Overview
The UT35A/MDL and UT32A/MDL controllers can be mounted in an enclosure. A ladder sequence function is included as standard. The short depth of the controller helps save space in an enclosure. The UT35A and UT32A also support open networks such as Ethernet communication.

The UT35A and UT32A have a Panel mounting type (without option code /MDL). For more details, please see General Specification GS 05P01D31-01EN.

Features
• Simple panel surface
 Mounting the controller in an enclosure simplifies the panel surface.
• Ladder sequence function is included as standard.
 This function allows for creating a simple sequence control. Dedicated LL50A Parameter Setting Software (sold separately) allows for performing programming using a ladder language.
• Various built-in open network functions such as Ethernet are available.
 Easy connection with various vendors’ PLCs is possible. (UT32A support CC-Link and RS485 communication only.)
• Quick setting function
 Setting only the minimum necessary parameters for operation is possible.
• Equipped with a multitude of functions
 Universal I/O and retransmission output are included as standard. PID control, heating/cooling control, etc. are available.
• LL50A Parameter Setting Software (sold separately)
 The parameters and ladder programs of UTAdvanced controller can be built from a PC using this software. It makes data management even easier.

Control Computation Function
(1) Types of control
• PID control
• ON/OFF control
• Two-position two-level control (*4)
• Heating and cooling control (*4)
 *4: Selectable for heating and cooling control

(2) Control Computation Function
(a) Target setting point and the number of PID parameter groups
 Respectively, four sets of target setpoints, alarm setpoints, and PID parameters can be set.
(b) Selecting the PID parameter group
 The following PID parameter groups can be selected.
 • Target setpoint number (SPNO) (The PID number can be set arbitrarily.)
 • Measured input zone PID
 • Target setpoint zone PID
 • Reached target setpoint zone PID
(c) Auto-tuning
 • Tuning results can be selected from two options, Normal or Stable.
 • Tuning output limit can be set. (It cannot be used in heating/cooling control.)
 (d) “Super” function: Overshoot-suppressing function
 (e) “Super 2” function: Hunting-suppressing function
 (f) STOP preset output function
 (g) Input ERROR preset output function
 (h) MANUAL preset output function

(3) Operation Mode Switching

<table>
<thead>
<tr>
<th>Operation mode switching</th>
<th>AUTO/MANUAL and RUN/STOP switching</th>
<th>REMOTE/LOCAL switching (only model with communication option)</th>
</tr>
</thead>
</table>

Control Specifications
(1) Control Mode
Single-loop control
(2) Control period
200 ms

Table of Number of Inputs and Outputs

<table>
<thead>
<tr>
<th>Model and suffix code (See the model code)</th>
<th>Number of analog input points</th>
<th>Number of analog output points (*)</th>
<th>Number of contact input points</th>
<th>Number of contact output points (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT35A -×0×/MDL</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UT35A -×2×/MDL</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UT32A -×0×/MDL</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UT32A -×1×/MDL</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

*1: Excluding control output
*2: The analog output point can be used as either cooling control output or transmission output.
*3: Excluding control output relays
Control Parameter Setting Range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional band</td>
<td>0.1 to 999.9%</td>
</tr>
<tr>
<td>Integral time</td>
<td>1 to 6000 sec. or OFF</td>
</tr>
<tr>
<td>Derivative time</td>
<td>1 to 6000 sec. or OFF</td>
</tr>
<tr>
<td>ON/OFF control hysteresis</td>
<td>0.0 to 100.0% of meas.</td>
</tr>
<tr>
<td>Preset output value</td>
<td>-0.0 to 105.0% (off)</td>
</tr>
<tr>
<td>High/low output limiter</td>
<td>0.1 to 100.0%</td>
</tr>
<tr>
<td>Tight shut function</td>
<td>0.1 to 100.0%/sec. OFF</td>
</tr>
<tr>
<td>Rate-of-change limiter of out.</td>
<td>0.1 to 100.0%/sec. OFF</td>
</tr>
</tbody>
</table>

Alarm Functions
- **Types of Alarm**
 - Measured value alarm
 - Deviation alarm
 - Rate-of-change alarm
 - Setpoint alarm
 - Output alarm
 - Other alarms

- **Alarm Functions**
 - Alarm stand-by action
 - Alarm latch (forced reset) function
 - Alarm hysteresis
 - Alarm ON/OFF delay timer

- **Alarm Settings**
 - Number of alarm settings: 4
 - Number of alarm output points: Up to 8 (differs by model code)

Contact I/O Function
This function allows for allocating the input error condition, operation condition, alarm condition or other conditions to the contact input and contact output.

