilustração a seguir exibe a respectiva posição do código do modelo:

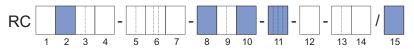

Tab. 16: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
Т6	60 (140)	60 (140)	60 (140)
T5	76 (168)	76 (168)	76 (168)
T4	80 (176)	74 (165)	113 (235)
T3	80 (176)	70 (158)	150 (302)
T2	80 (176)	70 (158)	150 (302)
T1	80 (176)	70 (158)	150 (302)

Código do modelo:

Pos. 2: S Pos. 8: 1

Pos. 10: B, D, F, K Pos. 11: UF22 Código Ex: 2.77.78.80.54.10 A ilustração a seguir exibe a respectiva posição do código do modelo:


Tab. 17: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
T6	58 (136)	58 (136)	58 (136)
T5	74 (165)	74 (165)	74 (165)
T4	80 (176)	74 (165)	111 (232)
Т3	80 (176)	70 (158)	150 (302)
T2	80 (176)	70 (158)	150 (302)
T1	80 (176)	70 (158)	150 (302)

Código do modelo Pos. 2: S, C, L, T

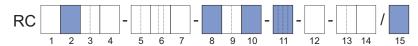
Pos. 8: 2

Pos. 10: B, D, F, K Pos. 11: UF21 Código Ex: 6.85.86.87.89.80

Tab. 18: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
T6	47 (116)	47 (116)	66 (150)
T5	62 (143)	62 (143)	82 (179)
T4	80 (176)	74 (165)	118 (244)
Т3	80 (176)	64 (147)	185 (365)
T2	80 (176)	59 (138)	220 (428)
T1	80 (176)	59 (138)	220 (428)

Código do modelo Pos. 2: S, C, L, T


Pos. 8: 2

Pos. 10: B, D, F, K Pos. 11: UF22

Código Ex:

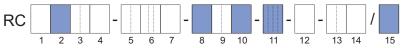
2.78.79.81.85.80

A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 19: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
Т6	59 (138)	59 (138)	59 (138)
T5	75 (167)	75 (167)	75 (167)
T4	80 (176)	74 (165)	112 (233)
Т3	80 (176)	64 (147)	181 (357)
T2	80 (176)	59 (138)	220 (428)
T1	80 (176)	59 (138)	220 (428)

Código do modelo:


Pos. 2: S, C, L, T

Pos. 8: 3

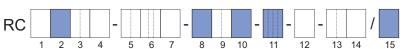
Pos. 10: B, D, F, K Pos. 11: UF21, UF22

Código Ex:

A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 20: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
T6	62 (143)	62 (143)	65 (149)
T5	77 (170)	77 (170)	80 (176)
T4	80 (176)	74 (165)	115 (239)
Т3	80 (176)	65 (149)	180 (356)
T2	73 (163)	50 (122)	275 (527)
T1	60 (140)	40 (104)	350 (662)


Código do modelo:

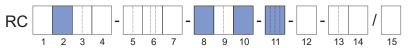
Pos. 2: S, C, L, T

Pos. 8: 4

Pos. 10: B, D, F Pos. 11: UF21, UF22

Código Ex:

Tab. 21: Classificação da temperatura


Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
T6	62 (143)	62 (143)	65 (149)
T5	77 (170)	77 (170)	80 (176)
T4	80 (176)	74 (165)	115 (239)
Т3	80 (176)	65 (149)	180 (356)
T2	73 (163)	50 (122)	275 (527)
T1	52 (125)	32 (89)	400 (752)

8.4.5 Rotamass Giga

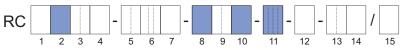
Código do modelo

Pos. 2: G Pos. 8: 0 Pos. 10: 0, 1, 2

Pos. 10: 0, 1, 2 Pos. 11: UF21 Código Ex: 7.89.89.90.54.10 A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 22: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T6	39 (102)	70 (158)
T5	54 (129)	85 (185)
T4	60 (140)	121 (249)
Т3	60 (140)	150 (302)
T2	60 (140)	150 (302)
T1	60 (140)	150 (302)


