The high performance flange mounted differential pressure transmitter EJA210E can be used to measure levels of densities of solidifying or precipitating liquids. EJA210E outputs a 4 to 20 mA DC signal corresponding to the measured differential pressure. Its accurate and stable sensor can also measure the static pressure which can be shown on the integral indicator or remotely monitored via BRAIN or HART communications. Other key features include quick response, remote set-up using communications and self-diagnostics. FOUNDATION Fieldbus, PROFIBUS PA and 1 to 5 V DC with HART (Low Power) protocol types are also available. All EJA-E series models in their standard configuration, with the exception of the Fieldbus, PROFIBUS and Low Power types, are certified as complying with SIL 2 for safety requirement.

- **STANDARD SPECIFICATIONS**

Refer to GS 01C31T02-01EN for Fieldbus communication type and GS 01C31T04-01EN for PROFIBUS PA communication type for the items marked with “◊.”

SPAN AND RANGE LIMITS

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Span/Range</th>
<th>kPa</th>
<th>inH2O ((D1))</th>
<th>mbar</th>
<th>mmH2O ((D4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>M Span</td>
<td>1 to 100</td>
<td>4</td>
<td>400</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>-100 to 100</td>
<td>-400</td>
<td>400</td>
<td>-1000</td>
<td>-10000</td>
</tr>
<tr>
<td>H Span</td>
<td>5 to 500</td>
<td>20</td>
<td>2000</td>
<td>50</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>-500 to 500</td>
<td>-2000</td>
<td>2000</td>
<td>-5000</td>
<td>-5000</td>
</tr>
</tbody>
</table>

PERFORMANCE SPECIFICATIONS

Zero-based calibrated span, linear output, wetted parts material code SW for 3-inch flange flush type, and fill fluid code B.

For Fieldbus and PROFIBUS PA communication types, use calibrated range instead of span in the following specifications.

Specification Conformance

EJA-E series ensures specification conformance to at least ±3σ.

Reference Accuracy of Calibrated Span

(includes terminal-based linearity, hysteresis, and repeatability)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>X ≤ span</th>
<th>±0.075% of Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>X > span</td>
<td>±(0.025+0.005 URL/span)% of Span</td>
</tr>
<tr>
<td>accuracy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>10 kPa</td>
<td>(40 inH2O)</td>
</tr>
<tr>
<td>URL</td>
<td>100 kPa</td>
<td>(400 inH2O)</td>
</tr>
</tbody>
</table>

Ambient Temperature Effects per 28°C (50°F) Change

<table>
<thead>
<tr>
<th>Capsule</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>±(0.224% Span+0.056% URL)</td>
</tr>
<tr>
<td>H</td>
<td>±(0.14% Span+0.028% URL)</td>
</tr>
</tbody>
</table>

Static Pressure Effects per 0.69 MPa (100 psi) Change

<table>
<thead>
<tr>
<th>Capsule</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>M and H</td>
<td>±0.028% of span</td>
</tr>
</tbody>
</table>

Effect on Zero

M and H capsules

±0.007% of URL

Stability

±0.1% of URL per 12 months

Power Supply Effects(Output signal code D and J)

±0.005% per Volt (from 21.6 to 32 V DC, 350Ω)

Response Time (Differential pressure)

M and H capsule: 120 ms (approximate value at normal temperature)

When software damping is set to zero and including dead time of 45 ms (nominal)
Static Pressure Signal Range and Accuracy
(For monitoring via communication or on
indicator for BRAIN and HART communication
type. Includes terminal-based linearity,
hysteresis, and repeatability)

Range
Upper Range Value and Lower Range Value of the
static pressure can be set in the range between 0
and Maximum Working Pressure (MWP*). The upper
range value must be greater than the lower range
value. Minimum setting span is 0.5 MPa (73 psi).
* : Maximum Working Pressure (MWP) is within
flange rating pressure.

Accuracy

Absolute Pressure
1 MPa or higher: ±0.5% of span
Less than 1 MPa: ±0.5%×(1 MPa/span) of span

Gauge Pressure Reference
Gauge pressure reference is 1013 hPa (1 atm)

Note: Gauge pressure variable is based on the above
fixed reference and thus subject to be affected by
the change of atmospheric pressure.

□ FUNCTIONAL SPECIFICATIONS

Output “◊”

For 4 to 20 mA HART / BRAIN
(Output signal code D and J)
Two wire 4 to 20 mA DC output with digital
communications.
BRAIN or HART FSK protocol are superimposed on
the 4 to 20 mA signal.
Output range: 3.6 mA to 21.6 mA
Output limits conform to NAMUR NE43 can be preset
by option code C2 or C3.

For 1 to 5 V HART (Output signal code Q)
Three or four wire low power 1 to 5 V DC output with
HART, linear or square root programmable. HART
protocol are superimposed on the 1 to 5 V DC signal.
Output range: 0.9 V to 5.4 V DC

Failure Alarm

For 4 to 20 mA HART / BRAIN
(Output signal code D and J)
Output status at CPU failure and hardware error;
Up-scale: 110%, 21.6 mA DC or more (standard)
Down-scale: ~5%, 3.2 mA DC or less

For 1 to 5 V HART (Output signal code Q)
Analog output status at CPU failure and hardware
error;
Up-scale: 110%, 5.4 V DC or more (standard)
Down-scale: ~5%, 0.8 V DC or less

Damping Time Constant (1st order)
Amplifier damping time constant is adjustable from
0.00 to 100.00 s by software and added to response
time.
Note: For BRAIN protocol type, when amplifier software
damping is set to less than 0.5 s, communication
may occasionally be unavailable during the
operation, especially while output changes
dynamically. The default setting of damping
ensures stable communication.

Update Period “◊”

Differential pressure: 45 ms
Static pressure: 360 ms

Zero Adjustment Limits
Zero can be fully elevated or suppressed, within the
lower and upper range limits of the capsule.

External Zero Adjustment
External zero is continuously adjustable with
0.01% incremental resolution of span. Re-range
can be done locally using the digital indicator with
rangesetting switch.

Integral Indicator (LCD display, optional) “◊”
5-digit numerical display, 6-digit unit display and bar
graph.
The indicator is configurable to display one or up to
four of the following variables periodically;
Measured differential pressure, differential pressure
in %, scaled differential pressure, measured static
pressure. See also “Factory Setting.”

Local Parameter Setting
(Output signal code D, J and Q)
Parameter configuration by the external zero
adjustment screw and push button (Integral indicator
code E) offers easy and quick setup for parameters of
Tag number, Unit, LRV, URV, Damping, Output mode
(linear/square root), Display out 1, and Re-range by
applying actual pressure (LRV/URV).

Self Diagnostics
CPU failure, hardware failure, configuration error,
process alarm for differential pressure, static
pressure or capsule temperature.
User-configurable process high/low alarm for
differential pressure and static pressure is also
available.

Signal Characterizer
(Output signal code D, J and Q)
User-configurable 10-segment signal characterizer
for 4 to 20 mA output.

SIL Certification
EJA-E series transmitters except Fieldbus,
PROFIBUS PA and 1-5V DC with HART (Low Power)
communication types are certified in compliance with
the following standards;
IEC 61508: 2010; Part1 to Part 7
Functional Safety of Electrical/electronic/
programmable electronic related systems; SIL 2
capability for single transmitter use, SIL 3 capability
for dual transmitter use.

□ NORMAL OPERATING CONDITION
(Optional features or approval codes may
affect limits.)

Ambient Temperature Limits
~40 to 85°C (~40 to 185°F)
~30 to 80°C (~22 to 176°F) with LCD display
(Note: The ambient temperature limits must be within the
fill fluid operating temperature range, see table 1.)