- **Contact Input**
 - AUTO/MANUAL switching
 - REMOTE/LOCAL switching (only model with communication option)
 - STOP/START switching
 - Switching to AUTO
 - Switching to MANUAL
 - Switching to REMOTE (only model with communication option)
 - Switching to LOCAL (only model with communication option)
 - AUTO-TUNING START/STOP switching
 - SP number specification
 - PID number specification
 - Manual preset output number specification

- **Contact Output**
 - Alarms 1 through 4
 - Status output

Ladder Sequence Function

(1) Number of I/O Points

<table>
<thead>
<tr>
<th>Model</th>
<th>UT35A/MDL</th>
<th>UT32A/MDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of digital input points</td>
<td>Up to 7</td>
<td>Up to 2</td>
</tr>
<tr>
<td>Number of digital output points</td>
<td>Up to 6</td>
<td>Up to 3</td>
</tr>
</tbody>
</table>

This is limited by the number of contact I/O signal points. (See the model code.)

(2) Types of Command

<table>
<thead>
<tr>
<th>Command Types</th>
<th>Number of commands</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>13</td>
<td>Load, AND, OR, Timer, Counter, etc.</td>
</tr>
<tr>
<td>Application</td>
<td>73</td>
<td>Comparison, reverse, addition/ subtraction/multiplication/ division, logic operation, hysteresis, etc.</td>
</tr>
</tbody>
</table>

(3) Sequence Device

<table>
<thead>
<tr>
<th>Device</th>
<th>Types of device</th>
<th>Number of points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input relay</td>
<td></td>
<td>7 (max)</td>
</tr>
<tr>
<td>Output relay</td>
<td></td>
<td>8 (max)</td>
</tr>
<tr>
<td>Internal device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M relay (bit)</td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>DAT register (data)</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>P register (parameter)</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>K register (constant)</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Special device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special relay (bit data)</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Process data and process relay can be used besides the above-mentioned.

(4) Program capacity

Max Program capacity: 300 steps *

*: Available number of steps differs according to the parameters and using command.

(5) Ladder computation period

Ladder computation period is the same as control period.
Communication Function

<table>
<thead>
<tr>
<th>Function</th>
<th>Method</th>
<th>Interface</th>
<th>Targets</th>
<th>Max connection</th>
<th>Communication Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modbus/TCP</td>
<td>Server</td>
<td>Ethernet</td>
<td>PLC and others</td>
<td>2 connections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slave</td>
<td>RS-485</td>
<td>PLC and others</td>
<td>Number of nodes: 126</td>
<td></td>
</tr>
<tr>
<td>CC-Link</td>
<td>Slave</td>
<td>RS-485</td>
<td>PLC and others</td>
<td>Number of nodes: 42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slave</td>
<td>RS-485</td>
<td>UT75A, UT55A, UT52A, UT35A, UT32A, UP55A, UP35A</td>
<td>31 Units (Main Controller is included.)</td>
<td></td>
</tr>
<tr>
<td>DeviceNet</td>
<td>Slave</td>
<td>RS-485</td>
<td>PLC and others</td>
<td>Number of nodes: 64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slave</td>
<td>RS-485</td>
<td>UT75A, UT55A, UT52A, UT35A, UT32A, UP55A, UP35A</td>
<td>31 Units (Main Controller is included.)</td>
<td></td>
</tr>
<tr>
<td>Peer to peer</td>
<td>Multi-drop (2 wire only)</td>
<td>RS-485</td>
<td>UT75A, UT55A, UT52A, UT35A, UT32A, UP55A, UP32A</td>
<td>Read/Write: 4 units</td>
<td>Read only : 28 units</td>
</tr>
<tr>
<td>PC link</td>
<td>Slave</td>
<td>RS-485</td>
<td>PC and others</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1: UT digital indicating controller, signal conditioner JUXTA, Power monitor POWERCERT can be connected.
*2: UT digital indication controllers can be connected.
*3: Maximum number of transactions: 1 (per a connection)

Physical Interface

Ethernet
- Standard: IEEE802.3 (10BASE-T, 100BASE-TX)
- Max segment length: 100m
- Max. Connecting Configuration: Cascade Max. 4 level (10BASE-T), Max. 2 level (100BASE-TX)

RS-485
- Standard: EIA RS-485
- Communication method: Two-wire half-duplex or four-wire half-duplex, start-stop synchronization, and non-procedural
- Baud rate: 600, 1200, 2400, 4800, 9600, 19200 or 38400bps, Peer to peer communication is fixed at 19200bps
- Maximum communication distance: 1200m

PROFIBUS-DP
- Standard: Field bus (IEC61158)
- Corresponding version: DP V0
- Baud rate: 9.6k, 19.2k, 45.45k, 93.75k, 187.5k, 0.5M, 1.5M, 3M, 6M, 12M, AUTO
- Communication distance: 1200m (9.6k to 93.75k), 1000m (187.5k), 400m (0.5M), 200m (1.5M), 100m (3M to 12M)

*3: AUTO automatically sets the baud rate to that of the host controller (PROFIBUS-DP master).

