General Specifications

Model TDLS8100
Probe type
Tunable Diode Laser Spectrometer

Overview

Yokogawa’s TDLS™8100 is a laser gas analyzer that measures the concentration of various gases (O₂, CO, CH₄, and many more NIR absorbing gases), in various processes such as petrochemical, power generation.

Since it can be inserted directly into duct, the sampling equipment is not required and installation cost and maintenance cost can be reduced. Moreover, it is possible to measure with high accuracy compared to other process analyzers because the measurement is rarely affected by interference of other components in high-speed measurement.

Also, in the conventional laser gas analyzer TDLS™8000, it was necessary to open the installation flange at both ends of the duct, but TDLS™8100 only needs to be done on one side, and if a gas sampling probe is already installed in the existing process, it is possible to replace the gas sampling equipment. If a gas sampling probe is already installed in the existing process, it is easily possible to replace with TDLS8100.

Features

• TruePeak™ Direct Absorption Spectroscopy combined with smart laser technology
 - By calculating the area of the absorbance peak the measurement is not affected by changes of the peak shape due to background gases.
 - Fully field repairable
 - Continuous diagnostics and 50 days of data storage
 - Laser module is replaceable on site without any calibration or adjustment
 - Internal reference cell in the laser module ensures peak locking during trace measurement (for O₂ and CO only)
 - Laser and Detector modules are sealed to protect them against ingress.
 - On board diagnostics and low TCO(1) (no moving parts, high MTTF(2) for components)

• Intuitive touchscreen HMI
 - Large HMI provides easy operation and control of up to 4 analyzers (TDLS8000 and TDLS8100) at the same time
 - A standard mini display enables easy optical alignment

• HART and Modbus TCP communications standard

• 8-stage auto-gain adapts to difficult applications
 - Auto-gain enables wide signal ranges against dynamic variation of transmission.

• Compact design for one-man installation without sacrificing ruggedness

- FM (US, Canada), IECEx, ATEX hazardous area approvals based on Explosionproof/flame proof.
- In-situ analysis and fast response (2 seconds, 1 second (optional))
- Process temperatures up to 600 °C, process pressures up to 500 kPa abs., and process gas flow velocity 1 m/s or more.
 Note: Maximum process temperatures and pressures will vary by application.

• 10 different languages display options
 YH8000 offers easy touch screen operation and simple menu structure in 10 languages.

Typical gases measured include:

• Oxygen in process applications.
 Process temperatures can be as high as 600ºC, and process pressures can be as high as 500kPa abs. Measurement span is typically between 1% and 25% oxygen.

• Carbon monoxide in process applications.
 Process temperatures can be as high as 600ºC.

Other applications and gas measurements are possible with the TDLS8100.
Please fill out the Application Data Sheet at the end of this document and send to Yokogawa.

*1: Total Cost of Ownership
*2: Mean Time To Failure

TDLS, TruePeak are trademarks of Yokogawa Electric Corporation.
All other company and product names mentioned in this document are trademarks or registered trademarks of their respective companies.
- **System configuration**

Standard System Configuration

![Diagram of Standard System Configuration](image)

- Purge gas for Optic
- Measured gas
- 24 V DC +/-10%
- Purge gas for validation area
- Purge gas for Reflector
- Purge gas for Process window

System Configuration with YH8000 HMI Unit and Validation gas line

![Diagram of System Configuration with YH8000 HMI Unit and Validation gas line](image)

- Measured gas
- 24 V DC +/-10%
- Check gas for validation
- Purge gas for Reflector
- Purge gas for validation area
- Purge gas for Process window
Multi Analyzer Configuration with Remote HMI

Note: If power supply is 100 to 240 V AC, purchase the Universal Power Supply, separately.
If four multi analyzer configuration with remote HMI is made, five universal power supplies including YH8000 are needed.
STANDARD SPECIFICATIONS

- TDLS8100 Probe type Tunable Diode Laser Spectrometer

Measurement object:
O₂, CO, CO or CH₄ concentration in combustion exhaust gas and process gas. If other gas measurements are required, consult with Yokogawa.

