Overview
The UT32A entry model digital indicating controller is an easily configurable single-loop controller that can generate relay, voltage pulse, or current signals for control output. The short depth of the controller helps save instrument panel space.

Features
- A 14-segment, active (PV display color changing function) color LCD display is employed. Two five-digit, high-resolution displays are possible. Alphabet letters can be displayed in an easy-to-read manner. The guide display shows parameter names.
- Easy to operate
 Navigation keys (SET/ENTER and Up/Down/Left/Right arrow keys) are employed to facilitate making settings.
- 65 mm depth
 The small depth enables the mounting in a thin and small instrumented panel.
- Quick setting function
 Setting only the minimum necessary parameters for operation is possible.
- Equipped with a multitude of functions
 Universal I/O is included as standard. PID control, ON/OFF control, etc. are available.
- LL50A Parameter Setting Software (sold separately)
 The parameters of UTAdvanced digital indicating controller can be built from a PC using this software. It makes data management even easier.
- Dust-proof and drip-proof
 IP66 (for front panel) (Not applicable to side-by-side close mounting.)
 NEMA4 (Hose-down test only)

Functional Specifications
Control Specifications
(1) Control Mode
 Single-loop control
(2) Control period
 200 ms
Control Computation Function
(1) Types of control
 • PID control
 • ON/OFF control
(2) Control Computation Function
 (a) Target setting point and the number of PID parameter groups
 Respectively, four sets of target setpoints, alarm setpoints, and PID parameters can be set.

(b) Selecting the PID parameter group
 The following PID parameter groups can be selected.
 • Target setpoint number (SPNO) (The PID number can be set arbitrarily.)
 • Measured input zone PID
 • Target setpoint zone PID
 • Reached target setpoint zone PID
 (c) Auto-tuning
 • Tuning results can be selected from two options, Normal or Stable.
 • Tuning output limit can be set.
 (d) “Super” function: Overshoot-suppressing function
 (e) “Super 2” function: Hunting-suppressing function
 (f) STOP preset output function
 (g) Input ERROR preset output function
 (h) MANUAL preset output function

(3) Operation Mode Switching

| Operation mode switching | AUTO/MANUAL and RUN/STOP switching |

(4) Control Parameter Setting Range

<table>
<thead>
<tr>
<th>Proportional band</th>
<th>0.1 to 999.9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral time</td>
<td>1 to 6000 sec. or OFF (using manual reset)</td>
</tr>
<tr>
<td>Derivative time</td>
<td>1 to 6000 sec. or OFF</td>
</tr>
<tr>
<td>ON/OFF control hysteresis (one or two hysteresis points)</td>
<td>0.0 to 100.0% of measured input range width</td>
</tr>
<tr>
<td>Preset output value</td>
<td>-5.0 to 105.0% (however, 0 mA or less cannot be output)</td>
</tr>
<tr>
<td>High/low output limiter</td>
<td>-5.0 to 105.0%</td>
</tr>
<tr>
<td>Tight shut function</td>
<td>When manual control is carried out with 4 to 20 mA output, control output can be reduced to about 0 mA.</td>
</tr>
<tr>
<td>Rate-of-change limiter of output</td>
<td>0.1 to 100.0%/sec., OFF</td>
</tr>
</tbody>
</table>
Alarm Functions

• Types of Alarm

<table>
<thead>
<tr>
<th>Measured value alarm</th>
<th>Deviation alarm</th>
<th>Rate-of-change alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV (measured value) high/low limit alarm</td>
<td>Deviation high/low limit alarm</td>
<td>Deviation rate-of-change alarm</td>
</tr>
<tr>
<td>PV (measured value) high and low limits alarm</td>
<td>Deviation high and low limits alarm</td>
<td>Analog input PV high/low limit alarm</td>
</tr>
<tr>
<td>PV (measured value) dev within high and low limits alarm</td>
<td>Analog input PV within high and low limits alarm</td>
<td>PV rate-of-change alarm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setpoint alarm</th>
<th>Other alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP (setpoint) high/low limit alarm</td>
<td>Self-diagnosis alarm</td>
</tr>
<tr>
<td>Target SP high/low limit alarm</td>
<td>FAIL</td>
</tr>
<tr>
<td>Target SP deviation high/low limit alarm</td>
<td></td>
</tr>
<tr>
<td>Target SP deviation within high and low limits alarm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control output high/low limit alarm</td>
</tr>
</tbody>
</table>