CC-Link
- Standard: Field bus (IEC61158)
- Supported version: Remote device (Ver.1.10, Ver.2.00)
- Baud rate: 156k, 625k, 2.5M, 5M, 10M bps
- Transmission distance: 1.2km (156k bps), 600m (625k bps), 200m (2.5M bps), 150m (5M bps), 100m (10M bps)
- When using optical repeater: 7.6 km (156k) to 4.3 km (10M)

DeviceNet
- Field bus (IEC61158)
- Baud rate: 125k, 250k, 500k bps
- Transmission distance: 500m (125k bps), 250m (250k bps), 100m (500k bps)
Hardware Specifications

Display Specifications
The controller status can be verified with the LED.

<table>
<thead>
<tr>
<th>Status</th>
<th>LED</th>
<th>Lit/Blinks</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Green</td>
<td>Lit</td>
<td>-</td>
</tr>
<tr>
<td>Communication error</td>
<td>Green</td>
<td>Blinks</td>
<td>-</td>
</tr>
<tr>
<td>Instrument failure</td>
<td>Red</td>
<td>Lit</td>
<td>Parameter error/ Hardware failure/Ladder program corruption.</td>
</tr>
<tr>
<td>Input error</td>
<td>Red</td>
<td>Blinks</td>
<td>sensor burnout, input over</td>
</tr>
</tbody>
</table>

Universal Input Specifications
- Number of input points: 1
- Types of input, instrument range, and measurement accuracy (see the table below)

<table>
<thead>
<tr>
<th>Types of input</th>
<th>Instrument range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>-270.0 to 1370.0°C</td>
<td>±0.1% of instrument range ± 1 digit for less than 0°C</td>
</tr>
<tr>
<td>J</td>
<td>-200.0 to 1200.0°C</td>
<td>±0.2% of instrument range ± 1 digit for less than 0°C</td>
</tr>
<tr>
<td>T</td>
<td>0.0 to 400.0°C</td>
<td>±0.15% of instrument range ± 1 digit for 400°C or more</td>
</tr>
<tr>
<td>S</td>
<td>0.0 to 1700.0°C</td>
<td>±0.15% of instrument range ± 1 digit</td>
</tr>
<tr>
<td>R</td>
<td>0.0 to 1700.0°C</td>
<td>±0.25% of instrument range ± 1 digit</td>
</tr>
<tr>
<td>N</td>
<td>-200.0 to 1300.0°C</td>
<td>±0.1% of instrument range ± 1 digit for less than 0°C</td>
</tr>
<tr>
<td>E</td>
<td>-270.0 to 1000.0°C</td>
<td>±0.1% of instrument range ± 1 digit for less than 0°C</td>
</tr>
<tr>
<td>L</td>
<td>-200.0 to 1300.0°C</td>
<td>±0.1% of instrument range ± 1 digit for less than 0°C</td>
</tr>
<tr>
<td>U</td>
<td>0.0 to 400.0°C</td>
<td>±0.1% of instrument range ± 1 digit for less than 0°C</td>
</tr>
<tr>
<td>W *1</td>
<td>0.0 to 2300.0°C</td>
<td>±0.2% of instrument range ± 1 digit</td>
</tr>
<tr>
<td>Platinum 25</td>
<td>0.0 to 1390.0°C</td>
<td>±0.1% of instrument range ± 1 digit</td>
</tr>
<tr>
<td>PR20-40</td>
<td>0.0 to 1900.0°C</td>
<td>±0.1% of instrument range ± 1 digit for less than 0°C</td>
</tr>
<tr>
<td>W5F</td>
<td>0.0 to 2000.0°C</td>
<td>±0.2% of instrument range ± 1 digit</td>
</tr>
<tr>
<td>Resistance-temperature detector (RTD) 3-wire</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JPt100</td>
<td>-200.0 to 500.0°C</td>
<td>±0.1% of instrument range ± 1 digit</td>
</tr>
<tr>
<td>Pt100</td>
<td>-150.0 to 150.0°C</td>
<td>±0.1% of instrument range ± 1 digit</td>
</tr>
</tbody>
</table>

The accuracy is that in the standard operating conditions: 23 ±2°C, 55 ±10%RH, and power frequency at 50/60 Hz.

*1: ±0.3°C and ±1 digit in the range between 0 and 100°C ±0.5°C and ±1 digit in the range between -100 and 200°C