Código do modelo

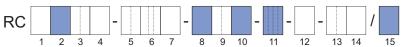
Pos. 2: G Pos. 8: 0

Pos. 10: 0, 1, 2 Pos. 11: UF22 Código Ex:

7.84.84.86.54.10

A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 23: Classificação da temperatura


Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T6	41 (105)	65 (149)
T5	56 (132)	80 (176)
T4	60 (140)	117 (242)
Т3	60 (140)	150 (302)
T2	60 (140)	150 (302)
T1	60 (140)	150 (302)

Código do modelo

Pos. 2: G Pos. 8: 0

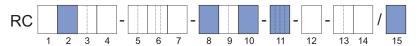
Pos. 10: A, C, E, J Pos. 11: UF21 Código Ex:

7.89.89.90.54.10

Tab. 24: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
T6	37 (98)	37 (98)	70 (158)
T5	52 (125)	52 (125)	85 (185)
T4	80 (176)	60 (140)	121 (249)
T3	78 (172)	49 (120)	150 (302)
T2	78 (172)	49 (120)	150 (302)
T1	78 (172)	49 (120)	150 (302)

Código do modelo


Pos. 2: G Pos. 8: 0

Pos. 10: A, C, E, J Pos. 11: UF22

7.84.84.86.54.10

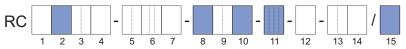
Código Ex:

A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 25: Classificação da temperatura

Classe de temperatura	Máxima tempera em °C		Máxima temperatura do processo em °C (°F)		
	Opção L	Opção Y			
Т6	39 (102)	39 (102)	65 (149)		
T5	54 (129)	54 (129)	80 (176)		
T4	80 (176)	62 (143)	117 (242)		
Т3	78 (172)	49 (120)	150 (302)		
T2	78 (172)	49 (120)	150 (302)		
T1	78 (172)	49 (120)	150 (302)		

Código do modelo


Pos. 2: G Pos. 8: 0

Pos. 10: B, D, F, K

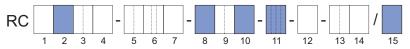
Pos. 11: UF21 Código Ex:

7.89.89.90.54.10

A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 26: Classificação da temperatura

Classe de temperatura	Máxima tempera em °C		Máxima temperatura do processo em °C (°F)			
	Opção L	Opção Y				
T6	44 (111)	44 (111)	70 (158)			
T5	59 (138)	59 (138)	85 (185)			
T4	80 (176)	73 (163)	121 (249)			
T3	80 (176)	70 (158)	150 (302)			
T2	80 (176)	70 (158)	150 (302)			
T1	80 (176)	70 (158)	150 (302)			


Código do modelo

Pos. 2: G Pos. 8: 0

Pos. 10: B, D, F, K

Pos. 11: UF22 Código Ex:

7.84.84.86.54.10

Tab. 27: Classificação da temperatura

Classe de temperatura	Máxima tempera em °C		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
Т6	44 (111)	44 (111)	65 (149)
T5	59 (138)	59 (138)	80 (176)
T4	80 (176)	74 (165)	117 (242)
Т3	80 (176)	70 (158)	150 (302)
T2	80 (176)	70 (158)	150 (302)
T1	80 (176)	70 (158)	150 (302)

Manual do Tipo Protegidos contra Explosão INMETRO

Dados técnicos

Especificação de temperatura conforme as classes de temperatura

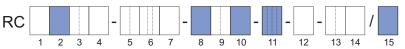
Código do modelo:

Pos. 2: G Pos. 8: 2

Pos. 10: B, D, F, K Pos. 11: UF21 Código Ex: 7.89.89.90.90.80

A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 28: Classificação da temperatura

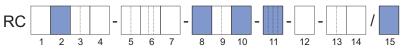

Classe de temperatura	Máxima tempera em °C		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
T6	44 (111)	44 (111)	70 (158)
T5	59 (138)	59 (138)	85 (185)
T4	80 (176)	73 (163)	121 (249)
T3	80 (176)	64 (147)	186 (366)
T2	80 (176)	59 (138)	220 (428)
T1	80 (176)	59 (138)	220 (428)