Communication Function

Function Method Interface Targets Max connection Communication Data

<table>
<thead>
<tr>
<th>Modbus</th>
<th>A standard industry protocol allowing communications between the controller and devices such as PCs, PLCs, and DCSs.</th>
<th>Slave</th>
<th>RS-485</th>
<th>PLC and others, UT75A/UT55A/UT52A/UT52A/UT35A/UT32A/UP55A/UP52A/UP35A/UP32A/UM33A (*1)</th>
<th>31 units</th>
<th>PV, ALM etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC link</td>
<td>The proprietary Yokogawa protocol allowing communications to PCs, PLCs and touch panels.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ladder</td>
<td>A protocol to communicate to PLCs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1: UT digital indication controllers can be connected.

Physical Interface

RS-485

Standard: EIA RS-485
Communication method: Two-wire harf-duplex or four-wire harf-duplex, start-stop synchronization, and non-procedural
Baud rate: 600,1200,2400,4800,9600,19200 or 38400 bps
Maximum communication distance: 1200m
Terminating resistor: 220Ω (External)
Hardware Specifications

Display Specifications
- PV display
- 5-digit, 14-segment active color LCD (white/red)
- Character height: 13.0 mm
- Data display
- 5-digit, 11-segment color LCD (orange)
- Bar graph display
- 12-segment color LCD (orange)

Universal Input Specifications
- Number of input points: 1
- Types of input, instrument range, and measurement accuracy (see the table below)

Types of Input, Instrument Range, and Measurement Accuracy

<table>
<thead>
<tr>
<th>Types of input</th>
<th>Instrument range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>-270.0 to 1370.0°C</td>
<td>±0.1% of instrument range ±1 digit for 0°C or more</td>
</tr>
<tr>
<td>J</td>
<td>-200.0 to 1200.0°C</td>
<td>±0.2% of instrument range ±1 digit for less than 0°C</td>
</tr>
<tr>
<td>T</td>
<td>0.0 to 400.0°C</td>
<td>±0.1% of instrument range ±1 digit for 400°C or more</td>
</tr>
<tr>
<td>B</td>
<td>0.0 to 1800.0°C</td>
<td>±0.1% of instrument range ±1 digit for less than 400°C</td>
</tr>
<tr>
<td>S</td>
<td>0.0 to 1700.0°C</td>
<td>±0.1% of instrument range ±1 digit</td>
</tr>
<tr>
<td>R</td>
<td>0.0 to 1700.0°C</td>
<td>±0.1% of instrument range ±1 digit</td>
</tr>
<tr>
<td>N</td>
<td>-200.0 to 1300.0°C</td>
<td>±0.1% of instrument range ±1 digit</td>
</tr>
<tr>
<td>E</td>
<td>-270.0 to 1900.0°C</td>
<td>±0.1% of instrument range ±1 digit</td>
</tr>
<tr>
<td>L</td>
<td>-200.0 to 600.0°C</td>
<td>±0.1% of instrument range ±1 digit</td>
</tr>
<tr>
<td>U</td>
<td>0.0 to 400.0°C</td>
<td>±0.1% of instrument range ±1 digit</td>
</tr>
<tr>
<td>W(1)</td>
<td>0.0 to 2300.0°C</td>
<td>±0.2% of instrument range ±1 digit</td>
</tr>
<tr>
<td>Platinum 2</td>
<td>0.0 to 1390.0°C</td>
<td>±0.1% of instrument range ±1 digit</td>
</tr>
<tr>
<td>PR20-40</td>
<td>0.0 to 1900.0°C</td>
<td>±0.5% of instrument range ±1 digit for 800°C or more</td>
</tr>
<tr>
<td>W7 Re3/W75 Re25</td>
<td>0.0 to 2000.0°C</td>
<td>±0.2% of instrument range ±1 digit</td>
</tr>
<tr>
<td>JPt100</td>
<td>-200.0 to 500.0°C</td>
<td>±0.1% of instrument range ±1 digit</td>
</tr>
<tr>
<td>P1010</td>
<td>-250.0 to 1500.0°C</td>
<td>±0.1% of instrument range ±1 digit</td>
</tr>
</tbody>
</table>