*2: W-5% Re/W-26% Re (Hoskins Mfg.Co.), ASTM E988

- Applicable standards: JIS, IEC and DIN (ITS-90) for thermocouples and resistance-temperature detectors (RTD)
- Input sampling period: Synchronized to control period
• Burnout detection
 Upscale and downscale of function, and OFF can be specified for the standard signal of thermocouple and resistance-temperature detector (RTD). For integrated signal input, 0.1 V or 0.4 mA or less is judged as a burnout.
• Input bias current: 0.05 μA (for thermocouple and resistance-temperature detector (RTD))
• Resistance-temperature detector (RTD) measured current: About 0.16 mA
• Input resistance
 1 MΩ or more for thermocouple/mV input
 About 1 MΩ for voltage input
 About 250 Ω for current input (with built-in shunt resistance)
• Allowable signal source resistance
 250 Ω or less for thermocouple/mV input
 Effect of signal source resistance: 0.1 μV/Ω or less
 2 kΩ or less for DC voltage input
 Effect of signal source resistance: about 0.01%/100 Ω
• Allowable wiring resistance
 Up to 150 Ω per line for resistance-temperature detector (RTD) input (conductor resistance between the three lines shall be equal)
 Effect of wiring resistance: ±0.1°C/10 Ω
• Allowable input voltage/current
 ±10 V DC for thermocouple/mV/mA or resistance-temperature detector (RTD) input
 ±20 V DC for V input
 ±40 mA DC for mA input
• Noise reduction ratio
 40 dB or more (at 50/60 Hz) in normal mode
 120 dB or more (at 50/60 Hz) in common mode
• Reference junction compensation error
 ±1.0°C (15 to 35°C)
 ±1.5°C (-10 to 5°C and 35 to 50°C)

Contact Input Specifications
• Number of points: 2 points (standard)
 For the maximum number of points, see the model and suffix code table.
• Input type: no-voltage contact input or transistor contact input
• Input contact capacity: 12 V DC, 10 mA or more
 Be sure to use a contact with a minimum ON current of 1 mA or less
• ON/OFF detection
 For no-voltage contact input:
 Contact resistance 1 kΩ or less in ON state
 Contact resistance 50 kΩ or more in OFF state
 Transistor contact input:
 2 V or less in ON state
 Leak current 100 μA or less in OFF state
• Status detection minimum hold time: control period + 50 ms
• Application: SP switching, operation mode switching, event input

Analog Output Specifications
• Number of points
 Control output (heating-side output): 1 point (standard), which is shared with transmission output
 Cooling-side output: 1 point, which is shared with transmission output
• Output functions
 Current output or voltage pulse output
• Current output
 4 to 20 mA DC or 0 to 20 mA DC/load resistance 600 Ω or less
• Current output accuracy
 ±0.1% of span (however, ±5% of span for 1 mA or less)
 The accuracy is that in the standard operating conditions: 23 ±2°C, 55 ±10%RH, and power frequency at 50/60 Hz
• Voltage pulse output
 Application: time proportional output
 ON voltage: 12 V or more/load resistance of 600 Ω or more
 OFF voltage: 0.1 V DC or less
 Time resolution: 10 ms or 0.1% of output value, whichever is larger

Retransmission Output Specifications
• Number of points: 1 point (standard), which is shared with 15 V DC loop power supply
 Additional 1 points when analog control output are not used
• Output function: current output
 4 to 20 mA DC or 0 to 20 mA DC/load resistance 600 Ω or less
• Current output accuracy (conversion accuracy from PV value on the set scale): ±0.1% of span (however, ±5% of span for 1 mA or less)
 The accuracy is that in the basic operating conditions: 23 ±2°C, 55 ±10%RH, and power frequency at 50/60 Hz
 This is not conversion accuracy through input and output but the performance of transmission output itself.

15V DC Loop Power Supply Specifications
• Number of points: 1 point (standard), which is shared with retransmission output
 Control output (1 point) can also be used.
• Supply voltage: 14.5 to 18.0 V DC
• Maximum supply current: about 21 mA (with short-circuit current limiting circuit)

Step Response Time Specifications
Within 1 s
(Response time at 63% of transmission output when a change is made stepwise in the range between 10 and 90% of input span)

Relay Contact Output Specifications
• Types of contact and number of points
 Control relay output: one 1c-contact point
 Control output of heating and cooling control: 2, 1a-contact points
 Alarm output: 3 1a-contact points (Common is separated)
• Contact rating
 1c-contact: 3 A at 250 V AC or 3 A at 30 V DC (resistance load)
 1a-contact:
 For alarm output: 1 A at 240 V AC or 1 A at 30 V DC (resistance load)
 For output of heating and cooling control relay output: 3 A at 240 V AC or 3 A at 30 V DC (resistance load)
* The control output should always be used with a load of 10 mA or more.
 The alarm output should always be used with a load of 1 mA or more.
• Application: time proportional output, alarm output, FAIL output, etc.
• Time resolution for control output: 10 ms or 0.1% of output value, whichever is larger

Transistor Contact Output Specifications
• Number of points: see the model and suffix code table
• Output form: open collector (sink current)
• Output contact capacity: Up to 24 V DC, 50 mA
• Output time resolution: min 200 ms
• Application: alarm output, FAIL output, etc.