Measurement system:
Tunable diode laser spectroscopy
Light source: Near-infrared tunable diode laser

Measured components and ranges:

<table>
<thead>
<tr>
<th>Measured component</th>
<th>Min. range</th>
<th>Max. range</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td>0-1%</td>
<td>0-25% (*2)</td>
</tr>
<tr>
<td>CO (*1)</td>
<td>0-200 ppm</td>
<td>0-10,000 ppm</td>
</tr>
<tr>
<td>CH₄ (*1)</td>
<td>0-5%</td>
<td></td>
</tr>
</tbody>
</table>

*1: Please consult with Yokogawa if CO and CH₄ ingredient coexists.
*2: In the case of explosionproof type, oxygen concentration shall not exceed that found in normal air, typically 21%.

Safety and EMC conformity standards:
Safety conformity standards:
- CE EN61010-1, EN61010-2-030
- UL UL61010-1, UL 61010-2-030
- CSA CAN/CSA-C22.2 No.61010-1, CAN/CSA-C22.2 No.61010-2-030
- GB GB30439 Part 1

Installation altitude: 2000 m or less
Installation category:
I (Anticipated transient overvoltage 330V)
Measuring category: O (Other)
Pollution degree: 2, Indoor/Outdoor use
Note: Installation category, called overvoltage category, specifies impulse withstand voltage. Pollution degree indicates the degree of existence of solid, liquid, gas or other inclusions which may reduce dielectric strength.

EMC conformity standards:
- CE EN50111 Class A Group 1
- EN61326-1 Class A Table 2 (For use in industrial location), EN61326-2-3
- RCM EN5011 Class A Group 1
- KC KN11 Class A Group 1, KN61000-6-2 (Korea Electromagnetic Conformity)
- Laser classification:
 - CSA E60825-1:15
 - GB7247.1-2012, FDA 21 CFR part 1040.10, Class 1 laser product
- RoHS conformity standards: EN50581
- Display: 128 x 64 dots LCD; On Sensor Control Unit Status LEDs; (Green: Power, Orange: DO, Red: Fault)

Display items:
Gas concentration, Transmission, Process gas temperature (AI), Process gas pressure (AI), System status, Alarm information, System information (Product serial no., Laser detector module serial no., Output signal, IP address, HART address, Optical path length, Analyzer internal temperature)

Analog output:
2 points, 4 to 20 mA DC (Isolated from the power supply and ground, Max. load resistance 550 Ω)

Output types: Gas concentration, Transmission, Process gas temperature, Process gas pressure

Output range: 3.0 to 21.6 mA DC

Digital communications:
HART: On analog output signal 1 (AO-1) Load resistance:
250 to 550 Ω (Include cable resistance)
Ethernet: RJ-45 connector Protocol: Modbus/TCP Communication speed: 100 Mbps

Digital output: 2 points, contact rating 24V DC, 1A DO;
Function: Activate during Warning / Calibration / Validation / Warm up / Maintenance conditions

Contact Specification: Relay contact output
(isolated from the power supply and ground), C-contact (NC/NO/COM)
Fault:
Function: Activate during Fault condition or when the system power is off
Contact Specification: Relay contact output (isolated from the power supply and ground), A-contact (NC/COM)

Valve control output: 2 points
Function: Activate calibration or validation solenoid valves for zero, span or validation gas.