Process Temperature Limits
High pressure side: See table 1.
Low pressure side: ~40 to 120°C (~40 to 248°F)

Ambient Humidity Limits
0 to 100% RH

Working Pressure Limits
See table 1.
For atmospheric pressure or below, see figure 1.
Supply & Load Requirements
(Output signal code D and J. Optional features or approval codes may affect electrical requirements.)
With 24 V DC supply, up to a 550Ω load can be used. See figure 2.

Supply Voltage “◊”
For 4 to 20 mA HART / BRAIN
(Output signal code D and J)
10.5 to 42 V DC for general use and flameproof type.
10.5 to 32 V DC for lightning protector (option code /A.)
10.5 to 30 V DC for intrinsically safe, type n, or non-incendive.
Minimum voltage limited at 16.6 V DC for digital communications, BRAIN and HART

For 1 to 5 V HART (Output signal code Q)
Power supply:
9 to 28 V DC for general use and flame proof type.
Power Consumption:
0.96 mA to 3 mA, 27 mW

Load for 4 to 20 mA HART / BRAIN
(Output signal code D and J)
0 to 1290Ω for operation
250 to 600Ω for digital communication

Output Load for 1 to 5 V HART
(Output signal code Q)
1 MΩ or greater (meter input impedance)
Note that with three-wire connection, the cable length may affect the measurement accuracy of the output signal.

Communication Requirements “◊”
(Approval codes may affect electrical requirements.)
BRAIN
Communication distance
Up to 2 km (1.25 miles) when using CEV polyethylene-insulated PVC-sheathed cables.
Communication distance varies depending on type of cable used.
Load capacitance
0.22 µF or less
Load inductance
3.3 mH or less
Input impedance of communicating device
10 kΩ or more at 2.4 kHz.

EMC Conformity Standards
EN 61326-1 Class A, Table2
EN 61326-2-3
EN 61326-2-5 (for fieldbus)

European Pressure Equipment Directive
2014/68/EU
Sound Engineering Practice

EU RoHS Directive
EN 50581

Safety Requirement Standards
EN 61010-1, C22.2 No.61010-1
• Installation category: I
 (Anticipated transient overvoltage 330 V)
• Pollution degree: 2
• Indoor/Outdoor use
Table 1. Process temperature, Ambient temperature, and Working pressure

<table>
<thead>
<tr>
<th>Code</th>
<th>Process temperature12</th>
<th>Ambient temperature*3</th>
<th>Working pressure</th>
</tr>
</thead>
</table>
| A | –10 to 250°C *4
(14 to 482°F) | –10 to 85°C
(14 to 185°F) | 2.7 kPa abs (0.38 psi abs) to flange rating pressure |
| B | –40 to 120°C
(–40 to 248°F) | –40 to 85°C
(–40 to 185°F) | |
| D | –20 to 120°C
(–4 to 248°F) | –20 to 80°C
(–4 to 176°F) | 51 kPa abs (7.4 psi abs) to flange rating pressure |
| P | –10 to 120°C
(–14 to 248°F) | –10 to 85°C
(14 to 185°F) | 100 kPa abs (atmospheric pressure) to flange rating pressure |

*1: See figure 1 'Working Pressure and Process Temperature.'
*2: Indicates high pressure side value. The process temperature limit for low pressure side is –40 to 120°C (–40 to 248°F).
*3: This ambient temperature is the transmitter ambient temperature.
*4: In case of wetted parts material code TW (Tantalum), process temperature limit is up to 200°C (392°F).
*5: The process temperature limit for lower pressure side is –20 to 80°C (–4 to 176°F.)

Figure 1. Working Pressure and Process Temperature (Fill fluid: silicone oil for general and high temperature use)
PHYSICAL SPECIFICATIONS

Process connections
High pressure side:
- Flange connected
See the following table.

Table 2. Flange size and rating

<table>
<thead>
<tr>
<th>Process connection style</th>
<th>Size</th>
<th>Flange</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-inch</td>
<td>JIS 10K, 20K</td>
</tr>
<tr>
<td></td>
<td>2-inch</td>
<td>ANSI Class 150, 300</td>
</tr>
<tr>
<td></td>
<td>11/2-inch*</td>
<td>JPI Class 150, 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIN PN10/16, 25/40</td>
</tr>
<tr>
<td>Extended type</td>
<td>4-inch</td>
<td>JIS 10K, 20K</td>
</tr>
<tr>
<td></td>
<td>3-inch</td>
<td>ANSI Class 150, 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JPI Class 150, 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIN PN10/16, 25/40</td>
</tr>
</tbody>
</table>

* : Flushing connection rings are always attached.

Low pressure side:
- Threaded
See "MODEL AND SUFFIX CODES."

Gasket Contact Surface
See the following table.

Table 3. Gasket contact surface

<table>
<thead>
<tr>
<th>Flange</th>
<th>JIS/JPI/DIN</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetted parts material code</td>
<td>SW, SE, HW,</td>
<td>SW,</td>
</tr>
<tr>
<td></td>
<td>WW, TW, WE</td>
<td>WE</td>
</tr>
<tr>
<td>Gasket contact surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serration*1</td>
<td>--</td>
<td>●</td>
</tr>
<tr>
<td>Flat (No serration)</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

*1: ANSI B16.5

Electrical Connections
See "MODEL AND SUFFIX CODES."

Coating of housing
- [for aluminum housing]
- Urethane curing type polyester resin powder coating
- Deep sea moss green paint (Munsell 0.6GY3.1/2.0 or its equivalent)
- Epoxy and polyurethane resin solvent coating

Degrees of protection
- IP66/IP67, Type 4X

Cover O-rings
- Buna-N, fluoro-rubber (optional)

Name plate and tag
- 316 SST

Fill fluid
- Silicone oil, Propylene glycol, Fluorinated oil (optional)

Weight
- Flush type
 (3-inch ANSI Class150 flange; without integral indicator, and process connector.)
 General use (fill fluid code B or P): 8.3 kg (18.3 lbs)
 High temperature use (fill fluid code A): 9.0 kg (19.8 lbs)
- Extended type
 (4-inch ANSI Class150 flange, extension length (X2) = 100 mm; without integral indicator, and process connector.)
 General use (fill fluid code B or P): 12.8 kg (28.2 lbs)
 High temperature use (fill fluid code A): 13.5 kg (29.8 lbs)

Add 1.5kg (3.3lb) for Amplifier housing code 2.

< Related Instruments >
- Power Distributor: Refer to GS 01B04T01-02E or GS 01B04T02-02E
- BRAIN TERMINAL: Refer to GS 01C00A11-00E

< Reference >
- FieldMate; Trademark of Yokogawa Electric Corporation.
- Teflon; Trademark of E.I. DuPont de Nemours & Co.
- Hastelloy; Trademark of Haynes International Inc.
- HART; Trademark of the HART Communication Foundation.
- FOUNDATION Fieldbus; Trademark of Fieldbus Foundation.
- PROFIBUS; Registered trademark of Proﬁbus Nutzorganisation e.V., Karlsruhe, Germany.