Heater Break Alarm Specifications (for /HA Option)
• Function: Measures the heater current using an external current transformer (CT) and generates a heater break alarm when the measured value is less than the disconnection detection value.
• Number of input points: 2 points
• Number of output points: 2 points (transistor contract output)
• CT input resistance: about 9.4 Ω
• CT input range: 0.0 to 0.1 Arms (0.12 Arms or more cannot be applied)
• Heater current alarm setting range: OFF, 0.1 to 300.0 Arms
• Heater current measured value display range: 0.0 to 360.0 Arms
 *: The CT ratio can be set. CT ratio setting range: 1 to 3300
• Recommended CT: CT from URD Co. Ltd.
 CTL-6-S-H: CT ratio 800, measurable current range: 0.1 to 80.0 Arms
 CTL-12L-30: CT ratio 3000, measurable current range: 0.1 to 180.0 Arms
• Heater current measurement period: 200 ms
• Heater current measurement accuracy: ±5% of CT input range span ±1 digit (CT error is not included)
• Heater current detection resolution: Within 1/250 of CT input range span
• Disconnection detection ON time: Minimum 200 ms.
 (for time proportional output)

24 V DC Loop Power Supply Specifications (for /LP Option)
• Application: Power is supplied to the 2-wire transmitter.
• Supply voltage: 21.6 to 28.0 V DC
• Rated current: 4 to 20 mA DC
• Maximum supply current: About 30 mA (with short-circuit current limiting circuit)

Maintain Port Specifications
The maintenance port is used to connect a dedicated cable when using the LL50A Parameter Setting Software (sold separately). Through this port, you can set controller parameters, download ladder programs, and so on.

For details, see the LL50A General Specifications (GS05P05A01-01EN).

Safety and EMC Standards
• Safety:
 Compliant with IEC/EN 61010-1 (CE), IEC/EN 61010-2-201 (CE), IEC/EN 61010-2-030 (CE), approved by CAN/CSA C22.2 No. 61010-1 (CSA), approved by UL 61010-1.
 Installation category: II
 Pollution degree: 2
 Measurement category: I (CAT I) (UL, CSA)
 O (Other) (CE)
 Rated measurement input voltage: Max. 10 V DC
 Rated transient overvoltage: 1500 V (*)
 *: This is a reference safety standard value for measurement category I of CSA/UL 61010-1, and for measurement category O of IEC/EN 61010-2-030. This value is not necessarily a guarantee of instrument performance.
• EMC standards:
 Compliant with
 CE marking
 EN 61326-1 Class A, Table 2 (For use in industrial locations),
 EN 61326-2-3
 *: The instrument continues to operate at a measurement accuracy of within ±20% of the range during testing.
 EN 55011 Class A, Group 1
 EN 61000-3-2 Class A
 EN 61000-3-3
 EMC Regulatory Arrangement in Australia and New Zealand
 EN 55011 Class A, Group 1
 • KC marking: Electromagnetic wave interference prevention standard, electromagnetic wave protection standard compliance
Power Supply Specifications and Isolation
• Power supply
 Rated voltage: 100 to 240 V AC (+10%/-15%), 50/60 Hz
 24 V AC/DC (+10%/-15%) (When the /DC option is specified)
• Power consumption: UT35A/MDL: 18 VA (For the /DC option. 24 V DC: 9 VA, 24 V AC: 14 VA)
 UT32A/MDL: 15 VA (For the /DC option. 24 V DC: 7 VA, 24 V AC: 11 VA)
• Storage: Nonvolatile memory
• Allowable power interruption time: 20 ms (at 100 V AC)
• Withstanding voltage
 2300 V AC for 1 minute between primary and secondary terminals (UL, CSA)
 3000 V AC for 1 minute between primary and secondary terminals (CE)
 1500 V AC for 1 minute between primary terminals
 500 V AC for 1 minute between secondary terminals
 (Primary terminals = Power (*) and relay output terminals, Secondary terminals = Analog I/O signal terminals, contact input terminals, communication terminals, and functional grounding terminals.)
 *: Power terminals for 24 V AC/DC models are the secondary terminals.
• Insulation resistance
 Between power supply terminals and a grounding terminal: 20 MΩ or more at 500 V DC
• Isolation specifications

Transportation and Storage Conditions
• Temperature: -25 to 70°C
• Temperature change rate: 20°C per hour or less
• Humidity: 5 to 95%RH (no condensation)

Effects of Operating Conditions
• Effect of ambient temperature
 For voltage or TC input:
 ±1 μV/°C or ±0.01% of F.S. (instrument range)/°C, whichever is greater
 For RTD input:
 ±0.05°C/°C (ambient temperature) or less
 For current input:
 ±0.01% of F.S. (instrument range)/°C
 For analog output:
 ±0.02% of F.S./°C or less
• Effect of power supply fluctuation:
 For analog input: ±0.05% of F.S. (instrument range) or less
 For analog output: ±0.05% of F.S. or less
 (Each within rated voltage range)

