The TruePeak Tunable Diode Laser Spectroscopy (TDLS) Analyzer, TDLS220, is capable of measuring Oxygen in a variety of process applications with gas temperatures up to 120 °C and pressures up to 100 psig under difficult conditions (corrosive and aggressive service). The TruePeak analyzer is one of the most robust oxygen analyzers available.

Measurements are rapid (5 seconds) and interference free, offering improved accuracy when compared to other oxygen analyzers.

Typical applications include:
- Vapor Recovery Systems
- Flare and Vent Headers
- Reactor Control
- Refining
- Formaldehyde
- VCM/EDC
- IPA, TiO₂, Isocyanates, Acrylo/acetonitriles

Features
- Fast Response 5 seconds (optional 10 seconds)
- No known interference
- TruePeak measurement is capable of measuring under changing pressure with active input for live compensation. The measurement is not affected by background composition changes.
- Sample Pressures up to 100 psig
- Sample Temperature controllable up to 120°C (with heated cell option) and ambient temperature ≤ 40°C
- Optical Measurement, no sensor contact with process
- Low LTCO¹ (no moving parts, high MTTF² for components)
- On Board Diagnostics
- Class 1 Division 2, Group B, C, and D with purge systems

¹ Long term cost of ownership
² Mean time to failure

System Configuration

Figure 1. Dimensions
PROCESS OXYGEN ANALYSIS

The TDLS220 is specifically designed for accurate, reliable and low maintenance measurement of oxygen in process gas streams on an extractive basis.

Operational Principle

Tunable Diode Laser Spectroscopy (or TDLS) measurements are based on absorption spectroscopy. The TruePeak Analyzer is a TDLS system and operates by measuring the amount of laser light that is absorbed (lost) as it travels through the gas being measured. In the simplest form a TDLS analyzer consists of a laser that produces infrared light, optical lenses to focus the laser light through the gas to be measured and then on to a detector, the detector, and electronics that control the laser and translate the detector signal into a signal representing the gas concentration.

Gas molecules absorb light at specific wavelengths, called absorption lines. This absorption follows Beers law.

TDLS Analyzers are effectively infrared analysers which obey the Beer-Lambert Law.

\[I = I_0 \cdot e^{-E \cdot G \cdot L} \]

where I is the radiation intensity after absorption
I₀ is the initial radiation intensity
E is the extinction coefficient
G is the gas concentration
and L is the pathlength of the measurement area

Using a Tunable Diode Laser as a light source for spectroscopy has the following benefits:

- **Sensitivity:** No known interference for Oxygen measurement
- **Selectivity:** The narrow line width of the laser is able to resolve single absorption lines. This provides more choices of a particular peak to use for measurement, usually allowing one isolated peak to be used.
- **Power:** The diode lasers has a typical power of 0.5mW.
- **Monochromatic:** No dispersive element (filter, etc.) required. Light source itself is selective.
- **Tunable:** Wavelength can be swept across the entire absorption feature; this allows resonant (peak) and non-resonant (baseline) measurement during every scan. By measuring the baseline and peak power at the detector can fluctuate rapidly by large amounts without affecting them measurement.

Measurement

- During measurement the laser is held at a fixed temperature. This is the coarse wavelength adjustment.
- A current ramp is fed to the laser. This is the fine wavelength adjustment (figure 2).
- The current is ramped to scan across the wavelength region desired.
- The collimated light passes through the gas to be measured. The amount of light absorbed by the peak is proportional to the analyte concentration.
- The light is then focused on a detector (figure 3).
- This signal is used to quantify the light absorbed by the analyte (figure 4).

Figure 2. Current ramp to laser

![Figure 2. Current ramp to laser](image)

Figure 3. Signal at Detector

![Figure 3. Signal at Detector](image)

Figure 4. Processed Detector Signal

![Figure 4. Processed Detector Signal](image)
General Specifications

Measurement range: Dependent on application. Ranges from 0-1% up to 0-25% for analysis of Oxygen.

Output signal: (3x) 4- 20mA DC with maximum load of 900 Ohm. Three isolated outputs for concentration, transmission of light and may be used for gas concentration, transmission, retransmission of data inputs or dual range 3.3 or 20mA user configurable on warnings and faults.