Other company names and product names used in this material are registered trademarks or trademarks of their respective owners.
MODEL AND SUFFIX CODES

Instruction
The model and suffix codes for EJA210E consist of two parts: a transmitter body section (I) and a flange mounting section (II). This specification sheet introduces these two parts separately. The transmitter body section is shown in one table, and the flange mounting section specifications are listed according to the flange size and the process connection style. First select the model and suffix codes of transmitter body section and then continue on one of the flange mounting section.
I. Transmitter body section

EJA210E - - - - - - - -

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJA210E</td>
<td>- - - - - - - -</td>
<td>Flange mounted differential pressure transmitter</td>
</tr>
</tbody>
</table>

Output signal
- **D** - 4 to 20 mA DC with digital communication (BRAIN protocol)
- **J** - 4 to 20 mA DC with digital communication (HART 5/HART 7 protocol)*1
- **F** - Digital communication (FOUNDATION Fieldbus protocol, refer to GS 01C31T02-01EN)
- **G** - Digital communication (PROFIBUS PA protocol, refer to GS 01C31T04-01EN)
- **Q** - Low Power, 1 to 5 V DC with digital communication (HART 7 protocol)*7

Measurement span (capsule)
- **M** - 1 to 100kPa (4 to 400 inH2O)
- **H** - 5 to 500kPa (20 to 2000 inH2O)

Low pressure side wetted parts material
- **S** - Refer to “Low Pressure Side Wetted Parts Materials” Table below.

Low pressure side process connections
- **0** - without process connector (Rc 1/4 female on the cover flange)
- **1** - with Rc 1/4 female process connector
- **2** - with 1/4 NPT female process connector
- **3** - with 1/2 NPT female process connector
- **4** - with process connector (1/4 NPT female on the cover flange)

Coverflange bolts and nuts material
- **J** - B7 carbon steel
- **G** - 316L SST
- **C** - 660 SST

Installation
- **-9** - Horizontal piping type and left side high pressure

Amplifier housing
- **1** - Cast aluminum alloy
- **3** - Cast aluminum alloy with corrosion resistance properties*2
- **2** - ASTM CF-8M stainless steel*3

Electrical connection
- **0** - G 1/2 female, one electrical connection without blind plugs
- **2** - 1/2 NPT female, two electrical connections without blind plugs
- **4** - M20 female, two electrical connections without blind plugs
- **5** - G 1/2 female, two electrical connections with a blind plug*4
- **7** - 1/2 NPT female, two electrical connections with a blind plug*4
- **9** - M20 female, two electrical connections with a blind plug*4
- **A** - G1/2 female, two electrical connections and a 316 SST blind plug
- **C** - 1/2 NPT female, two electrical connections and a 316 SST blind plug
- **D** - M20 female, two electrical connections and a 316 SST blind plug

Integral indicator
- **D** - Digital indicator*5
- **E** - Digital indicator with the range setting switch (push button)*6
- **N** - None

Flange mounting section
- **-** - Always N

*1: HART 5 or HART 7 is selectable. Specify upon ordering.
*2: Not applicable for electrical connection code 0, 5, 7, and 9.
*3: Not applicable for electrical connections code 0, 5, 7 and 9.
*4: Material of a blind plug; aluminum alloy for code 5 and 9, and SUS304 for code 7.
*5: Not applicable for output signal code G.
*6: Not applicable for output signal code F.
*7: As CE marking is still pending, not applicable for those countries which require CE marking.

The “►” marks indicate the most typical selection for each specification.

All Rights Reserved. Copyright © 2012, Yokogawa Electric Corporation

GS 01C31C01-01EN
June 1, 2017-00
Table. Low Pressure Side Wetted Parts Materials

<table>
<thead>
<tr>
<th>Low pressure side wetted parts material code</th>
<th>Cover flange and process connector</th>
<th>Capsule</th>
<th>Capsule gasket</th>
<th>Drain/Vent plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>S #</td>
<td>ASTM CF-8M *1</td>
<td>Hastelloy C-276 ^2 (Diaphragm) F316L SST, 316L SST (Others)</td>
<td>Teflon-coated 316L SST</td>
<td>316 SST</td>
</tr>
</tbody>
</table>

*1: Cast version of 316 SST. Equivalent to SCS14A.
*2: Hastelloy C-276 or ASTM N10276

The '*' marks indicate the construction materials conform to NACE material recommendations per MR0175 (2003). Please refer to latest standards for details.
II. Flange mounting section (Flush type)

- **Process flange size:** 3-inch (80mm)

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJA210E</td>
<td>- W - - - -</td>
<td>Transmitter body section (I)</td>
</tr>
</tbody>
</table>

Process connection style
- **Flush type**

Flange rating
- **J1**
- **J2**
- **A1**
- **A2**
- **P1**
- **P2**
- **D2**
- **D4**

Flange size
- **3**

Flange material
- **A**
- **B**
- **C**

Gasket contact surface
- **1**
- **2**

Wetted parts material (high pressure side)
- **SW**
- **HW**
- **TW**

Flushing connection ring
- **0**
- **A**
- **B**

Extension
- **0**

Fill fluid
- **-A**
- **-B**
- **-D**
- **-P**

Option codes
- **/** Optional specification

The "►" marks indicate the most typical selection for each specification.

Example: EJA210E-DSM5G-912NN-VA13B1SW00-B/

*1: See Table 3 'Gasket contact surface' on Page 5.

*2: When specified flushing connection ring code A or B, exclusive gasket is provided for transmitter side.

*3: Indicates the process temperature limit of high pressure side. The process temperature limit for low pressure side is –40 to 120°C except fill fluid code -D.

*4: The distance 'S' is extended in 30mm.

*5: In case of wetted parts material code TW (Tantalum), the process temperature limit is –10 to 200°C.

*6: Not applicable for flashing connection ring code A and B.

*7: Users must consider the characteristics of selected wetted parts material and the influence of process fluids. The use of inappropriate materials can result in the leakage of corrosive process fluids and cause injury to personnel and/or damage to plant facilities. It is also possible that the diaphragm itself can be damaged and that material from the broken diaphragm and the fill fluid can contaminate the user’s process fluids. Be very careful with highly corrosive process fluids such as hydrochloric acid, sulfuric acid, hydrogen sulfide, sodium hypochlorite, and high-temperature steam (150°C [302°F] or above). Contact Yokogawa for detailed information of the wetted parts material.

*8: For sanitary use (Propylene glycol) –10 to 120°C

*9: Users must consider the characteristics of selected wetted parts material and the influence of process fluids. The use of inappropriate materials can result in the leakage of corrosive process fluids and cause injury to personnel and/or damage to plant facilities. It is also possible that the diaphragm itself can be damaged and that material from the broken diaphragm and the fill fluid can contaminate the user’s process fluids. Be very careful with highly corrosive process fluids such as hydrochloric acid, sulfuric acid, hydrogen sulfide, sodium hypochlorite, and high-temperature steam (150°C [302°F] or above). Contact Yokogawa for detailed information of the wetted parts material.

*10: Forged version of the material may be used.

*11: Specify always with option code /K2 or /K6.

Please refer to latest standards for details.
II. Flange mounting section (Flush type)

- Process flange size: 2-inch (50mm)

Model Suffix codes Description

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJA210E</td>
<td>-W-</td>
<td>Transmitter body section (I)</td>
</tr>
</tbody>
</table>

Process connection style

- W 2-inch (50mm)

Flange rating

- J1: JIS 10K
- J2: JIS 20K
- A1: ANSI class 150
- A2: ANSI class 300
- P1: JPI class 150
- P2: JPI class 300
- D2: DIN PN10/16
- D4: DIN PN25/40

Flange size

- 2-inch (50mm)

Flange material

- A: JIS S25C
- B: 304 SST *10
- C: 316 SST *10

Gasket contact surface

- 1: Serration (for ANSI flange with wetted parts material WW only)
- 2: Flat (no serration)

Wetted parts material

- HW: [Diaphragm] Hastelloy C-276 *7#, [Others] 316 SST *7#
- TW: [Diaphragm] Hastelloy C-276 *7#, [Others] Tantalum *8

Flushing connection ring

- 0: None
- A: Straight type 1/4 NPT connections *6
- B: Straight type 1/4 NPT connections *6

Extension

- 0: None

Fill fluid

- A: For high temperature use (Silicone oil) –10 to 250°C *4*5
- B: For general use (Silicone oil) –40 to 120°C
- D: For oil prohibited use (Fluorinated oil) *11 –20 to 120°C
- P: For sanitary use (Propylene glycol) –10 to 120°C

Option codes

- [O]: Optional specification

* The "►" marks indicate the most typical selection for each specification.