Environmental Conditions
Normal operating conditions
• Ambient temperature: -10 to 50°C
 If the CC-Link option is specified, 0 to 50 °C for UT35A/MDL; 0 to 40 °C for UT32A/MDL.
 (side-by-side mounting: 0 to 50 °C for UT55A/MDL; 0 to 40 °C for UT52A/MDL)
• Ambient humidity: 20 to 90% RH (no condensation)
• Magnetic field: 400 A/m or less
• Continuous vibration (at 5 to 9 Hz) Half amplitude of 1.5 mm or less
 (at 9 to 150 Hz) 4.9 m/s² or less, 1 oct/min for 90 minutes each in the three axis directions
• Rapid vibration: 14.7 m/s², 15 s or less
• Impact: 98 m/s² or less, 11 msec.
• Installation altitude: 2,000 m or less above sea level
• Warm-up time: 30 minutes or more after the power is turned on
• Start-up time within 10 s
Block Diagram

Single Loop Control

- **PV input**
- **Input type**
 - **PV**
 - **SP**
- **Input scale**
 - **MIN**
 - **MAX**
 - **SP**
 - **DI**
 - **DIO**

Input ladder calculation program (signal goes to the control computation as is when without ladder program). For ladder program, see the LL50A Parameters Setting Software User’s Manual.

- **Control computation**
 - **Output limiter**
 - **Manual operation**
 - **Manual preset output**
 - **Input error preset output**
 - **Preset output**
 - **AUTO (ON)/MAN (OFF) switch**
 - **STOP (ON)/RUN (OFF) switch**
 - **LOCAL/REMOTE**

Output ladder calculation program (signal goes to the output as is when without ladder program). For ladder program, see the LL50A Parameters Setting Software User’s Manual.

- **Output terminal assignment**
 - **Output terminal assignment output**
 - **Output terminal assignment output**
 - **Output terminal assignment output**

Communication

- **Data base communication**
 - **SD**
 - **FL**
 - **CMT**
 - **ALG**

Output

- **SP NO**
- **SP**
- **RT**
- **RBS**
- **SPH, SPL**
- **EPO**
- **OH, OL**
- **OLMT**
- **PO**
- **S/R**
- **MPON**
- **OT**

Alarm

- **Alarm 1** (PV high limit)
- **Alarm 2** (PV low limit)
- **Alarm 3** (PV high limit)

Other output terminals (other current output terminals can be used as retransmission output).

- **For option code /LP**
 - **OUT retransmission output**
 - **RET retransmission output**

DI2

- **DI1**

DI1

- **DI2**

Terminal Parameter Function

- **Analog signal**
 - **Contact signal**

Legend

- **Terminal**
 - **Parameter**
 - **Function**

Current or voltage pulse

- **Current when retransmission output**

Current

- **Current when retransmission output**

Current

- **Current when retransmission output**

Alarm

- **Alarm 1** (PV high limit)
- **Alarm 2** (PV low limit)
- **Alarm 3** (PV high limit)

Alarm

- **Alarm 1** (PV high limit)
- **Alarm 2** (PV low limit)
- **Alarm 3** (PV high limit)

Alarm

- **Alarm 1** (PV high limit)
- **Alarm 2** (PV low limit)
- **Alarm 3** (PV high limit)

Alarm

- **Alarm 1** (PV high limit)
- **Alarm 2** (PV low limit)
- **Alarm 3** (PV high limit)

Alarm

- **Alarm 1** (PV high limit)
- **Alarm 2** (PV low limit)
- **Alarm 3** (PV high limit)

Alarm

- **Alarm 1** (PV high limit)
- **Alarm 2** (PV low limit)
- **Alarm 3** (PV high limit)

Alarm

- **Alarm 1** (PV high limit)
- **Alarm 2** (PV low limit)
- **Alarm 3** (PV high limit)

Alarm

- **Alarm 1** (PV high limit)
- **Alarm 2** (PV low limit)
- **Alarm 3** (PV high limit)

Alarm

- **Alarm 1** (PV high limit)
- **Alarm 2** (PV low limit)
- **Alarm 3** (PV high limit)
Terminal Arrangement

Terminal Arrangement for UT35A/MDL Single Loop Control

Control output
- Terminal area: E4, E3
- Factory default: Type 1 = relay

PV input
- Terminal area: E1
- Factory default: Type 1 = undefined

Current/voltage pulse output
- Terminal area: E3
- 0-20 mA DC, 4-20 mA DC, Voltage pulse (12V)

DI (Equipped as standard)
- Terminal area: E4
- Contact rating: 12 V DC, 10 mA or more

DI2
- Terminal area: E4
- AUTO when DI1 = ON
- MAN when DI1 = OFF
- STOP when DI2 = ON
- RUN when DI2 = OFF

5 V DC power supply
- Terminal area: E4
- Option code: DC

24 V AC/DC power supply
- Terminal area: E4
- Option code: DC

240 V AC power supply
- Terminal area: E4
- Option code: AC

100-240 V AC power supply
- Terminal area: E4
- Option code: AC

Heating/cooling control output
- Terminal area: E4
- Factory default: Control output is relay

Coming-side control output
- Terminal area: E4
- Factory default: 4-20 mA DC

Contact output
- Terminal area: E4
- Factory default: PV input type is undefined

Latched triggering
- Terminal area: E4
- Factory default: Type 1 = undefined

Internal power supply
- Terminal area: E4
- Factory default: 12 V DC

Contact output
- Terminal area: E4
- Factory default: Control output is relay

Relay contact rating
- 240 V AC, 3 A
- 30 V DC, 3 A (resistance load)

External contact output
- Terminal area: E4
- Factory default: PV retransmission

Factory default
- Current output range can be changed.