Output Span: Freely programmable within measuring range.

Contact outputs: (3x) configurable relays for Status (Fault, Warning, concentration level, etc.) Form C Single Pole Double Throw (SPDT) contact outputs with maximum 1A@24VDC or 0.5A@125 VAC.

Valve control: (3x) 24VDC power supply to activate calibration solenoid valves for zero and span gas. Maximum load 1A (max 10W/valve for zero and span gas).

Current Input: (2x) 4-20 mA inputs for mA transmitters for pressure and temperature (Loop or lined powered).

Digital Communication: Ethernet IEEE 802.3 10/100 mbps, RJ45 and SAK 2.5 screw terminals.

Data storage: USB1 and USB2 connection for data transfer using USB memory stick, Internal storage on CF card (result files, spectra capture, configuration data, etc.) Capture rate is configurable, typically 7-10 days of data.

Warm-up time: 5 min for functioning, 60 min for full operation within specifications.

Power Consumption: 80w (analyzer); with headed cell option, power consumption varies based on application (typical max 380W @ 100°C).

Environmental Specifications

Ambient Temperature: -10 to +50 ºC.

Humidity: 0- 90 % RH non-condensing or 0- 100% with correct purge gas specifications.

Area Classification: The analyzer is designed for operation in General Purpose area. The addition of a Purge System facilitates operation in Hazardous Area for gaseous releases. Class 1 Division 2 Group B, C and D (ATEX/CE Pending) (Optional) CSA ¶ Special Acceptance certification.

Weather resistance: IP65 which is equivalent to NEMA 4X.

Cable entries: ¾" FNPT threads (unused holes are plugged).

Gas Connections: Analyzer - ¼" welded Swagelok® connection.

Enclosures: Die Cast copper free Aluminum grade AL SI 12 with a powder coat exterior finish. The alloy is particularly resistant to salt atmosphere, Sulfur gases and galvanic corrosion Stainless Steel captive screws and optional keypad. Laminated Safety Glass for optional display(s).

Sample Gas Temperature: Maximum 120°C, with ambient temperature ≤ 40°C. Maximum 100°C with ambient temperature ≤50°C.

Sample Gas Pressure: Maximum 100 psig.

Mounting: Wall, 24” x 24” plate.

Size: W x H x D 750mm x 600mm x 200mm (30” x 24” x 10”)

Weights: approx: 67lbs., 30.4kg.

Note: Each application may differ in maximum limitations depending upon the combination of gas temperature, gas pressure, and concentration of gas being measured.
Performance Specification

Precision
0.01% \(\text{O}_2 \)

Linearity
Typically \(R^2 > 0.999 \)

Response Time
5 or 10 seconds plus transport time to analyzer

Drift
Span drift (6-12 month calibration) \(< \pm 0.1\% \text{O}_2 \)
Zero drift (6-12 month Calibration) \(< \pm 0.05\% \text{O}_2 \)

Analog I/O (Optional)
Outputs: Concentration/Transmission (3@ 4-20mA isolated) Sub 4mA for warnings/ faults
Inputs: Pressure/Temperature Feed for Compensation (2@ 4-20mA isolated, powered or loop power)

Digital I/O
Outputs: Warning/Fault/Concentration Limit Relays (3 Form C Relay SPDT rated 1A@ 24VDC)
- Valve Control (3@ 24VDC, Max 10W per valve), zero/span
- Inputs: Remote Validation (3 voltage free floating contacts) for zero/span

Communications
Ethernet, IEEE 802.3, 10/100 Mbps, RJ45
Automatic USB data transfer (upload/download settings and data)

Calibration
Recommended Calibration Check Interval 3-6 Months

Gas Sampling Conditions
The extracted sample should be typically filtered, clean and dry (non-condensing)
Cell volume = 260 cc
Flow rate of 1~20L/min, typically 6 L/min
Pressure of -3 psig to 100 psig
Temperature of -20°C(4°F) to 50°C (122°F un-heated or 120°C (248°F) heated

Gas Measured
\(\text{O}_2 \): 0.01% detection limit, Min Range 0-1%, Max range 25%

Performance Specifications are application dependant.
*Consult Yokogawa for ranges; All performance specifications are for 25°C at 1 bar.