*1: See Table 3 'Gasket contact surface' on Page 5.

*2: When specified flushing connection ring code A or B, exclusive gasket is provided for transmitter side.

*3: Indicates the process temperature limit of high pressure side.

*4: The process temperature limit for low pressure side is –40 to 120°C except fill fluid code -D.

*5: The distance 'S' is extended in 30mm.

*6: The distance 'S' is extended in 30mm.

*7: In case of wetted parts material code TW (Tantalum), the process temperature limit is –10 to 200°C.

*8: Not applicable for gasket contact surface code 1.

*9: Users must consider the characteristics of selected wetted parts material and the influence of process fluids. The use of inappropriate materials can result in the leakage of corrosive process fluids and cause injury to personnel and/or damage to plant facilities. It is also possible that the diaphragm itself can be damaged and that material from the broken diaphragm and the fill fluid can contaminate the user’s process fluids. Be very careful with highly corrosive process fluids such as hydrochloric acid, sulfuric acid, hydrogen sulfide, sodium hypochlorite, and high-temperature steam (150°C [302°F] or above). Contact Yokogawa for detailed information of the wetted parts material.

*10: Forged version of the material may be used.

*11: Specify always with option code /K2 or /K6.

The '#' marks indicate the construction materials conform to NACE material recommendations per MR0175 (2003). Please refer to latest standards for details.
II. Flange mounting section (Flush type)

- **Process flange size**: 1 1/2-inch (40mm)

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJA210E</td>
<td>- - - - - - - - W - - - - - - -</td>
<td>Transmitter body section (I)</td>
</tr>
<tr>
<td></td>
<td>-W - - - - - - - - -</td>
<td>Flush type</td>
</tr>
<tr>
<td>Flange connection style</td>
<td>J1 - - - - - - - - -</td>
<td>JIS 10K</td>
</tr>
<tr>
<td></td>
<td>J2 - - - - - - - - -</td>
<td>JIS 20K</td>
</tr>
<tr>
<td></td>
<td>A1 - - - - - - - - -</td>
<td>ANSI class 150</td>
</tr>
<tr>
<td></td>
<td>A2 - - - - - - - - -</td>
<td>ANSI class 300</td>
</tr>
<tr>
<td></td>
<td>P1 - - - - - - - - -</td>
<td>JPI class 150</td>
</tr>
<tr>
<td></td>
<td>P2 - - - - - - - - -</td>
<td>JPI class 300</td>
</tr>
<tr>
<td>Flange size</td>
<td>8 - - - - - - - - -</td>
<td>1 1/2-inch (40mm)</td>
</tr>
<tr>
<td>Flange material</td>
<td>A - - - - - - - - -</td>
<td>JIS S25C</td>
</tr>
<tr>
<td></td>
<td>B - - - - - - - - -</td>
<td>304 SST*8</td>
</tr>
<tr>
<td></td>
<td>C - - - - - - - - -</td>
<td>316 SST*8</td>
</tr>
<tr>
<td>Gasket contact surface</td>
<td>1 - - - - - - - - -</td>
<td>Serration (for ANSI flange only)</td>
</tr>
<tr>
<td></td>
<td>2 - - - - - - - - -</td>
<td>Flat (no serration)</td>
</tr>
<tr>
<td>Wetted parts material</td>
<td>WW - - - - - - - - -</td>
<td>[Diaphragm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Others]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hastelloy C-276*6#</td>
</tr>
<tr>
<td></td>
<td></td>
<td>316 SST*8</td>
</tr>
<tr>
<td>Flushing connection ring</td>
<td>C - - - - - - - - -</td>
<td>Reducer type</td>
</tr>
<tr>
<td></td>
<td>D - - - - - - - - -</td>
<td>1/4 NPT connections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>316 SST#</td>
</tr>
<tr>
<td>Extension</td>
<td>0 - - - - - - - - -</td>
<td>None</td>
</tr>
<tr>
<td>Fill fluid</td>
<td>-A - - - - - - - - -</td>
<td>For high temperature use (Silicone oil)</td>
</tr>
<tr>
<td></td>
<td>-B - - - - - - - - -</td>
<td>For general use (Silicone oil)</td>
</tr>
<tr>
<td></td>
<td>-D - - - - - - - - -</td>
<td>For oil prohibited use (Fluorinated oil)*9</td>
</tr>
<tr>
<td></td>
<td>-P - - - - - - - - -</td>
<td>For sanitary use (Propylene glycol)</td>
</tr>
<tr>
<td>Option codes</td>
<td>-C - - - - - - - - -</td>
<td>Optional specification</td>
</tr>
</tbody>
</table>

The “►” marks indicate the most typical selection for each specification.

Example: EJA210E-DM5SG-912NN-WA18B1WWC0-B/

*1: See Table 3 ‘Gasket contact surface’ on Page 5.

*2: When specified flushing connection ring code C or D, exclusive gasket is provided for transmitter side.

*3: Indicates the process temperature limit of high pressure side.

*4: The distance ‘S’ is extended in 30mm.

*5: Not applicable for gasket contact surface code 1.

*6: Hastelloy C-276 or ASTM N10276

*7: Users must consider the characteristics of selected wetted parts material and the influence of process fluids. The use of inappropriate materials can result in the leakage of corrosive process fluids and cause injury to personnel and/or damage to plant facilities. It is also possible that the diaphragm itself can be damaged and that material from the broken diaphragm and the fill fluid can contaminate the user’s process fluids.

*8: Forged version of the material may be used.

*9: Specify always with option code /K2 or /K6.

The '#' marks indicate the construction materials conform to NACE material recommendations per MR0175 (2003).

Please refer to latest standards for details.
II. Flange mounting section (Extended type)

- **Process flange size**: 4-inch (100mm)

Table: EJA210E Model Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJA210E</td>
<td>- - - - - E</td>
<td>Transmitter body section (I)</td>
</tr>
</tbody>
</table>

Flange connection style
- E: Extended type

Flange rating
- J1: JIS 10K
- J2: JIS 20K
- A1: ANSI class 150
- A2: ANSI class 300
- P1: JPI class 150
- P2: JPI class 300
- D1: DIN PN10/16
- D2: DIN PN25/40

Flange size
- 4: 4-inch (100mm)

Flange material
- A: JIS S25C
- B: 304 SST
- C: 316 SST

Gasket contact surface
- 1: Serration (for ANSI flange only)
- 2: Flat (no serration)

Wetted parts material (high pressure side)
- SE: 316L SST

Flushing connection ring
- 0: None

Extension
- 1: Length (X1) = 50mm
- 3: Length (X2) = 100mm
- 5: Length (X3) = 150mm

Fill fluid
- -A: For high temperature use (Silicone oil)
- -B: For general use (Silicone oil)
- -D: For oil prohibited use (Fluorinated oil)
- -P: For sanitary use (Propylene glycol)

Option codes
- /O: Optional specification

The "►" marks indicate the most typical selection for each specification.

Example: EJA210E-DMSSG-912NN-EA1B1SE01-B/

*1: See Table 3 'Gasket contact surface' on Page 5.

*2: Indicates the process temperature limit of high pressure side.