Output signal: 24V DC, 500 mA Max. per terminal

Alarm:
Warning:
Gas concentration low, Gas concentration high, Transmission low, Process pressure low, Process pressure high, Process temperature low, Process temperature high, Validation required, Validation failure, Zero calibration error, Span calibration error, External alarm, Detector signal high, Absorption too high
Fault:
Laser module temperature low, Laser module temperature high, Laser temperature low, Laser temperature high, Peak center out of range, Reference peak height low, Transmission lost, Reference transmission low, Reference peak height high, Laser unit failure, Laser module error, File access error, E2PROM access error

Digital input: 2 points
Function:
External Alarm/Calibration start/ Validation start/Stream switch (Valve control)
Contact specification: Zero voltage contact input (isolated from the power supply and ground)
Input signal: Open signal: 100 kΩ or more, Close signal: 200 Ω or less
Analog input: 2 points
Signal type: 4 to 20 mA DC (Isolated from the power supply and Ground), with selectable powered/unpowered function
Input signal range: 2.4 to 21.6 mA DC
Input types: Process gas temperature, Process gas pressure
Transmitter power supply: 15 V DC or higher (at 20 mA DC)
26 V DC or less (at 0 mA DC)

Self-diagnostics:
- Laser detector Unit temperature, Laser temperature, Detector signal level
- Memory read/write function, Peak locking condition

Calibration:
- Calibration method: Zero/Span calibration
- Calibration mode: Manual, Semi-Auto (YH8000/HART)

Validation:
- Validation method: Up to 2 points
- Validation mode: Manual, Auto (Time initiated, Remote initiate (DI/Modbus)), Semi-Auto (YH8000/HART)

Power supply: 24V DC +/-10%

Max. power consumption:
- Max. 20W; TDLS8100 only
- Max. 60W; TDLS8100 with YH8000 and 2 solenoid valves

Protection degree: IP66, Type 4X

Material:
- Case: Aluminum alloy
- Wetted materials: 316 SS(eq.), BK-7 glass, Teflon encapsulated FKM, ASE wool
- Paint color: Mint green (RAL 190 30 15 or equivalent)

Weight (approx.):
- Probe part:
 - 0.7 m 2.7 kg, 1 m 4.3 kg, 1.5 m 7.0 kg, 2 m 9.8 kg
- Analyzer part:
 - explosion proof 15.7 kg, general purpose 14.8 kg (Not include flange)

Process gas condition:
- Process gas temperature; Max. 600ºC, Application dependent
- Process gas pressure; Max. 500 kPa abs., Min. 90 kPa abs., Application dependent
- Process gas velocity; over 1 m/s (recommendation over 5 m/s)
- Dust in process gas; When the process dust load is high, please consult with Yokogawa.

Note: When using TDLS8100 as CE marking compliance product, it has following limitation. General purpose model (-G1, -G2): The upper limit of the measurement gas pressure is 50kPa in gauge pressure. ATEX model (-S1): The upper limit of the measurement gas pressure is 500kPa abs. The unstable gas defined by following cannot be measured. An unstable gas in this context is a gas liable to transform itself spontaneously, producing a sudden pressure increase. Such transformation as an example can result from a relatively small variation of an operating parameter (e.g. pressure, temperature, presence of catalyzing material) in a confined volume. This includes gases that are classified as chemically unstable gases according to CLP Regulation (EC) No 1272/2008 as amended. Typical examples of unstable gases: acetylene (UN 1001), vinyl fluoride (UN 1660), ozone and dinitrogen oxide (UN 1067). For further examples, see Table 35.1 of the UN Manual of Tests and Criteria.

Warm-up time: 5 min.
Installation condition:
- Ambient operating temperature: -20 to 55ºC
- Storage temperature: -30 to 70ºC
- Humidity: 0 to 95%RH at 40ºC (Non-condensing)
- Mounting flange type: ASME B16.5, DIN, JIS
- Cable entries: 1/2NPT or M20x1.5mm, one hole.
 - 3/4NPT or M25x1.5mm, three holes

Purge gas connections:
- 1/4NPT or Rc1/4
 - If other gas connections are required, please consult with Yokogawa.

Purge gas; Theoretically, instrument air could be used as a purge gas for all the below applications except for oxygen measurement.
Choosing between using nitrogen or instrument air or purge gas will ultimately depend upon further application details and the desired precision of the measurement. All gasses should be clean and dry.