The accuracy is that in the standard operating conditions: 23 ±2°C, 55 ±10%RH, and power frequency at 50/60 Hz.

1. ±0.3°C and ±1 digit in the range between 0 and 100°C
2. ±0.5°C ±1 digit in the range between -100 and 200°C

- Applicable standards: JIS, IEC and DIN (ITS-90) for thermocouples and resistance-temperature detectors (RTD)
- Input sampling period: Synchronized to control period
- Burnout detection
- Upscale and downscale of function, and OFF can be specified for the standard signal of thermocouple and resistance-temperature detector (RTD).
- For integrated signal input, 0.1 V or 0.4 mA or less is judged as a burnout.
- Input bias current: 0.05 μA (for thermocouple and resistance-temperature detector (RTD))
- Resistance-temperature detector (RTD) measured current: About 0.16 mA
- Input resistance
 1. 1 MΩ or more for thermocouple/mV input
 2. About 1 MΩ for voltage input
- About 250 Ω for current input (with built-in shunt resistance)
- Allowable signal source resistance
 1. 250 Ω or less for thermocouple/mV input
 2. Effect of signal source resistance: 0.1 μV/Ω or less
- ±2 kΩ or less for DC voltage input
- Effect of signal source resistance: about 0.01%/100 Ω
- Allowable wiring resistance
- Up to 150 Ω per line for resistance-temperature detector (RTD) input (conductor resistance between the three lines shall be equal)
- Effect of wiring resistance: ±0.1°C/10 Ω
- Allowable input voltage/current
 1. ±10 V DC for thermocouple/mV/mA or resistance-temperature detector (RTD) input
 2. ±20 V DC for V input
 3. ±40 mA DC for mA input
- Noise reduction ratio
 1. 40 dB or more (at 50/60 Hz) in normal mode
 2. 120 dB or more (at 50/60 Hz) in common mode
- Reference junction compensation error
 1. ±1.0°C (15 to 35°C)
 2. ±1.5°C (-10 to 5°C and 35 to 50°C)

Analog Output Specifications (Suffix code: -C)
- Number of points
 1. Control output: 1 point
- Output functions
 1. Current output
 2. Current output
 3. 4 to 20 mA DC or 0 to 20 mA DC/Load resistance 600 Ω or less
- Current output accuracy
 1. ±0.1% of span (however, ±5% of span for 1 mA or less)
 2. The accuracy is that in the standard operating conditions: 23 ±2°C, 55 ±10%RH, and power frequency at 50/60 Hz

Analog Output Specifications (Suffix code: -V)
- Number of points
 1. Control output: 1 point
- Output functions
 1. Voltage pulse output
• Current output
 4 to 20 mA DC or 0 to 20 mA DC/load resistance 600 Ω or less
• Voltage pulse output
 Application: time proportional output
 ON voltage: 12 V or more/load resistance of 600 Ω or more
 OFF voltage: 0.1 V DC or less
 Time resolution: 10 ms or 0.1% of output value, whichever is larger

Contact Input Specifications (Suffix code: -R)
• Types of contact and number of points
 Control relay output: one, 1c-contact point
• Input type: no-voltage contact input or transistor contact input
• Contact rating
 1c-contact: 3 A at 250 V AC or 3 A at 30 V DC (resistance load)
 *: The control output should always be used with a load of 10 mA or more.
• Application: ON/OFF output or time proportional output
• Time resolution for control output: 10 ms or 0.1% of output value, whichever is larger

Relay Contact Output Specifications
• Types of contact and number of points
 Alarm output: 2, 1a-contact points (Common is separated)
• Contact rating
 1a-contact: For alarm output: 1 A at 240 V AC or 1 A at 30 V DC (resistance load)
 *: The alarm output should always be used with a load of 1 mA or more.
• Application: alarm output, FAIL output, etc.