*3: The distance 'S' is extended in 30mm.

*4: Users must consider the characteristics of selected wetted parts material and the influence of process fluids. The use of inappropriate materials can result in the leakage of corrosive process fluids and cause injury to personnel and/or damage to plant facilities. It is also possible that the diaphragm itself can be damaged and that material from the broken diaphragm and the fill fluid can contaminate the user's process fluids. Be very careful with highly corrosive process fluids such as hydrochloric acid, sulfuric acid, hydrogen sulfide, sodium hypochlorite, and high-temperature steam (150°C [302°F] or above). Contact Yokogawa for detailed information of the wetted parts material.

*5: Forged version of the material may be used.

*6: Specify always with option code /K2 or /K6.

The '#' marks indicate the construction materials conform to NACE material recommendations per MR0175 (2003). Please refer to latest standards for details.
II. Flange mounting section (Extended type)

- Process flange size: 3-inch (80mm)

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJA210E</td>
<td>-E------------</td>
<td>Transmitter body section (I)</td>
</tr>
<tr>
<td>Process connection style</td>
<td>-E------------</td>
<td>Extended type</td>
</tr>
<tr>
<td>Flange rating</td>
<td>J1</td>
<td>JIS 10K</td>
</tr>
<tr>
<td></td>
<td>J2</td>
<td>JIS 20K</td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td>ANSI class 150</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>ANSI class 300</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>JPI class 150</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>JPI class 300</td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>DIN PN10/16</td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>DIN PN25/40</td>
</tr>
</tbody>
</table>

| Flange size | 3 | 3-inch (80mm) |

Flange material	A	JIS S25C
	B	304 SST #
	C	316 SST #

| Gasket contact surface | 1 | Kerr (for ANSI flange only) |
| | 2 | Flat (no serration) |

| Wetted parts material (high pressure side) | WE | [Diaphragm] [Others] [Pipe] |
| | | Hastelloy C-276 '48 316 SST # 316 SST # |

| Flushing connection ring | 0 | None |

Extension	1	Length (X1) = 50mm
	3	Length (X1) = 100mm
	5	Length (X1) = 150mm

Fill fluid	-A	For high temperature use (Silicone oil)
	-B	For general use (Silicone oil)
	-D	For oil prohibited use (Fluorinated oil)
	-P	For sanitary use (Propylene glycol)

| Option codes | /D | Optional specification |

The "►" marks indicate the most typical selection for each specification.
Example: EJA210E-DMS5G-912NN-EA13B1WE01-B/D

*1: See Table 3 'Gasket contact surface' on Page 5.
*2: Indicates the process temperature limit of high pressure side.
*3: The process temperature limit for low pressure side is –40 to 120°C except fill fluid code -D.
*4: The distance 'S' is extended in 30mm.
*5: Users must consider the characteristics of selected wetted parts material and the influence of process fluids. The use of inappropriate materials can result in the leakage of corrosive process fluids and cause injury to personnel and/or damage to plant facilities. It is also possible that the diaphragm itself can be damaged and that material from the broken diaphragm and the fill fluid can contaminate the user’s process fluids.

Be very careful with highly corrosive process fluids such as hydrochloric acid, sulfuric acid, hydrogen sulfide, sodium hypochlorite, and high-temperature steam (150°C [302°F] or above). Contact Yokogawa for detailed information of the wetted parts material.

*6: Forged version of the material may be used.

*7: Specify always with option code /K2 or /K6.

The '#' marks indicate the construction materials conform to NACE material recommendations per MR0175 (2003).
Please refer to latest standards for details.
OPTIMAL SPECIFICATIONS (For Explosion Protected type) "◊"

For other agency approvals and marine approvals, please refer to GS 01C25A20-01EN.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
</table>
| Factory Mutual (FM) | FM Explosionproof Approval "◊"¹
Applicable Standard: FM3600, FM3615, FM3810, ANSI/NEMA 250
Explosionproof for Class I, Division 1, Groups B, C and D, Dust-ignitionproof for Class II/III, Division 1,
Groups E, F and G, in Hazardous locations, indoors and outdoors (Enclosure: Type 4X)
"FACTORY SEALED, CONDUIT SEAL NOT REQUIRED." | FF1 |
| | FM Intrinsically safe Approval "◊"¹³
Applicable Standard: FM3600, FM3610, FM3611, FM3810
Intrinsically Safe for Class I, Division 1, Groups A, B, C & D, Class II, Division 1,
Groups E, F & G and Class III, Division 1, Class I, Zone 0, in Hazardous Locations, AEx ia IIC
Nonincendive for Class I, Division 2, Groups A, B, C & D, Class II, Division. 2,
Groups F & G, Class I, Zone 2, Group IIC, in Hazardous Locations
Enclosure: Type 4X, Temp. Class: T4, Amb. Temp.: –60 to 60°C (–75 to 140°F)
Intrinsically Safe Apparatus Parameters
[Groups A, B, C, D, E, F and G] Vmax=30 V, Imax=200 mA, Pmax=1 W, Cl=6 nF, Li=0 µH
[Groups C, D, E, F and G] Vmax=30 V, Imax=225 mA, Pmax=1 W, Cl=6 nF, Li=0 µH | FS1 |
| | Combined FF1 and FS1 "◊"¹³ | FU1 |
| ATEX | ATEX Flameproof Approval "◊"¹³
EN 60079-31:2014
Certificate: KEMA 07ATEX0109 X
II 2G, 2D Ex d IIC T6...T4 Gb (‘Ex db IIIC T6...T4 Gb’ from August 1, 2017), Ex tb IIIC T85°C Db
Degree of protection: IP66/IP67
Amb. Temp. (Tamb) for gas-proof :
T4; –50 to 75°C (–58 to 167°F), T5; –50 to 80°C (–58 to 176°F), T6; –50 to 75°C (–58 to 167°F)
Process Temp. for gas-proof (Tp):
T4; –50 to 120°C (–58 to 248°F), T5; –50 to 100°C (–58 to 212°F), T6; –50 to 85°C (–58 to 185°F)
Max. surface Temp. for dust-proof: T85°C (Tamb: –30 to 75°C, Tp: –30 to 85°C) ² | KF22 |
| | ATEX Intrinsically Safe Approval "◊"¹³
Certificate: DEKRA 11ATEX0228 X
II 1G, 2D Ex ia IIC T4 Ga, Ex ia IIIIC T85°C T100°C T120°C Db
Degree of protection: IP66/IP67
Amb. Temp. (Tamb) for EPL Ga: –50 to 60°C (–58 to 140°F)
Maximum Process Temp. (Tp) for EPL Ga:120°C
Electrical data: Ui=30 V, li=200 mA, Pi=0.9 W, Ci=27.6 nF, Li=0 µH
Amb. Temp. for EPL Db: –30 to 60°C ²
Max. surface Temp. for EPL Db: T85°C (Tp: 80°C), T100°C (Tp: 100°C), T120°C (Tp: 120°C) ² | KS21 |
| | Combined KF22, KS21 and ATEX Intrinsically safe Ex ic "◊"¹³
[ATEX Intrinsically safe Ex ic]
II 3G Ex ic IIC T4 Gc, Ex ia IIIC T85°C T100°C T120°C Db
Ui=30 V, Ci=27.6 nF, Li=0 µH | KU22 |
Item Description

