General Specifications

FSA120 Flow Configuration Software

FlowNavigator R2.03

GS 01C25R51-01EN

1. Features

The FSA120 (FlowNavigator) is the software package which offers various functions to help users to easily configure the mass flow parameters of device.

The FSA120 includes following two programs:

- EJXMVTool: for EJX Multivariable Transmitter
- DYFMVTool: for digitalYEWFLO Vortex Flowmeter FSA120 employs FDT/DTM technology and works on the FieldMate and PRM.

FSA120 has the following features:

- Easy flow parameter configuration by dialog windows
- Configuration of the fluid physical properties*
 *: DIPPR, Steam tables IAPWS-IF97, Natural gas standard AGA8/ISO12213
- Configuration of the primary device**
 **: Orifice, Nozzle, Venturi, Multiport Averaging Pitot, Cone meters, user define mode
- · Various flow calculation modes
 - EJXMVTool: Auto Compensation Mode / Basic Mode
 - DYFMVTool: Detail Compensation Mode / Steam Compensation Mode / Simple Compensation Mode
- HART and FOUNDATION fieldbus H1 are supported.

FSA120 provides following advantages to device:

- Highly-responsive flow measurement and saving cost by built-in flow computer inside device
- Highly-accurate mass flow rate output compensated by process temperature or pressure value by using the fluid physical properties database
- Easy mass flow configuration by FDT standard conforming software
 - FieldMate: Versatile field device management and configuration software tool which conforms to FDT standard
- PRM (Plant Resource Manager): On line asset management software tool for field devices and systems which conforms to FDT standard.
- FDT (Field Device Tool): Defines the system environment in which the DTM runs.
- DTM (Device Type Manager): the application which defines the graphical user interface (GUI) specific to the device.
- Remarks: For FSA120 R1.04 or later, the product name has been changed to "FieldMate FlowNavigator" from "EJXMVTool".

2. Functional Details

Device Management

Online parameter

The general parameters of the device can be edited directly in online status.

Offline parameter

The general parameters of the device can be edited and stored in offline database.

Download/upload

Downloading the flow and general parameters to the device. Uploading the data from the device to PC.

Flow Configuration Wizard

In this mode, the procedures which are required for flow configuration can be performed interactively.

(1) Auto Compensation Mode (EJXMVTool), Detail (Gas / Liquid) Compensation Mode (DYFMVTool)

Procedures to configure flow calculation by setting up a primary device and fluid physical properties in a step-by-step in dialog window.

(2) Basic Mode (EJXMVTool), Simple (Gas / Liquid) Compensation Mode (DYFMVTool), Steam Compensation Mode (DYFMVTool)

Flow operation and density compensation are performed as follows.

- With the flow factors being input manually (Basic Mode/ Simple (Gas / Liquid) Compensation Mode)
- With the flow factors inside digitalYEWFLO Vortex Flowmeter (Steam Compensation Mode)

(3) Import/export file

Import and export the user flow parameters.

(4) Report

The list of user flow parameters is exported in CSV file format.

Obtain Flow coefficient (for EJXMVTool)

The flow coefficient can be obtained from the device. Input selection: sensor data actually measured or simulated data input by user.

Specification of Auto Compensation Mode (EJXMVTool) and Detail Compensation Mode (DYFMVTool)

Supported primary device (for EJXMVTool)

The 27 devices or User define mode as specified in Table 1.

User Defined Mode:

Set a constant value or coefficient vs. Reynolds number to Discharge coefficient Set detail value to Gas expansion factor.

Density compensation

Following (1) and (2) methods are supported for density compensation. For unsupported fluid, data entries to configure custom physical properties are also available as shown in (3).

(1) Density compensated by physical properties Database:

As specified in Table 2

Source

American Institute of Chemical Engineers (AIChE) DIPPR Project No.801 Database: 2003

(2) Density compensated using standard

Natural gas:

AGA8

Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases.

American Gas Association (AGA)

Transmission Measurement Committee Report

No.8 Second Edition, November 1992

Detail Characterization Method

Gross Characterization Method 1

Gross Characterization Method 2

ISO 12213:1997 First edition 1997-12-01

Part 2: molar-composition analysis

Part 3: physical properties

Steam tables (for EJXMVTool):

IAPWS-IF97 Water and Steam (1997)

IAPWS-IF97: IAPWS Industrial Formulation 1997 IAPWS: The International Association for the

Properties of Water and Steam.