24 V DC Loop Power Supply Specifications (for /LP Option)
• Application: Power is supplied to the 2-wire transmitter.
• Supply voltage: 21.6 to 28.0 V DC
• Rated current: 4 to 20 mA DC
• Maximum supply current: About 30 mA (with short-circuit current limiting circuit)

Safety and EMC Standards
• Safety:
 Compliant with IEC/EN 61010-1 (CE), IEC/EN 61010-2-201 (CE), IEC/EN 61010-2-030 (CE), approved by CAN/CSA C22.2 No. 61010-1 (CSA), approved by UL 61010-1.
 Installation category: II
 Pollution degree: 2
 Measurement category: I (CAT I) (UL, CSA)
 O (Other) (CE)
 Rated measurement input voltage: Max. 10 V DC
 Rated transient overvoltage: 1500 V (*)
 *: This is a reference safety standard value for measurement category I of CSA/UL 61010-1, and for measurement category O of IEC/EN 61010-2-030. This value is not necessarily a guarantee of instrument performance.
• EMC standards:
 Compliant with
 CE marking
 EN 61326-1 Class A, Table 2 (For use in industrial locations),
 EN 61326-2-3
 *: The instrument continues to operate at a measurement accuracy of within ±20% of the range during testing.

Power Supply Specifications and Isolation
• Power supply
 Rated voltage: 100 to 240 V AC (+10%/-15%), 50/60 Hz
 24 V AC/DC (+10%/-15%) (When the /DC option is specified)
• Power consumption: 15 VA (For the /DC option. DC: 7 VA, AC: 11 VA)
• Storage: Nonvolatile memory
• Allowable power interruption time: 20 ms (at 100 V AC)
• Withstanding voltage
 2300 V AC for 1 minute between primary and secondary terminals (UL, CSA)
 3000 V AC for 1 minute between primary and secondary terminals (CE)
 1500 V AC for 1 minute between primary terminals
 500 V AC for 1 minute between secondary terminals
 (Primary terminals = Power (*) and relay output terminals, Secondary terminals = Analog I/O signal terminals, communication terminals, and functional grounding terminals.)
 *: Power terminals for 24 V AC/DC models are the secondary terminals.
• Insulation resistance
 Between power supply terminals and a grounding terminal: 20 MΩ or more at 500 V DC

24 V DC loop power supply terminal

EN 55011 Class A, Group 1
EN 61000-3-2 Class A
EN 61000-3-3
EMC Regulatory Arrangement in Australia and New Zealand
EN 55011 Class A, Group 1
• KC marking: Electromagnetic wave interference prevention standard, electromagnetic wave protection standard compliance

Power Supply Specifications and Isolation
• Power supply
 Rated voltage: 100 to 240 V AC (+10%/-15%), 50/60 Hz
 24 V AC/DC (+10%/-15%) (When the /DC option is specified)
• Power consumption: 15 VA (For the /DC option. DC: 7 VA, AC: 11 VA)
• Storage: Nonvolatile memory
• Allowable power interruption time: 20 ms (at 100 V AC)
• Withstanding voltage
 2300 V AC for 1 minute between primary and secondary terminals (UL, CSA)
 3000 V AC for 1 minute between primary and secondary terminals (CE)
 1500 V AC for 1 minute between primary terminals
 500 V AC for 1 minute between secondary terminals
 (Primary terminals = Power (*) and relay output terminals, Secondary terminals = Analog I/O signal terminals, communication terminals, and functional grounding terminals.)
 *: Power terminals for 24 V AC/DC models are the secondary terminals.
• Insulation resistance
 Between power supply terminals and a grounding terminal: 20 MΩ or more at 500 V DC