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
</table>
| **Canadian Standards Association (CSA)** | **CSA Explosionproof Approval**
Certificate: 2014354
Applicable Standard: C22.2 No.0, C22.2 No.0.4, C22.2 No.0.5, C22.2 No.25, C22.2 No.29, C22.2 No.60079-0, C22.2 No.60079-9, C22.2 No.61010-1, C22.2 No.61010-2-030
Explosion-proof for Class I, Groups B, C and D.
Dustignition-proof for Class II/III, Groups E, F and G.
When installed in Division 2, "SEAL NOT REQUIRED" Enclosure: Type 4X, Temp. Code: T6...T4
Ex d IIC T6...T4 Enclosure: IP66/IP67
Max. Process Temp.: T4; 120°C(248°F), T5; 100°C(212°F), T6; 105°C(185°F)
Amb. Temp.: –50 to 75°C(–58 to 167°F) for T4, –50 to 80°C(–58 to 176°F) for T5, –50 to 75°C(–58 to 167°F) for T6 | CF1 |
| **CSA Intrinsically safe Approval**
Certificate: 1606623
[For CSA C22.2]
Applicable Standard: C22.2 No.0, C22.2 No.0.4, C22.2 No.25, C22.2 No.94, C22.2 No.157, C22.2 No.213, C22.2 No.61010-1, C22.2 No.60079-0, C22.2 No.61010-2-030
Intrinsically Safe for Class I, Division 1, Groups A, B, C & D, Class II, Division 1, Groups E, F & G, Class III, Division 1, Nonincendive for Class I, Division 2, Groups A, B, C & D, Class II, Division 2, Groups F & G, Class III, Division 1
Enclosure: Type 4X, Temp. Code: T4
Amb. Temp.: –50 to 60°C(–58 to 140°F)
Electrical Parameters: [Intrinsic Safe] Vmax=30V, Imax=200mA, Pmax=0.9W, Ci=10nF, Li=0 µH
[Nonincendive] Vmax=30V, Ci=10nF, Li=0 µH | CS1 |
| **IECEEx Flameproof Approval**
Certificate: IECEx DEK 11.0081X
Ex ia IIC T4, Ex nL IIC T4 Enclosure: IP66/IP67
Amb. Temp.: –50 to 60°C(–58 to 140°F), Max. Process Temp.: 120°C(248°F)
Electrical Parameters: U=30 V, I=200 mA, P=0.9 W, Ci=27.6 nF, Li=0 µH | SU21 |

*1: Applicable for Electrical connection code 2, 4, 7, 9, C and D.
*2: Lower limit of ambient temperature is –15°C (5°F) when /HE is specified.
*3: Not applicable for output signal code Q.
OPTIONAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Painting</td>
<td>Color change</td>
<td>P □</td>
</tr>
<tr>
<td></td>
<td>Amplifier cover only *1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amplifier cover and terminal cover, Munsell 7.5 R4/14</td>
<td></td>
</tr>
<tr>
<td>Coating change</td>
<td>Anti-corrosion coating *2</td>
<td>X2</td>
</tr>
<tr>
<td>316 SST exterior parts</td>
<td>316 SST zero-adjustment screw and setscrews *3</td>
<td>HC</td>
</tr>
<tr>
<td>Fluoro-rubber O-ring</td>
<td>All O-rings of amplifier housing. Lower limit of ambient temperature: −15°C (5°F)</td>
<td></td>
</tr>
<tr>
<td>Lightning protector</td>
<td>Transmitter power supply voltage: 10.5 to 32 V DC (10.5 to 30 V DC for intrinsically safe type.) Allowable current: Max. 6000 A (1×40 µs), Repeating 1000 A (1×40 µs) 100 times Applicable Standards: IEC 61000-4-4, IEC 61000-4-5</td>
<td>A</td>
</tr>
<tr>
<td>Oil-prohibited use</td>
<td>Degrease cleansing treatment</td>
<td>K1</td>
</tr>
<tr>
<td></td>
<td>Degrease cleansing with fluorinated oil filled capsule. *4 Operating temperature: −20 to 80°C</td>
<td>K2</td>
</tr>
<tr>
<td>Oil-prohibited use with dehydrating treatment</td>
<td>Degrease cleansing and dehydrating treatment</td>
<td>K5</td>
</tr>
<tr>
<td></td>
<td>Degrease cleansing and dehydrating treatment with fluorinated oil filled capsule. *4 Operating temperature: −20 to 80°C</td>
<td>K6</td>
</tr>
<tr>
<td>Calibration units</td>
<td>P calibration (psi unit)</td>
<td>D1</td>
</tr>
<tr>
<td></td>
<td>bar calibration (bar unit)</td>
<td>D3</td>
</tr>
<tr>
<td></td>
<td>M calibration (kgf/cm² unit)</td>
<td>D4</td>
</tr>
<tr>
<td>Teflon film</td>
<td>Diaphragm protection from sticky process fluid by FEP Teflon film attached with fluorinated oil. Operation range: 20 to 150°C, 0 to 2 MPa (Not applicable for vacuum service.)</td>
<td>TF1</td>
</tr>
<tr>
<td>Output limits and failure operation</td>
<td>Failure alarm down-scale: Output status at CPU failure and hardware error is −5%, 3.2 mA DC or less for 4 to 20 mA output type, and −5%, 0.8V DC or less for 1 to 5 V output type.</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>Failure alarm down-scale: Output status at CPU failure and hardware error is −5%, 3.2 mA DC or less.</td>
<td>C2</td>
</tr>
<tr>
<td></td>
<td>Failure alarm up-scale: Output status at CPU failure and hardware error is 110%, 21.6 mA or more.</td>
<td>C3</td>
</tr>
<tr>
<td>Gold-plated diaphragm</td>
<td>Inside of isolating diaphragms (fill fluid side) are gold plated, effective for hydrogen permeation.</td>
<td>A1</td>
</tr>
<tr>
<td>Wired tag plate</td>
<td>316 SST tag plate wired onto transmitter</td>
<td>N4</td>
</tr>
<tr>
<td>Material certificate</td>
<td>For Flush type</td>
<td>M0W</td>
</tr>
<tr>
<td></td>
<td>High Pressure side: Process flange, Block</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low Pressure side: Cover flange</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Pressure side: Process flange, Block, Ring</td>
<td>M1W</td>
</tr>
<tr>
<td></td>
<td>Low Pressure side: Cover flange, Process connector</td>
<td>M3W</td>
</tr>
<tr>
<td></td>
<td>High Pressure side: Process flange, Block, Ring</td>
<td>M4W</td>
</tr>
<tr>
<td></td>
<td>Low Pressure side: Cover flange, Process connector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For Extended type</td>
<td>M0E</td>
</tr>
<tr>
<td></td>
<td>High Pressure side: Process flange, Block, Pipe, Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low Pressure side: Cover flange, Process connector</td>
<td>M1E</td>
</tr>
<tr>
<td>Pressure test/Leak test certificate</td>
<td>JIS 10K 2 MPa (290 psi)</td>
<td>T51</td>
</tr>
<tr>
<td></td>
<td>JIS 20K 5 MPa (720 psi)</td>
<td>T54</td>
</tr>
<tr>
<td></td>
<td>ANSI/JPI Class 150 3 MPa (430 psi)</td>
<td>T52</td>
</tr>
<tr>
<td></td>
<td>ANSI/JPI Class 300 8 MPa (1160 psi)</td>
<td>T56</td>
</tr>
<tr>
<td></td>
<td>ANSI/JPI Class 300 7 MPa (1000 psi)</td>
<td>T55</td>
</tr>
</tbody>
</table>