(3) Custom fluid density and viscosity compensation:

Numerical value can be input to configure physical properties (density, viscosity, etc.)

3. Operation Environment

The quality and operability of the FlowNavigator are certified for use with FieldMate and PRM only.

Make sure that the following software is installed on your computer.

FDT frame application that conforms to the FDT Interface Specification

- FDT 1.2 (for FOUNDATION fieldbus communication)
- FDT 1.2 or 2.0 (for HART communication)*
- * FDT2.0 frames support both FDT1.2 and FDT2.0.

Communication DTM

• Communication DTM for HART and FOUNDATION fieldbus is included in FieldMate and PRM

Function Block Scheduling and Connection Tool (for DYFMVTool)

e.g. NI-FBUS Configurator 16.0 or later for Windows 10

Device Files*

- EJX910 HART DTM
- EJX910 FOUNDATION fieldbus DTM
- DYF(SoftDL) FOUNDATION fieldbus DTM
- * The Device Files include Yokogawa Device DTM Library

4. Model and Suffix Codes

R2.03

Model		Suffix Codes			Codes	Descriptions
FSA120						Flow Configuration Software
License	-5	3.				Single PC License*
_		1				Always 1
_			1.			Always 1
_				0		Always 0
Optional	СО	de			/B	USB FieldMate Modem attached

^{*:} Single user on a single PC

Models to be connected

 EJX Multivariable Transmitter EJX910A/EJX930A

Protocol: HART, FOUNDATION fieldbus

digitalYEWFLO Vortex Flowmeter

ĎY-F/DYA-F

Protocol: FOUNDATION fieldbus

Device Type: 9, Device revision: 3 or later

Recommended Communications interface

HART:

Yokogawa USB FieldMate modem (Parts number: F9197UF) **VIATOR Bluetooth Interface** (Model 010041 (MACTek)) *

FOUNDATION fieldbus:

National Instruments NI USB-8486

Microsoft supplied Bluetooth stack is used.

Components

FSA120 includes the following items:

<FlowNavigator>

- CD-ROM: FlowNavigator
- License number sheet for FlowNavigator
- Getting started for FlowNavigator

<Modem> (Option)

- USB FieldMate modem: BRAIN/HART, with cables For the details, refer to GS 01R01A01-01E.
- Compatibility Compatibility between FieldMate, PRM and Device Files is indicated at the following URL. https://partner.yokogawa.com/global/fieldmate/

Trademarks

All the brand names or product names of Yokogawa Electric used in this document are either trademarks or registered trademarks of Yokogawa Electric Corporation.

All the brand names or product names of other companies mentioned in this document are either trademarks or registered trademarks of their respective holders.

<RELATED INSTRUMENTS AND SOFTWARE>

EJX910A Multivariable Transmitter: GS 01C25R01-01EN

EJX930A Multivariable Transmitter:

GS 01C25R04-01EN

digitalYEWFLO Series Vortex Flowmeter:

GS 01F06A00-01EN

digitalYEWFLO Series Vortex Flowmeter FOUNDATION

Fieldbus Communication Type:

GS 01F06F01-01EN

FieldMate: GS 01R01A01-01E PRM: GS 33Y05Q10-32E

Table 1. Supported primary Devices

Table I. Supp	ported primary Devices
Туре	Primary Device
Orifice	Orifice Corner Taps [ISO5167-1 1991]
	Orifice Corner Taps [ISO5167-2 2003]
	Orifice Corner Taps [ASME MFC-3M 1989]
	Orifice Flange Taps [ISO5167-1 1991]
	Orifice Flange Taps [ISO5167-2 2003]
	Orifice Flange Taps [ASME MFC-3M 1989]
	Orifice Flange Taps [AGA No.3 1992]
	Orifice D and D/2 Taps [ISO5167-1 1991]
	Orifice D and D/2 Taps [ISO5167-2 2003]
	Orifice D and D/2 Taps [ASME MFC-3M 1989]
Nozzle	ISA1932 nozzle [ISO5167-1 1991/ ISO5167-3 2003]
	Long radius nozzle [ISO5167-1 1991/ ISO5167-3 2003]
	ASME FLOW NOZZLES [ASME MFC-3M 1989]
Venturi	Venturi nozzle [ISO5167-1 1991/ ISO5167-3 2003]
	Classical Venturi tube "as cast" convergent section [ISO5167-1 1991/ ISO5167-4 2003]
	ASME Venturi Tubes With a rough Cast or Fabricated Convergent [ASME MFC-3M 1989]
	Classical Venturi tube with a machined convergent section [ISO5167-1 1991/ ISO5167-4 2003]
	ASME Venturi Tubes With a machined convergent section [ASME MFC-3M 1989]
	Classical Venturi tube with a rough-welded sheet-iron convergent section [ISO5167-1 1991/ ISO5167-4 2003]
Multiport	Verabar
Averaging Pitot	Calibrated Verabar
	Accelabar
	Calibrated Accelabar
Cone meters	V-Cone
	Wafer-Cone
	Cone meters [ISO 5167-5]
	Calibrated Cone meters [ISO 5167-5]
User Defined Mode (Orifice, Nozzle and Venturi)	Set a constant value to Discharge coefficient. Set constant value to Gas expansion factor.
User Defined Mode (Multiport Averaging Pitot)	Set a constant value or coefficient vs. Reynolds number to Discharge coefficient. Set detail value to Gas expansion factor.
User Defined Mode (Cone meters)	Set a constant value or coefficient vs. Reynolds number to Discharge coefficient. Set detail value to Gas expansion factor.

Table 2. Supported physical Properties database

Fluid name
Acetic Acid (*)
Acetone
Acetonitrile
Acetylene
Acrylonitrile
Air
Allyl Alcohol
Ammonia
Argon
Benzaldehyde
Benzene
Benzoic Acid (*)
Benz Alcohol
Biphenyl
Bromine
Carbon Dioxide
Carbon Monoxide
Carbon Tetrachloride
Chlorine
Chlorodiuoromethane
Chloroprene
Chlorotriuoroethylene
Cycloheptane
Cyclohexane
Cyclopentane
Cyclopentene
Cyclopropane
Dichlorodiuoromethane
Divinyl Ether
Ethane
Ethanol
Ethylamine
Ethylbenzene
Ethylene
Ethylene Glycol
Ethylene Oxide
Fluorene
Furan
Helium-4
Hydrazine
Hydrogen
Hydrogen Chloride
Hydrogen Cyanide
Hydrogen Peroxide
Hydrogen Sulde

Fluid na	me
Isobutane	
Isobutene	
Isobutylbenzene	
Isopentane	
Isoprene	
Isopropanol	
m-chloronitrobenze	ne
m-dichlorobenzene	
Methane	
Methanol	
Methyl Acrylate	
Methyl Ethyl Ketone	;
Methyl Vinyl ether	
Monochlorobenzen	e
n-Butane	
n-Butanol	
n-Butyraldehyde	
n-Butyronitrile	
n-Decane	
n-Dodecane	
n-Heptadecane	
n-Heptane	
n-Hexane	
n-nonane	
n-Octane	
n-Pentane	
Neon	
Neopentane	
Nitric Acid (*)	
Nitric Oxide	
Nitrobenzene	
Nitroethane	
Nitrogen	
Nitromethane	
Nitrous Oxide	
Oxygen	
Pentauoroethane	
Phenol	
Phosphoric Acid (*)	
Propadiene	
Propane	
Propylene	
Pyrene	
Styrene	

Fluid name
Toluene
Trichloroethylene
Trichlorouoromethane
Vinyl Acetate
Vinyl Chloride
Vinyl Cyclohexene
Water
1-Butene
1-Decene
1-Decanal
1-Decanol
1-Dodecene
1-Dodecanol
1-Heptanol
1-Heptene
1-Hexene
1-Hexadecanol
1-Octanol
1-Octene
1-Nonanal
1-Nonanol
1-Pentadecanol
1-Pentanol
1-Pentene
1-Undecanol
1,1,2,2-Tetrauoroethane
1,1,2-Trichloroethane
1,2,4-Trichlorobenzene
1,2-Butadiene
1,3-Butadiene
1,3,5-Trichlorobenzene
1,4-Dioxane
1,4-Hexadiene
2-Methyl-1-Pentene
2,2-Dimethylbutane

^{*:} Only for liquid.