Installation Specifications

By Design:
The analyzer is designed for operation in General Purpose area. The addition of a Purge System facilitates operation in Hazardous Area for gaseous releases. Class 1 Division 2 Group B, C and D (ATEX/CE Pending) (Optional) CSA 5 Special Acceptance certification.

Flow Cell Wetted Parts
Standard: 316L, Sapphire windows, Teflon encapsulated Viton O-rings, and protected gold mirror
Optional: Monel Alloy 400, Kalrez 4079 O-rings

Integration

Configuration
- Sample is fully extracted from process (and should be conditioned before measurement)
- Process pressure and temperature can be controlled or the analyzer may require pressure and temperature inputs (application dependant)
- Length of flow cell is fixed

Purge Gas & Validation
Available systems (standard or custom) for:
- Manual or Automatic Validation
- Manual or Automatic Calibration
- Manual or Automatic Stream Switch
- Analyzer purge gas control
- Other options Available

Display and Software Functions:
TruePeak software has multiple levels, the default (or start page) is the Main Menu:

Main Menu Displays:
- Gas Concentration
- Transmission %
- Status (warm-up, OK, Warning, Fault, etc.)
- Temperature (Fixed, Active Ambient or Active)
- Pressure (Fixed or Active)

Main Menu:
- **Basic Menu**
 - Configure, 3 functions
 - View Spectra, 2 functions
 - Data, 3 sub-menus
 - Trends

- **Advanced Menu**
 - Configure, 9 sub-menus (User Password)
 - Calibrate & Validate, 3 sub-menus
 - Data, 4 sub-menus
 - Trends

- **Active Alarms:**
 - List of active alarms

- **Shut Down Analyzer:**
 - Instructions to close TruePeak local or VAC
Calibration Functions:

Off-line Calibrations:
- Zero calibration
- Zero off-set
- Span calibration
- Transmission

Off-line Validations:
- Check gas #1
- Check gas #2
- Check gas #3

On-Line Validations:
- Manual
- Automatic

Setup Functions:

Configuration:
- Process Path Length
- Pressure
- Temperature
- Units
- System I/O
- System
- Valve Control
- Laser Spectra & Control

Diagnostics:

Warnings include:
- Detector signal low
- Transmission low
- Spectrum noise high
- Process pressure out of range
- Process temperature out of range
- Concentration out of range
- Board temperature out of range
- Validation failure

Faults include:
- Laser temperature out of range
- Detector signal high
- Detector signal lost
- Peak center out of range

Output Settings:

Analog Output:
- Channel 1
- Channel 2
- Channel 3
- Warning Mode
- Fault Mode
- Field Loop Check
- AO CH calibration

User Interface

1. **Local Analyzer Interface:**

 Basic Unit (Blind)
 No local interface built-in. USB port is provided for data transfer. To configure, start-up and service the analyzer, user must use the supplied VNC viewer software.

 Mini-Display
 A 4 line 20 character (4x20) vacuum florescent display (VFD) built in to the door. It will display measurement concentration, Transmission, scrolling Status (including alarm types) and scrolling system information (including process parameters). USB port is provided for data transfer. To configure, start-up and service the analyzer, user must use the supplied VNC viewer software.

 Screen & Keypad
 A 30 key stainless steel keypad and 6.5" graphical LCD panel built in to the door. This provides full local interface. It eliminates the need for a PC/laptop or (RIU) Remote Interface Units. USB port is provided for data transfer.

2. **Remote Interface Unit (RIU):**

 Use with any type of analyzer, a separate wall mount enclosure with screen and keypad. Connects via Ethernet (VNC), up to 3 (standard) 8 (on request) analyzers. Requires 24 VDC input power

 - Wall mount enclosure, IP65 (NEMA 4) powder coated aluminum
 - Approx 460x330x180mm (18"w x 13"h x 7"d)
 - Weight 11.5kg (25lbs)
 - Purged for ATEX CAT 2G or CAT 3G, CE, NEC Cl.1, BCD, Division 1 or 2
 - Requires 23.5 - 24.5VDC Input power
 - Integral keypad and 6.5" display
 - Accepts 8 analyzer Ethernet connections – Standard
 - Accepts more analyzer Ethernet connections – On request
 - Connection to Analyzer Unit via 8 pair shielded twisted pair cable.