*1: Amplifier cover only
*2: Anti-corrosion coating
*3: 316 SST zero-adjustment screw and setscrews
*4: Degrease cleansing with fluorinated oil filled capsule
*5: Calibration units
*6: Teflon film
*7: Diaphragm protection from sticky process fluid by FEP Teflon film attached with fluorinated oil
*8: Output limits and failure operation
*9: Gold-plated diaphragm
*10: Data configuration at factory
*11: Material certificate
*12: Pressure test/Leak test certificate
*13: Nitrogen (N2) Gas Retention time: one minute
*1: Not applicable for amplifier housing code 2 and 3.
*2: Not applicable with color change option. Not applicable for amplifier housing code 2.
*3: 316 or 316L SST. The specification is included in amplifier code 2.
*4: Applicable only when fill fluid code -D is specified.
*5: The unit of MWP (Max. working pressure) on the name plate of a housing is the same unit as specified by option code D1, D3, and D4.
*6: Applicable for flush type (process connection style code W.)
*7: Applicable for flushing connection ring code 0.
*8: Applicable for output signal code D and J. The hardware error indicates faulty amplifier or capsule.
*9: Applicable for wetted parts material code SW, SE, WW, WE, and HW. Consult Yokogawa in case gold-plated diaphragm is required for low pressure side.
*10: Also see ‘Ordering Information.’
*11: Applicable for Low Pressure Side Process connection code 0 and 5.
*12: Applicable for Low Pressure Side Process connection code 1, 2, 3, and 4.
*13: Applicable for flushing connection ring code A, B, C, and D.
*14: The unit on the certificate is always MPa regardless of selection of option code D1, D3, or D4.
*15: A flushing connection ring will not be applied when conducting the pressure test or leak test.
*16: Applicable for extended type (process connection style code E.)
*17: Pure nitrogen gas is used for oil-prohibited use (option code K1, K2, K5, and K6.)
*18: The 1 to 5 V voltage output corresponding to 4 to 20 mA current output is applied to output signal code Q which is non-compliant to NAMUR NE43.
DIMENSIONS

Flush type
- No ring (Flushing connection ring code 0)

With ring (Flushing connection ring code A, B, C, and D)

Extended type

<table>
<thead>
<tr>
<th>Fill fluid code</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>General use</td>
<td>B, P and D 113(4.45)</td>
</tr>
<tr>
<td>High temperature use</td>
<td>A 143(5.63)</td>
</tr>
</tbody>
</table>

*1: Indicates inside diameter of gasket contact surface.
*2: When option code K1, K2, K5, or K6 is selected, add 15 mm (0.59 inch) to the value in the flange.
*3: When electrical connection code 7 or C is selected, a blind plug is protruded up to 8 mm from the conduit connection.
Process flange size: 4 inch (100 mm)

<table>
<thead>
<tr>
<th>Code</th>
<th>Flange rating</th>
<th>øD</th>
<th>øC</th>
<th>øg</th>
<th>ød</th>
<th>t</th>
<th>Bolt holes</th>
<th>j</th>
<th>k</th>
<th>øA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No.(n) Dia.(øh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>JIS 10K</td>
<td>210</td>
<td>175</td>
<td>155</td>
<td>155</td>
<td>16</td>
<td>8 19 (0.75)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>J2</td>
<td>JIS 20K</td>
<td>225</td>
<td>185</td>
<td>155</td>
<td>155</td>
<td>24</td>
<td>8 23 (0.91)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>A1</td>
<td>ANSI class 150</td>
<td>228.6</td>
<td>190.5</td>
<td>155</td>
<td>155</td>
<td>24</td>
<td>8 22.4 (0.88)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>A2</td>
<td>ANSI class 300</td>
<td>254</td>
<td>220</td>
<td>155</td>
<td>155</td>
<td>32</td>
<td>8 22 (0.87)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>P1</td>
<td>JPI class 150</td>
<td>229</td>
<td>190.5</td>
<td>155</td>
<td>155</td>
<td>24</td>
<td>8 19 (0.75)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>P2</td>
<td>JPI class 300</td>
<td>254</td>
<td>220</td>
<td>155</td>
<td>155</td>
<td>32</td>
<td>8 22 (0.87)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>D2</td>
<td>DIN PN10/16</td>
<td>220</td>
<td>180</td>
<td>155</td>
<td>155</td>
<td>20</td>
<td>8 18 (0.71)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>D4</td>
<td>DIN PN25/40</td>
<td>235</td>
<td>190</td>
<td>155</td>
<td>155</td>
<td>24</td>
<td>8 22 (0.87)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
</tbody>
</table>

Process flange size: 3 inch (80 mm)

<table>
<thead>
<tr>
<th>Code</th>
<th>Flange rating</th>
<th>øD</th>
<th>øC</th>
<th>øg</th>
<th>ød*1</th>
<th>t</th>
<th>Bolt holes</th>
<th>j</th>
<th>k</th>
<th>øA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No.(n) Dia.(øh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>JIS 10K</td>
<td>185</td>
<td>150</td>
<td>120</td>
<td>100</td>
<td>16</td>
<td>8 19 (0.75)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>J2</td>
<td>JIS 20K</td>
<td>200</td>
<td>160</td>
<td>120</td>
<td>100</td>
<td>18</td>
<td>8 19 (0.75)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>A1</td>
<td>ANSI class 150</td>
<td>190.5</td>
<td>152.4</td>
<td>120</td>
<td>100</td>
<td>19</td>
<td>4 19.1 (0.75)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>A2</td>
<td>ANSI class 300</td>
<td>209.6</td>
<td>168.1</td>
<td>120</td>
<td>100</td>
<td>24</td>
<td>8 22 (0.88)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>P1</td>
<td>JPI class 150</td>
<td>190</td>
<td>152.4</td>
<td>120</td>
<td>100</td>
<td>19</td>
<td>4 19 (0.75)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>P2</td>
<td>JPI class 300</td>
<td>210</td>
<td>168.1</td>
<td>120</td>
<td>100</td>
<td>24</td>
<td>8 22 (0.88)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>D2</td>
<td>DIN PN10/16</td>
<td>200</td>
<td>160</td>
<td>120</td>
<td>100</td>
<td>20</td>
<td>8 18 (0.71)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>D4</td>
<td>DIN PN25/40</td>
<td>200</td>
<td>160</td>
<td>120</td>
<td>100</td>
<td>20</td>
<td>8 18 (0.71)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
</tbody>
</table>

Process flange size: 2 inch (50 mm)

<table>
<thead>
<tr>
<th>Code</th>
<th>Flange rating</th>
<th>øD</th>
<th>øC</th>
<th>øg</th>
<th>ød*1</th>
<th>t</th>
<th>Bolt holes</th>
<th>j</th>
<th>k</th>
<th>øA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No.(n) Dia.(øh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>JIS 10K</td>
<td>155</td>
<td>120</td>
<td>100</td>
<td>61</td>
<td>16</td>
<td>4 19 (0.75)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>J2</td>
<td>JIS 20K</td>
<td>165</td>
<td>120</td>
<td>100</td>
<td>61</td>
<td>18</td>
<td>8 19 (0.75)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>A1</td>
<td>ANSI class 150</td>
<td>152.4</td>
<td>120.7</td>
<td>100</td>
<td>61</td>
<td>19</td>
<td>4 19.1 (0.75)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>A2</td>
<td>ANSI class 300</td>
<td>165.1</td>
<td>127.0</td>
<td>100</td>
<td>61</td>
<td>22</td>
<td>8 19.1 (0.75)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>P1</td>
<td>JPI class 150</td>
<td>155</td>
<td>120.7</td>
<td>100</td>
<td>61</td>
<td>19</td>
<td>4 19 (0.75)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>P2</td>
<td>JPI class 300</td>
<td>165</td>
<td>127.0</td>
<td>100</td>
<td>61</td>
<td>22</td>
<td>8 19 (0.75)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>D2</td>
<td>DIN PN10/16</td>
<td>165</td>
<td>125</td>
<td>100</td>
<td>61</td>
<td>18</td>
<td>4 18 (0.71)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
<tr>
<td>D4</td>
<td>DIN PN25/40</td>
<td>165</td>
<td>125</td>
<td>100</td>
<td>61</td>
<td>18</td>
<td>4 18 (0.71)</td>
<td>25</td>
<td>27</td>
<td>96±0.5 (3.78±0.02)</td>
</tr>
</tbody>
</table>