Recommended purge gasses:
- O₂ analyzer: N₂ (99.99% or greater, application dependent)
- CO, CO or CH₄ analyzer: N₂ (99.99% or greater, application dependent) or Instrument air

Purge gas flow rates:
- Optic: 2 to 20L/min (Application dependent)
- 2 to 20L/min and 50 to 70mL/min (explosionproof)
 - Not more than 10 kPa at the inlet for explosionproof
- Process window/Reflector:
 - 5 to 30L/min (Application dependent)

Hazardous area classifications:
TDLS8100-D1 (FM Approval for US)
Division system:
- Type pf protection:
 - Explosion proof; Class I, Division 1, Groups A, B, C, D, T6
 - Dust-Ignitionproof; Class II/III, Division 1, Groups E, F, G T6
- Enclosure rating: Type 4X
- Applicable standards:
 - FM Class 3600: 2018,
 - FM Class 3615: 2018,
 - FM Class 3616: 2011,
 - FM Class 3810: 2018,
 - NEMA 250: 2014,
 - ANSI/ISA-12.27.01: 2011

Zone system:
- Type of protection:
 - Class I, Zone 1, AEx db [op is Ga] IIC
 - T6 Gb Zone 21, AEx tb [op is Da] IIIC
 - T85ºC Db
- Enclosure rating: IP66
- Applicable standards:
 - ANSI/UL 60079-0:2013
 - ANSI/UL 60079-1: 2015,
 - ANSI/UL 60079-28:2017,
 - ANSI/UL 60079-31: 2015,
 - ANSI/IEC 60529:2004,
 - ANSI/ISA-12.27.01: 2011

All Rights Reserved. Copyright © 2019, Yokogawa Electric Corporation
GS 11Y01D02-01EN Apr. 26, 2019-00
TDLS8100-C1 (FM Approval for Canada)
Type of protection:
- Ex db [op is Ga] IIC T6 Gb
- Ex tb [op is Da] IIC T85°C Db
Enclosure rating: IP66, Type4X
Applicable standards:
- CSA C22.2 No.94.2-15:2015,
- CAN/CSA C22.2 No.60079-0: 2015,
- CAN/CSA C22.2 No.60079-1: 2016,
- CAN/CSA C22.2 No.60079-28: 2016,
- CAN/CSA C22.2 No.60079-31: 2015,
- CAN/CSA C22.2 No.60529: 2016,
- CAN/CSA-C22.2 No. 61010-1-12:2012,
- ANSI/ISA-12.27.01: 2011

Division1, Zone1 Explosionproof
TDLS8100-E1 (IECEx)
Type of protection:
- Ex db [op is T6 Ga] IIC T6 Gb
- Ex tb IIIC T85ºC Db
Enclosure rating: IP66 (In Accordance with IEC 60529)
Applicable standards:
- IEC 60079-31:2013

TDLS8100-S1 (ATEX)
Type of protection:
- II 2(1) G Ex db [op is T6 Ga] IIC T5
- II 2 D Ex tb IIIC T100 ºC Db
Enclosure rating: IP66 (In Accordance with EN 60529)
Applicable standards:
- EN 60079-0:2012+A11:2013,
- EN 60079-1:2014, EN 60079-28:2015,
- EN 60079-31:2014

PERFORMANCE
Repeatability / Linearity:

<table>
<thead>
<tr>
<th>Measured gas</th>
<th>Repeatability</th>
<th>Linearity</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2</td>
<td>+/- 1% reading or +/- 0.01 %O2, whichever is greater</td>
<td>+/- 1% F.S.</td>
</tr>
<tr>
<td>CO (ppm)</td>
<td>+/- 2% reading or +/- 1 ppm CO, whichever is greater</td>
<td>+/- 1% F.S.</td>
</tr>
<tr>
<td>CO or CH4</td>
<td>+/- 2% reading or +/- 1 ppm CO, whichever is greater</td>
<td>+/- 2% F.S.</td>
</tr>
<tr>
<td>CH4</td>
<td>+/- 4% reading or +/- 0.02% CH4, whichever is greater</td>
<td>+/- 4% F.S.</td>
</tr>
</tbody>
</table>

Measurement conditions: Gas temperature: 25 °C, Gas pressure: 0.1 MPa, Optical path length: 1 m

Data Update Cycle:
- Approx. 2 seconds (Response time may increase for non-standard applications) If less than 2 seconds response is required, please consult with Yokogawa

Influences on the Measurement - Application dependent
A. Temperature: The temperature of the measured gas should be taken into account by the analyzer so that the reading can be corrected on a real time basis. The effect is specific to each different measurement gas.