Current/voltage pulse output
- Terminal area: E3
- 0-20 mA DC, 4-20 mA DC, Voltage pulse (12V)

Internal power supply
- Terminal area: E4
- Option code: AC

Relay contact rating
- 240 V AC, 3 A
- 30 V DC, 3 A (resistance load)

24 V AC/DC power supply
- Terminal area: E3
- Option code: DC

100-240 V AC power supply
- Terminal area: E3
- Option code: AC

Heating/cooling relay contact output
- Terminal area: E3
- 240 V AC, 3 A
- 30 V DC, 3 A (resistance load)

Function can be assigned to the terminals with no function.
Terminal Arrangement for UT32A/MDL Single Loop Control

Control output
- OUT (Suffix code: Type 1=-0)
 - Factory default: Control output in relay
- Heater/cooling control output
 - OUT2 (Suffix code: Type 1=-2)

Power supply
- 24 V AC/DC power supply
- Option code /DC
- 24 V DC loop power supply
- Option code /LP

Retransmission output
- RET (Equipped as standard)
 - Can be used for 15 V DC loop power supply when not used for retransmission output.

Cooling-side control output
- RET/OUT2 (Suffix code: Type 1=-2)
 - Can not be used for retransmission output or 15 V DC loop power supply when current/voltage pulse output is used for control output.

Contact input
- DI (Equipped as standard)
 - Factory default: DI1=OFF, DI2=OFF

Contact output
- OUT (Suffix code: Type 1=-0 or -2)
 - Can be used for retransmission output or 15 V DC loop power supply when current/voltage pulse output is used for control output.

RS-485 communication
- RS485 (Suffix code: Type 2=1)
- RS485/LPS24 (Suffix code: Type 2=1 and option code LP)

24 V DC loop power supply
- LPS24 (Suffix code: Type 2=0 and option code LP)

CC-Link communication with Modbus master
- PSB (Suffix code: Type 3=3)
- RS485 and RS485/LPS24

PV input
- Equipment (Type 1=-0 or -2)

Heater contact
- Electrical break alarm
- Heater break alarm

Contact rating
- 240 V AC, 1 A
- 250 V AC, 3 A

Voltage (mV, V)
- Input: 0-20 mA DC
- Output: 4-20 mA DC

Current/voltage pulse output
- Maximum: 21 mA DC
- 14.5-18.0 V DC

Current output
- Default: 4-20 mA DC
- Range can be changed.

Retransmission output
- Can be used for 15 V DC loop power supply when current/voltage pulse output is not used for control output.

Option code
- Type 1=-2
- Type 2=0 and Type 3=3
- Type 1=-0
- Type 2=1

Algorithm
- AUTO when DI1=ON, DI2=OFF
- MAN when DI1=OFF, DI2=OFF
- STOP when DI1=ON, DI2=OFF

Diagrams
- E1-Terminal Area
- RS485 and RS485/LPS24 (Suffix code: Type 2=1 and option code LP)

All Rights Reserved. Copyright © 2015, Yokogawa Electric Corporation

GS 05P01D81-01EN
Oct. 20, 2017-00
External Dimensions

UT35A/MDL

Unit: mm (inch)

UT32A/MDL

Unit: mm (inch)

Construction, Mounting, and Wiring

- Construction: DIN rail mounting type
- Material: Polycarbonate resin (Flame retardancy: UL94 V-0)
- DIN rail mounting bracket material: Panel steel sheet
- Case color: Black (Light Charcoal gray)
- Weight: 1 kg or less
- External dimensions (mm):
 - UT55A/MDL: 96 (width) x 114 (height) x 100 (depth)
 - UT52A/MDL: 48.2 (width) x 114 (height) x 100 (depth)
- Compatible DIN rails: TH35-7.5Fe, TH35-7.5At, JIS C 2812
- Mounting position: Horizontal.
- Wiring: M3 screw terminal with square washer (signal wiring and power)

Note:
- Trigonometry
 General tolerance = ±(JIS B 0401-1998 tolerance class IT18)/2
Model and Suffix Code