<table>
<thead>
<tr>
<th>24 V DC loop power supply terminal</th>
<th>Internal circuits</th>
<th>Power supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV (universal) input terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (voltage pluse, analog) output terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control relay (c-contact) output terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm-1 relay (a-contact) output terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm-2 relay (a-contact) output terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS485 communication terminal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The circuits divided by lines are insulated mutually.
Environmental Conditions

Normal operating conditions
- Ambient temperature: -10 to 50°C (-10 to 40°C for side-by-side mounting of controllers)
- Ambient humidity: 20 to 90% RH (no condensation)
- Magnetic field: 400 A/m or less
- Continuous vibration (at 5 to 9 Hz) Half amplitude of 1.5 mm or less
 (at 9 to 150 Hz) 4.9 m/s² or less, 1 oct/min for 90 minutes each in the three axis directions
- Rapid vibration: 14.7 m/s², 15 s or less
- Impact: 98 m/s² or less, 11 msec.
- Installation altitude: 2,000 m or less above sea level
- Warm-up time: 30 minutes or more after the power is turned on
- Start-up time within 10 s

Transportation and Storage Conditions
- Temperature: -25 to 70°C
- Temperature change rate: 20°C per hour or less
- Humidity: 5 to 95%RH (no condensation)

Effects of Operating Conditions
- Effect of ambient temperature
 - For voltage or TC input: ±1 μV/°C or ±0.01% of F.S. (instrument range)/°C, whichever is greater
 - For RTD input: ±0.05°C/°C (ambient temperature) or less
 - For current input: ±0.01% of F.S. (instrument range)/°C
 - For analog output: ±0.02% of F.S./°C or less
- Effect of power supply fluctuation:
 - For analog input: ±0.05% of F.S. (instrument range) or less
 - For analog output: ±0.05% of F.S. or less
 (Each within rated voltage range)
Block Diagram

Single Loop Control

Equipped as standard

PV input

<table>
<thead>
<tr>
<th>Terminal Parameter Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog signal</td>
</tr>
<tr>
<td>Contact signal</td>
</tr>
<tr>
<td>Front panel key</td>
</tr>
</tbody>
</table>

PV display

Control computation

Output limiter

Manual preset output

Input error preset output

Preset output

Auto (ON)/Man (OFF) switch

Stop (ON)/Run (OFF) switch

When sensor burnout occurs

Equipped as standard

Alarm 1 (PV high limit)

Alarm 2 (PV low limit)

LPS

24 V loop power supply

For optional suffix code LP

Relay (Suffix code: -R)

Current (Suffix code: -C)

Voltage pulse (Suffix code: -V)

Equipped as standard

Alert

Legend

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog signal</td>
<td>Contact signal</td>
<td>Front panel key</td>
</tr>
</tbody>
</table>
Terminal Arrangement

PV input: (Equipped as standard)

- **PV**
 - **TC input**: (Suffix code: Type 2=1)
 - **RTD input**: (Suffix code: Type 2=1 and optional suffix code /LP)

Control output: (Suffix code: Type1=-R)

- **Relay contact output**
 - **Contact rating**: 240 V AC, 1 A
 - **30 V DC, 1 A (resistance load)**

Contact output: (Equipped as standard)

- **Alarm-2 output (PV low limit)**
- **Alarm-1 output (PV high limit)**
- **Common**
 - **Relay contact rating**: 240 V AC, 1 A
 - **30 V DC, 1 A (resistance load)**

Power supply: (Optional suffix code /DC)

- **24 V DC loop power supply**: 21.6-28.0 V DC (Max. 30 mA DC)
- **24 V AC/DC power supply**: 100-240 V AC (+10%/-15%) (free voltage)
 - 50/60 Hz shared

Control output: (Suffix code: Type1=-V or -C)

- **0-20 mA DC, 4-20 mA DC, Voltage pulse (12 V)**
- **Current/voltage pulse output**
 - **Allowable range**: 0-20 mA DC, 4-20 mA DC, Voltage pulse (12 V)

RS-485 communication: RS485

24 V DC loop power supply: LPS24

RS-485 communication/24 V DC loop power supply: RS485/LPS24

E1-terminal area

- **101-112**: (RS-485 communication)
- **201-212**: (24 V DC loop power supply)

Factory default: PV input type is undefined.
External Dimensions and Panel Cutout Dimensions

Unit: mm

- General mounting
- Side-by-side close mounting

```
[(N-1)×48+45]₀⁺₀.₆
```

- *N* stands for the number of controllers to be installed. However, the measured value applies if N≥5.