 TruePeak Virtual Analyzer Controller (VAC) software included, running Window XP embedded OS.

Model And Suffix Code YR200 Remote Interface Unit for TDLS

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YR200</td>
<td>------</td>
<td>Remote Interface Unit</td>
</tr>
<tr>
<td>Type</td>
<td>-G1</td>
<td>General Purpose</td>
</tr>
<tr>
<td></td>
<td>-D2</td>
<td>Hazardous Area Div 2</td>
</tr>
<tr>
<td></td>
<td>-A1</td>
<td>Hazardous Area ATEX</td>
</tr>
<tr>
<td>---</td>
<td>-N</td>
<td>Always N</td>
</tr>
</tbody>
</table>
Model and Suffix Codes

Model TDLS220

Tunable Diode Laser Gas Analyzer

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix</th>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDLS220</td>
<td>-G1</td>
<td></td>
<td>General Purpose</td>
</tr>
<tr>
<td></td>
<td>-D2</td>
<td></td>
<td>NEC Class 1 Div 2 BCD</td>
</tr>
<tr>
<td></td>
<td>-K1</td>
<td></td>
<td>CSA ☞ Special acceptance certification for general purpose</td>
</tr>
<tr>
<td></td>
<td>-K2</td>
<td></td>
<td>CSA ☞ acceptance certification for Class 1 Div 2</td>
</tr>
</tbody>
</table>

	-X1		Basic 02: 0-1% up tp 0-25% oxygen
	-S6		Stainless Steel 316L back plate
	-SST		316L flow cell, sapphire windows and teflon encasulated viton o-rings
	-SSK		316L flow cell, sapphire windows and Kalrez o-rings
	-MSK		Monel A400 flow cell, sapphire windows and Kalrez o-rings
	-SSX		316L flow cell, sapphire windows and Kalrez 6375 o-rings
	-MSX		Monel A400 flow cell, sapphire windows and Kalrez 6375 o-rings
	-TC		No Heat, Temp sensor/ insulation jacket (Active T.comp)
	-GP		General Purpose/Safe Area cell heating, max 120°C - Insulated Jacket
	-CE		General Purpose/Safe Area cell heating, max 100°C - Insulated Jacket
	-D2		Div. 2 cell heating, 120°C-Insulated Jacket
	-N		Blind Controller
	-1		Integral Mini Display
	-2		Integral Color LCD Backlit

Options

/U ---- Ext. USB Port IP66 w/cap (can be used with general purpose, safe area, only

NOTE: Select an item from each section.
Example: TDLS220-G1-X1-S6-SST-GP-1/U
Please Note: If sample conditioning is existing or to be provided by other, then complete information below based on conditions at the analyzer.

If sample conditioning is to be provided with the TDLS220, then complete the information below based on conditions at the process take-off point.

<table>
<thead>
<tr>
<th>Customer Name, plant location, process type and/or project name</th>
<th>Tag Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Handling:</td>
<td>Existing/By Others (Analyzer in-let conditions)</td>
</tr>
<tr>
<td>Gas Temperature</td>
<td>Units</td>
</tr>
<tr>
<td>Specified units</td>
<td></td>
</tr>
<tr>
<td>Supplied to Analyzer</td>
<td></td>
</tr>
<tr>
<td>Gas Supply Pressure</td>
<td>Units</td>
</tr>
<tr>
<td>Specified units</td>
<td></td>
</tr>
<tr>
<td>Supplied to Analyzer</td>
<td></td>
</tr>
<tr>
<td>Gas Return Pressure</td>
<td>Units</td>
</tr>
<tr>
<td>Oxygen Concentration</td>
<td>Min</td>
</tr>
<tr>
<td>Monitor or Control?</td>
<td>Norm</td>
</tr>
<tr>
<td>Alarm Level</td>
<td>Norm</td>
</tr>
<tr>
<td>Action Level</td>
<td>Norm</td>
</tr>
<tr>
<td>Gas Stream Composition</td>
<td></td>
</tr>
<tr>
<td>Special Wetted Materials – if any</td>
<td></td>
</tr>
<tr>
<td>Area Classification</td>
<td></td>
</tr>
<tr>
<td>Application Comments</td>
<td></td>
</tr>
</tbody>
</table>