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix code</th>
<th>Option code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT35A</td>
<td>/MDL</td>
<td>-0</td>
<td>Digital Indicating Controller (Power supply: 100-240 V AC) (required)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2</td>
<td>Standard type</td>
</tr>
<tr>
<td>Type 1:</td>
<td>Basic control</td>
<td>-2</td>
<td>Heating/cooling type</td>
</tr>
<tr>
<td>Type 2:</td>
<td>Functions</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5 additional DIs, 5 additional DOs</td>
</tr>
<tr>
<td>Type 3:</td>
<td>Open networks</td>
<td>1</td>
<td>RS-485 communication (Max.38.4 kbps, 2-wire/4-wire)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Ethernet communication (with serial gateway function)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>CC-Link communication (with Modbus master function)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>PROFINET/PRO/communication (with Modbus master function)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>DeviceNet communication (with Modbus master function)</td>
</tr>
<tr>
<td>Fixed code</td>
<td>-1</td>
<td></td>
<td>Temperature unit: deg C & deg F</td>
</tr>
<tr>
<td>Case color</td>
<td>-0</td>
<td></td>
<td>Black (Light charcoal gray)</td>
</tr>
<tr>
<td>Option codes</td>
<td>/MDL</td>
<td></td>
<td>Mount on DIN rail (without the display parts and keys) (*)</td>
</tr>
<tr>
<td></td>
<td>/LP</td>
<td></td>
<td>24 V DC loop power supply (*)</td>
</tr>
<tr>
<td></td>
<td>/CT</td>
<td></td>
<td>Coating (*)</td>
</tr>
<tr>
<td></td>
<td>/CV</td>
<td></td>
<td>Terminal cover</td>
</tr>
</tbody>
</table>

*1: The /MDL option can be specified in the combination of Type 2 code “0” and Type 3 code “1”.
*2: The /CT option can be specified in the combination of Type 2 code “1” and Type 3 code “0.”

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix code</th>
<th>Option code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT32A</td>
<td>/MDL</td>
<td>-0</td>
<td>Digital Indicating Controller (Power supply: 100-240 V AC) (required)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2</td>
<td>Standard type</td>
</tr>
<tr>
<td>Type 1:</td>
<td>Basic control</td>
<td>-2</td>
<td>Heating/cooling type</td>
</tr>
<tr>
<td>Type 2:</td>
<td>Functions</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>RS-485 communication (Max. 38.4 kbps, 2-wire/4-wire) (*)</td>
</tr>
<tr>
<td>Type 3:</td>
<td>Open networks</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>CC-Link communication (with Modbus master function)</td>
</tr>
<tr>
<td>Fixed code</td>
<td>-1</td>
<td></td>
<td>Temperature unit: deg C & deg F</td>
</tr>
<tr>
<td>Case color</td>
<td>-0</td>
<td></td>
<td>Black (Light charcoal gray)</td>
</tr>
<tr>
<td>Option codes</td>
<td>/MDL</td>
<td></td>
<td>Mount on DIN rail (without the display parts and keys) (*)</td>
</tr>
<tr>
<td></td>
<td>/LP</td>
<td></td>
<td>24 V DC loop power supply (*)</td>
</tr>
<tr>
<td></td>
<td>/HA</td>
<td></td>
<td>Heater break alarm (*)</td>
</tr>
<tr>
<td></td>
<td>/DC</td>
<td></td>
<td>Power supply 24 V AC/DC</td>
</tr>
<tr>
<td></td>
<td>/CT</td>
<td></td>
<td>Coating (*)</td>
</tr>
<tr>
<td></td>
<td>/CV</td>
<td></td>
<td>Terminal cover</td>
</tr>
</tbody>
</table>

*1: The /LP option is specified, the RS-485 communication of the type 2 code “1” is 2-wire system.
*2: The /MDL option is specified, the model and suffix codes are follows:
- UT32A-010-11-00/x/MDL
- UT32A-003-11-00/x/MDL
- UT32A-010-11-00/x/MDL
- UT32A-003-11-00/x/MDL
*3: When /MDL option and /LP option is combined, “3” can not be specified for Type 3 code.
*4: The /HA option can be specified only in the combination of Type 2 code “1” and Type 3 code “0.”
*5: When the /CT option is specified, the UT32A does not conform to the safety standards (UL and CSA) and CE marking (Products with /CT option are not intended for EEA-market).
■ Items to be specified when ordering
Model and suffix codes, whether User’s Manual and QIC required.

■ Standard accessories
Operation Guide

■ Special Order Items

<table>
<thead>
<tr>
<th>Model code</th>
<th>Suffix code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS50A</td>
<td>-00</td>
<td>Parameter Setting Software</td>
</tr>
<tr>
<td>X510</td>
<td></td>
<td>See the General Specifications (*) Resistance Module</td>
</tr>
</tbody>
</table>

(*) Necessary to input the current signal to the voltage input terminal.

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal cover (for UT35A)</td>
<td>UTAP001</td>
</tr>
<tr>
<td>Terminal cover (for UT32A)</td>
<td>UTAP002</td>
</tr>
<tr>
<td>User’s Manual (CD)</td>
<td>UTAP003</td>
</tr>
<tr>
<td>Wall mount bracket (for UT32A/MDL)</td>
<td>UTAP005</td>
</tr>
</tbody>
</table>

User’s Manual
Product user’s manuals can be downloaded or viewed at the following URL. To view the user’s manual, you need to use Adobe Reader 7 or later by Adobe Systems.

URL: http://www.yokogawa.com/ns/ut/im/