Normal tolerance:
±(value of JIS B 0401-1998 tolerance class IT18)/2

Construction, Mounting, and Wiring

- Dust-proof and drip-proof: IP66 (Front panel) (Except for side-by-side close mounting)/NEMA4 *
 *: Hose-down test only
- Material: Polycarbonate resin (Flame retardancy: UL94 V-0)
- Case color: White (Light gray) or Black (Light Charcoal gray)
- Weight: 0.5 kg or less
- External dimensions (mm): 48 (width) x 96 (height) x 65 (depth from the panel surface)
- Mounting: Direct panel mounting; mounting bracket, one each for upper and lower mounting
- Panel cutout dimensions (mm): 45+0.6/0 (width) x 92+0.8/0 (height)
- Mounting position: Up to 30 degrees above the horizontal. No downward titling allowed.
- Wiring: M3 screw terminal with square washer (signal wiring and power)

Model and Suffix Code

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix code</th>
<th>Optional suffix code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT32A</td>
<td></td>
<td></td>
<td>Digital Indicating Controller (Power supply: 100-240 V AC) (provided with 2 DOs)</td>
</tr>
</tbody>
</table>

Type 1:
- Basic control
 - V: Voltage pulse output type
 - C: Current output type
 - R: Relay output type

Type 2:
- Functions
 - 0: None
 - 1: RS-485 communication (Max. 36.4 kbps, 2-wire/4-wire) (*1)

Type 3:
- Fixed code
 - 0: None
 - 1: RS-485 communication (Max. 36.4 kbps, 2-wire/4-wire) (*1)

Display language
- 0: English (Default. Can be switched to other language by the setting.)
- 1: German (Default. Can be switched to other language by the setting.)
- 2: French (Default. Can be switched to other language by the setting.)
- 3: Spanish (Default. Can be switched to other language by the setting.)

Case color
- 0: White (Light gray)
- 1: Black (Light charcoal gray)

Fixed code
- 00: Always "00"

Optional suffix codes
- /LP: 24 V DC loop power supply
- /DC: Power supply 24 V AC/DC
- /CT: Coating (*3)
- /CV: Terminal cover

*1: When the /LP option is specified, the RS-485 communication of the Type 2 code "1" is 2-wire system.
*2: English, German, French, and Spanish are available for the guide display.
*3: When the /CT option is specified, the UT32A does not conform to the safety standards (UL and CSA) and CE marking (Products with /CT option are not intended for EEA-market).
■ Items to be specified when ordering
Model and suffix codes, whether User’s Manual and QIC required.

■ Standard accessories
Brackets (mounting hardware), Unit label, Operation Guide

■ Special Order Items

<table>
<thead>
<tr>
<th>Model code</th>
<th>Suffix code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL50A</td>
<td>-00</td>
<td>Parameter Setting Software</td>
</tr>
<tr>
<td>X010</td>
<td></td>
<td>See the General Specifications (*)</td>
</tr>
</tbody>
</table>

*: Necessary to input the current signal to the voltage input terminal.

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal cover (for UT32A)</td>
<td>UTAP002</td>
</tr>
<tr>
<td>User’s Manual (CD)</td>
<td>UTAP003</td>
</tr>
</tbody>
</table>

User’s Manual
Product user’s manuals can be downloaded or viewed at the following URL. To view the user’s manual, you need to use Adobe Reader 7 or later by Adobe Systems.

URL: http://www.yokogawa.com/ns/ut/im/