Código do modelo:

Pos. 2: G Pos. 8: 2

Pos. 10: B, D, F, K Pos. 11: UF22 Código Ex: 7.84.84.86.87.80

A ilustração a seguir exibe a respectiva posição do código do modelo:


Tab. 29: Classificação da temperatura

Classe de temperatura	Máxima tempera em °C		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
T6	44 (111)	44 (111)	65 (149)
T5	59 (138)	59 (138)	80 (176)
T4	80 (176)	74 (165)	117 (242)
Т3	80 (176)	64 (147)	183 (361)
T2	80 (176)	59 (138)	220 (428)
T1	80 (176)	59 (138)	220 (428)

Código do modelo

Pos. 2: G Pos. 8: 3

Pos. 10: B, D, F, K Pos. 11: UF21, UF22 Código Ex:

Tab. 30: Classificação da temperatura

Classe de temperatura	Máxima tempera em °C		Máxima temperatura do processo em °C (°F)			
	Opção L	Opção Y				
T6	62 (143)	62 (143)	65 (149)			
T5	77 (170)	77 (170)	80 (176)			
T4	80 (176)	74 (165)	115 (239)			
T3	80 (176)	65 (149)	180 (356)			
T2	73 (163)	50 (122)	275 (527)			
T1	60 (140)	40 (104)	350 (662)			

Manual do Tipo Protegidos contra Explosão INMETRO

Especificação de temperatura conforme as classes de temperatura

Dados técnicos

Código do modelo:

Coulgo do Illodeio

A ilustração a seguir exibe a respectiva posição do código do modelo:

Pos. 2: G

Pos. 8: 4 Pos. 10: B, D, F

Pos. 11: UF21, UF22

Tab. 31: Classificação da temperatura

Classe de temperatura	Máxima tempera em °C		Máxima temperatura do processo em °C (°F)
	Opção L Opção Y		
T6	62 (143)	62 (143)	65 (149)
T5	77 (170)	77 (170)	80 (176)
T4	80 (176)	74 (165)	115 (239)
Т3	80 (176)	65 (149)	180 (356)
T2	73 (163)	50 (122)	275 (527)
T1	52 (125)	32 (89)	400 (752)

8.4.6 Rotamass Intense T08/10K

Variante 1:

Código do modelo:

A ilustração a seguir exibe a respectiva posição do código do modelo:

Pos. 2: T

Pos. 3 + 4: 08K, 10K

Pos. 8: 0

Pos. 10: 0, 1, 2

Pos. 11: UF21, UF22

Código Ex:

Tab. 32: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T6	42 (107)	75 (167)
T5	57 (134)	90 (194)
T4	60 (140)	125 (257)
T3	60 (140)	150 (302)
T2	60 (140)	150 (302)
T1	60 (140)	150 (302)

Código do modelo:

Pos. 2: T

Pos. 3 + 4: 08K, 10K

Pos. 8: 0

Pos. 10: A, C, E, J

Pos. 11: UF21, UF22

Código Ex:

RC					-[]-				_	-		-		/	
	1	2	3	4		5	6	7		8	9	10	11		12	13	14		15

A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 33: Classificação da temperatura

Classe de temperatura	Máxima tempera em °C		Máxima temperatura do processo em °C (°F)			
	Opção L	Opção Y				
T6	43 (109)	43 (109)	75 (167)			
T5	58 (136)	58 (136)	90 (194)			
T4	80 (176)	74 (165)	125 (257)			
Т3	80 (176)	60 (140)	150 (302)			
T2	80 (176)	60 (140)	150 (302)			
T1	80 (176)	60 (140)	150 (302)			

Variante 2:

Código do modelo:

A ilustração a seguir exibe a respectiva posição do código do modelo:

Pos. 2: T

Pos. 3 + 4: 08K

Pos. 8: 0

Pos. 10: 0, 1, 2

Pos. 11: UF21, UF22

Código Ex:

Tab. 34: Classificação da temperatura

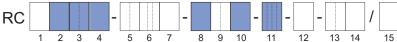
Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)		
T6	60 (140)	75 (167)		
T5	60 (140)	90 (194)		
T4	60 (140)	125 (257)		
T3	60 (140)	150 (302)		
T2	60 (140)	150 (302)		
T1	60 (140)	150 (302)		