Process flange size: 1 1/2 inch (40 mm)

<table>
<thead>
<tr>
<th>Code</th>
<th>Flange rating</th>
<th>øD</th>
<th>øC</th>
<th>øg</th>
<th>ød*1</th>
<th>t</th>
<th>Bolt holes</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No.(n) Dia.(øh)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>JIS 10K</td>
<td>140</td>
<td>105</td>
<td>86</td>
<td>61</td>
<td>16</td>
<td>4 19 (0.75)</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>J2</td>
<td>JIS 20K</td>
<td>140</td>
<td>105</td>
<td>86</td>
<td>61</td>
<td>18</td>
<td>8 19 (0.75)</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>A1</td>
<td>ANSI class 150</td>
<td>127</td>
<td>98.4</td>
<td>86</td>
<td>61</td>
<td>17.5</td>
<td>4 15.9 (0.63)</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>A2</td>
<td>ANSI class 300</td>
<td>155.4</td>
<td>114.3</td>
<td>86</td>
<td>61</td>
<td>20.6</td>
<td>4 22.4 (0.88)</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>P1</td>
<td>JPI class 150</td>
<td>127</td>
<td>98.4</td>
<td>86</td>
<td>61</td>
<td>17.5</td>
<td>4 16 (0.63)</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>P2</td>
<td>JPI class 300</td>
<td>155</td>
<td>114.3</td>
<td>86</td>
<td>61</td>
<td>20.6</td>
<td>4 22 (0.87)</td>
<td>27</td>
<td>30</td>
</tr>
</tbody>
</table>

*1: Indicates inside diameter of gasket contact surface.
Extension length (X2)

<table>
<thead>
<tr>
<th>Extension code</th>
<th>X2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50 (1.97)</td>
</tr>
<tr>
<td>3</td>
<td>100 (3.94)</td>
</tr>
<tr>
<td>5</td>
<td>150 (5.91)</td>
</tr>
</tbody>
</table>

Terminal Wiring for 1 to 5 V output

- **Power supply terminals**: SUPPLY + ①
- **External indicator (ammeter) terminals**: CHECK + ②
- **Ground terminal**: Ground terminal

*1: When using an external indicator or check meter, the internal resistance must be 10 Ω or less.
*2: Not available for FOUNDATION Fieldbus and PROFIBUS PA communication types.

Terminal Wiring for 4 to 20 mA output, FOUNDATION Fieldbus and PROFIBUS PA communication types

- **Power supply and output terminals**: SUPPLY + ①
- **External indicator (ammeter) terminals**: CHECK + ②
- **Ground terminal**: Ground terminal

*1: When using an external indicator or check meter, the internal resistance must be 10 Ω or less.
*2: Not available for FOUNDATION Fieldbus and PROFIBUS PA communication types.

Terminal Wiring for 1 to 5 V output

- **Power supply terminals**: SUPPLY + ①
- **1 to 5 V DC with HART communication terminals**: VOUT + ②
- **Ground terminal**: Ground terminal

Three or four wire connection. For four wire connection, both supply and signal lines use SUPPLY - terminal.
< Ordering Information > "◊"
Specify the following when ordering

1. Model, suffix codes, and option codes
2. Calibration range and units:
 1) Calibration range can be specified with range value specifications up to 5 digits (excluding any decimal point) for low or high range limits within the range of -32000 to 32000. When reverse range is designated, specify LRV as greater than URV. When square root output mode is specified, LRV must be "0(zero)".
 2) Specify only one unit from the table, ‘Factory setting.’
3. Display scale and units (for transmitters equipped with the integral indicator only)
 Specify either 0 to 100 % or ‘Range and Unit’ for engineering units scale;
 Scale range can be specified with range limit specifications up to 5 digits (excluding any decimal point) for low or high range limits within the range of -32000 to 32000. Unit display consists of 6-digit, therefore, if the specified scaling unit excluding '/' is longer than 6-characters, the first 6 characters will be displayed on the unit display.
4. HART PROTOCOL
 When output signal code is "J", specify the HART protocol revision “5” or “7”.
5. TAG NO (if required)
 Specified characters (up to 16 characters for BRAIN, 22 characters for HART, or 16 characters for /N4 tag) are engraved on the stainless steel tag plate fixed on the housing.
6. SOFTWARE TAG (for HART only, if required)
 Specified characters (up to 32 characters) are set as “Tag” (the first 8 characters) and “Long tag”\(^{*1}\) (32 characters) in the amplifier memory. Use alphanumeric capital letters.
 When the "SOFTWARE TAG" is not specified, specified “TAG NO” is set as “Tag” (the first 8 characters) and “Long tag”\(^{*1}\) (22 characters) in the amplifier memory.
 *1: applicable only when HART 7 is selected.
7. Other factory configurations (if required)
 Specifying option code CA or CB will allow further configuration at factory. Following are configurable items and setting range.
 [CA : For HART communication type]
 1) Descriptor (up to 16 characters)
 2) Message (up to 30 characters)
 3) Software damping (0.00 to 100.00 s)
 [CB : For BRAIN communication type]
 1) Software damping (0.00 to 100.00 s)

< Factory Setting >

<table>
<thead>
<tr>
<th>Tag number</th>
<th>As specified in order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software damping (^{*1})</td>
<td>'2.00 s’ or as specified in order</td>
</tr>
<tr>
<td>Calibration range lower range value</td>
<td>As specified in order</td>
</tr>
<tr>
<td>Calibration range upper range value</td>
<td>As specified in order</td>
</tr>
<tr>
<td>Calibration range units</td>
<td>Selected from mmH2O, mmH2O(68°F), mmAg(^{*2}), mmWG(^{*2}), mmHg, Pa, hPa(^{*2}), kPa, MPa, mbar, bar, gf/cm(^2), kgf/cm(^2), inH2O, inH2O(68°F), inHg, ftH2O, ftH2O(68°F) or psi. (Only one unit can be specified.)</td>
</tr>
<tr>
<td>Display setting</td>
<td>Designated differential pressure value specified in order. (% or user scaled value.)</td>
</tr>
<tr>
<td>Static pressure display range</td>
<td>'0 to 25 MPa' for M and H capsule, absolute value. Measuring low pressure side.</td>
</tr>
</tbody>
</table>

\(^{*1}\): To specify these items at factory, option code /CA or /CB is required.
\(^{*2}\): Not available for HART protocol type.

< Material Cross Reference >

<table>
<thead>
<tr>
<th>ASTM</th>
<th>JIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>316</td>
<td>SUS316</td>
</tr>
<tr>
<td>F316</td>
<td>SUSF316</td>
</tr>
<tr>
<td>316L</td>
<td>SUS316L</td>
</tr>
<tr>
<td>F316L</td>
<td>SUSF316L</td>
</tr>
<tr>
<td>304</td>
<td>SUS304</td>
</tr>
<tr>
<td>F304</td>
<td>SUSF304</td>
</tr>
<tr>
<td>660</td>
<td>SUH660</td>
</tr>
<tr>
<td>B7</td>
<td>SNB7</td>
</tr>
<tr>
<td>CF-8M</td>
<td>SCS14A</td>
</tr>
</tbody>
</table>