Código do modelo:

Pos. 2: T

Pos. 3 + 4: 08K

Pos. 8: 0


Pos. 10: A, C, E, J

Pos. 11: UF21, UF22

Código Ex:

_

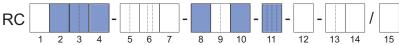
Tab. 35: Classificação da temperatura

Classe de temperatura	Máxima tempera em °C		Máxima temperatura do processo em °C (°F)		
	Opção L	Opção Y			
T6	67 (152)	67 (152)	75 (167)		
T5	80 (176)	77 (170)	90 (194)		
T4	80 (176)	74 (165)	125 (257)		
Т3	80 (176)	60 (140)	150 (302)		
T2	80 (176)	60 (140)	150 (302)		
T1	80 (176)	60 (140)	150 (302)		

Código do modelo:

Pos. 2: T

Pos. 3 + 4: 10K


Pos. 8: 0

Pos. 10: 0,1, 2

Pos. 11: UF21, UF22

Código Ex:

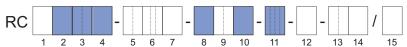
A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 36: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T6	56 (133)	75 (167)
T5	60 (140)	90 (194)
T4	60 (140)	125 (257)
Т3	60 (140)	150 (302)
T2	60 (140)	150 (302)
T1	60 (140)	150 (302)

Código do modelo:

Pos. 2: T


Pos. 3 + 4: 10K

Pos. 8: 0

Pos. 10: A, C, E, J

Pos. 11: UF21, UF22

Código Ex:

Tab. 37: Classificação da temperatura

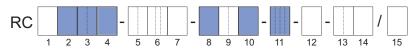
Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
T6	58 (136)	58 (136)	75 (167)
T5	73 (163)	73 (163)	90 (194)
T4	80 (176)	74 (165)	125 (257)
T3	80 (176)	60 (140)	150 (302)
T2	80 (176)	60 (140)	150 (302)
T1	80 (176)	60 (140)	150 (302)

8.4.7 Rotamass Intense T11/21S

Variante 1:

Código do modelo:

A ilustração a seguir exibe a respectiva posição do código do modelo:


Pos. 2: T

Pos. 3 +4: 11S, 21S

Pos. 8: 0 Pos. A, C, E, J

Pos. 11: UF21, UF22

Código Ex:

Tab. 38: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T4	48 (118)	48 (118)
Т3	80 (176)	100 (212)
T2	80 (176)	100 (212)
T1	80 (176)	100 (212)

Variante 2:

Código do modelo:

Pos. 2: T

Pos. 3 +4: 11S, 21S

PUS. 3 +4. 113, 213

Pos. 8: 0

Pos. A, C, E, J

Pos. 11: UF21, UF22

Código Ex:

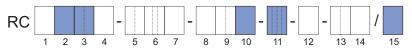
Tab. 39: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T4	80 (176)	99 (210)
T3	80 (176)	100 (212)
T2	80 (176)	100 (212)
T1	80 (176)	100 (212)

8.4.8 Rotamass Prime e Hygienic

Código do modelo

Pos. 2: P, H


Pos. 3: 25, 40

Pos. 10: 0, 1, 2 Pos. 11: UF21, UF22

Pos. 15: – Código Ex:

7.66.66.68.54.10

A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 40: Classificação da temperatura

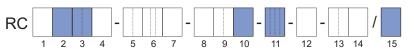
Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T6	43 (109)	47 (116)
T5	58 (136)	62 (143)
T4	60 (140)	99 (210)
Т3	60 (140)	150 (302)
T2	60 (140)	150 (302)
T1	60 (140)	150 (302)

Código do modelo

Pos. 2: P, H

Pos. 3: 25, 40

Pos. 10: 0, 1, 2


Pos. 11: UF21, UF22

Pos. 15: /EPT

Código Ex:

1.83.83.84.54.10

A ilustração a seguir exibe a respectiva posição do código do modelo:

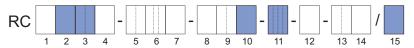
Tab. 41: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T6	60 (140)	64 (147)
T5	60 (140)	79 (174)
T4	60 (140)	115 (239)
Т3	60 (140)	150 (302)
T2	60 (140)	150 (302)
T1	60 (140)	150 (302)

Código do modelo

Pos. 2: P, H

Pos. 3: 50


Pos. 10: 0, 1, 2

Pos. 11: UF21, UF22

Pos. 15: -

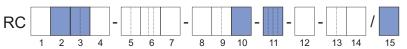
Código Ex:

2.73.72.76.54.10

Tab. 42: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T6	54 (129)	54 (129)
T5	60 (140)	68 (154)
T4	60 (140)	107 (224)
Т3	60 (140)	150 (302)
T2	60 (140)	150 (302)
T1	60 (140)	150 (302)

Manual do Tipo Protegidos contra Explosão INMETRO


Dados técnicos

Código do modelo

Pos. 2: P, H Pos. 3: 50 Pos. 10: 0, 1, 2

Pos. 11: UF21, UF22 Pos. 15: /EPT

Código Ex: 1.91.91.91.54.10 A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 43: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T6	60 (140)	72 (161)
T5	60 (140)	87 (188)
T4	60 (140)	122 (251)
Т3	60 (140)	150 (302)
T2	60 (140)	150 (302)
T1	60 (140)	150 (302)

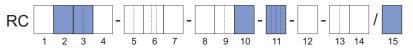

Código do modelo

Pos. 2: P, H Pos. 3: 80 Pos. 10: 0, 1, 2 Pos. 11: UF21 Pos. 15: -

Código Ex:

7.83.84.86.54.10

A ilustração a seguir exibe a respectiva posição do código do modelo:


Tab. 44: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T6	40 (104)	64 (147)
T5	55 (131)	80 (176)
T4	60 (140)	117 (242)
Т3	60 (140)	150 (302)
T2	60 (140)	150 (302)
T1	60 (140)	150 (302)

Código do modelo

Pos. 2: P, H Pos. 3: 80 Pos. 10: 0, 1, 2 Pos. 11: UF22 Pos. 15: -Código Ex:

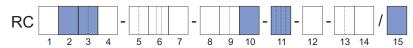
6.83.84.86.54.10

Tab. 45: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T6	44 (111)	64 (147)
T5	59 (138)	80 (176)
T4	60 (140)	117 (242)
Т3	60 (140)	150 (302)
T2	60 (140)	150 (302)
T1	60 (140)	150 (302)

Código do modelo

Pos. 2: P, H Pos. 3: 1H


Pos. 10: 0, 1, 2

Pos. 11: UF21, UF22

Pos. 15: -Código Ex:

7.87.87.88.54.10

Tab. 46: Classificação da temperatura

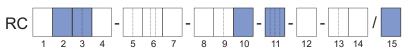
Classe de temperatura	Máxima temperatura ambiente em °C (°F)	Máxima temperatura do processo em °C (°F)
T6	39 (102)	68 (154)
T5	54 (129)	83 (181)
T4	60 (140)	119 (246)
Т3	60 (140)	150 (302)
T2	60 (140)	150 (302)
T1	60 (140)	150 (302)

Código do modelo

Pos. 2: P, H

Pos. 3: 25, 40

Pos. 10: A, C, E, J


Pos. 11: UF21, UF22

Pos. 15: -

Código Ex:

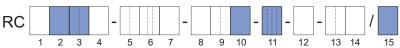
7.66.66.68.66.60

A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 47: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
Т6	46 (114)	46 (114)	47 (116)
T5	61 (141)	61 (141)	62 (143)
T4	80 (176)	74 (165)	99 (210)
Т3	74 (165)	56 (132)	162 (323)
T2	60 (140)	46 (114)	200 (392)
T1	60 (140)	46 (114)	200 (392)

Código do modelo


Pos. 2: P, H Pos. 3: 25, 40

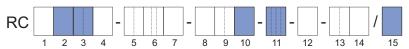
Pos. 10: A, C, E, J

Pos. 11: UF21, UF22

Pos. 15: /EPT Código Ex:

1.83.83.84.82.60

Tab. 48: Classificação da temperatura


Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
Т6	64 (147)	64 (147)	64 (147)
T5	79 (174)	79 (174)	79 (174)
T4	80 (176)	66 (150)	115 (239)
T3	68 (154)	51 (123)	178 (352)
T2	60 (140)	46 (114)	200 (392)
T1	60 (140)	46 (114)	200 (392)

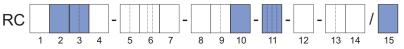
Código do modelo

Pos. 2: P, H Pos. 3: 50

Pos. 10: A, C, E, J Pos. 11: UF21, UF22

Pos. 15: – Código Ex: 2.73.72.76.80.60 A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 49: Classificação da temperatura


Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
Т6	54 (129)	54 (129)	54 (129)
T5	68 (154)	68 (154)	68 (154)
T4	80 (176)	66 (150)	107 (224)
Т3	68 (154)	51 (123)	176 (348)
T2	60 (140)	46 (114)	200 (392)
T1	60 (140)	46 (114)	200 (392)

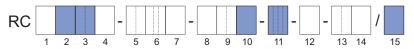
Código do modelo

Pos. 2: P, H Pos. 3: 50

Pos. 10: A, C, E, J Pos. 11: UF21, UF22 Pos. 15: /EPT

Pos. 15: /EPT Código Ex: 1.91.91.91.91.60 A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 50: Classificação da temperatura


Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
T6	72 (161)	72 (161)	72 (161)
T5	80 (176)	77 (170)	87 (188)
T4	80 (176)	66 (150)	122 (251)
Т3	64 (147)	49 (120)	187 (368)
T2	60 (140)	46 (114)	200 (392)
T1	60 (140)	46 (114)	200 (392)

Código do modelo

Pos. 2: P, H Pos. 3: 80

Pos. 10: A, C, E, J Pos. 11: UF21 Pos. 15: –

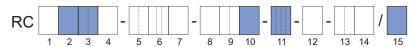
Código Ex: 7.83.84.86.89.60

Tab. 51: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
Т6	42 (107)	42 (107)	64 (147)
T5	57 (134)	57 (134)	80 (176)
T4	80 (176)	66 (150)	117 (242)
T3	66 (150)	50 (122)	185 (365)
T2	60 (140)	46 (114)	200 (392)
T1	60 (140)	46 (114)	200 (392)

Dados técnicos

Código do modelo


Pos. 2: P, H Pos. 3: 80

Pos. 10: A, C, E, J

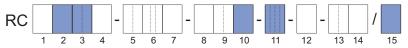
Pos. 11: UF22 Pos. 15: -

Código Ex: 6.83.84.86.89.60

A ilustração a seguir exibe a respectiva posição do código do modelo:

Tab. 52: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
Т6	46 (114)	46 (114)	64 (147)
T5	61 (141)	61 (141)	80 (176)
T4	80 (176)	66 (150)	117 (242)
Т3	66 (150)	50 (122)	185 (365)
T2	60 (140)	46 (114)	200 (392)
T1	60 (140)	46 (114)	200 (392)


Código do modelo

Pos. 2: P, H Pos. 3: 1H

Pos. 10: A, C, E, J Pos. 11: UF21, UF22

Pos. 15: – Código Ex:

7.87.87.88.89.60

Tab. 53: Classificação da temperatura

Classe de temperatura	Máxima temperatura ambiente em °C (°F)		Máxima temperatura do processo em °C (°F)
	Opção L	Opção Y	
T6	40 (104)	40 (104)	68 (154)
T5	55 (131)	55 (131)	83 (181)
T4	80 (176)	66 (150)	119 (246)
Т3	66 (150)	50 (122)	185 (365)
T2	60 (140)	46 (114)	200 (392)
T1	60 (140)	46 (114)	200 (392)

All rights reserved. Copyright © 2025-03-21

Manufacturer:

Rota Yokogawa GmbH & Co. KG Rheinstr. 8 D-79664 Wehr Germany

For the actual manufacturing location of your device refer to the model code and/or serial number.