- If the gas temperature is constant at the desired measurement condition, then a fixed gas temperature may be programmed into the analyzer. This fixed value can be used in real time by the analyzer to provide a temperature-compensated reading.
- If the gas temperature is relatively equal to the ambient temperature, then an integral sensor value may be utilized by the analyzer. This active ambient value is used in real time by the analyzer to provide a temperature compensated reading.
- If the gas temperature is variable, then an external sensor value may be utilized by the analyzer. This active input value can be used in real time by the analyzer to provide a temperature compensated reading.

B. Pressure: The pressure of the measured gas must be taken into account by the analyzer so that the reading can be corrected on a real time basis. The effect is specific to each different measurement gas.
- If the gas pressure is constant at the desired measurement condition, then a fixed gas pressure may be programmed to the analyzer. This fixed value can be used in real time by the analyzer to provide a pressure compensated reading.
- If the gas pressure is variable, then an external sensor value may be utilized by the analyzer. This active input value can be used in real time by the analyzer to provide a pressure compensated reading.

YH8000 HMI Unit
The YH8000 is an HMI designed specifically for the TDLS8000 series. The YH8000 features an easy-to-use touchscreen 7.5 inch color LCD which can be used to display maintenance information, display alarm statuses and records, and set all parameters of the TDLS8100.

The YH8000 can be installed directly on the TDLS8000 series or installed remotely.
An Ethernet connection is used to connect the YH8000 to up to four TDLS8000 series simultaneously via a hub.

- Display: Touchscreen 7.5 inch TFT color LCD panel, 640 x 480 (VGA)
- Communication: Ethernet; RJ-45 connector
- Communication speed: 100 Mbps
- Case: Aluminum alloy
- Weight: Approx. 4 kg
- Cable gland for Japan Ex; (/JA1, /JA2) Approx. 320 g/pc
- Mounting: Analyzer mount (Front, left-side, right-side) with tilt function, Pipe mount, or Panel mount (Stainless steel)
- Cable Entries: 1/2NPT or M20x1.5 mm, two holes

Installation conditions:
- Ambient operating temperature: -20 to 55°C
- Storage temperature: -30 to 70°C
- Humidity: 10 to 90%RH at 40°C (Non-condensing)
- Power Supply: 24V DC +/-10%
- Power consumption: Max. 12 W
Safety, EMC, and RoHS conformity standards:

Safety conformity standards:
- CE EN61010-1
- UL UL61010-1
- CSA CAN/CMSA-C22.2 No.61010-1
- GB GB303439 Part 1

Installation Altitude: 2000 m or less
Installation category: I
(Anticipated transient overvoltage 330 V)

Pollution degree: 2, Indoor/Outdoor use
EMC conformity standards:
- CE EN55011 Class A
- EN61326-1 Class A Table 2 (For use in industrial location)
- RCM EN55011 Class A Group 1
- KC KN11 Class A Group 1, KN61000-6-2
(Korea Electromagnetic Conformity)

RoHS conformity standards: EN50581

Information of the WEEE Directive
This product is purposely designed to be used in a large scale fixed installations only and, therefore, is out of scope of the WEEE Directive. The WEEE Directive does not apply. The WEEE Directive is only valid in the EU.

Hazardous area classifications:

Division 2, Zone2: Nonincendive/Type n

YH8000-D2 (FM Approval for US)
Division system
Type of protection: Nonincendive for Class I, Division 2, Groups A, B, C, D, T5
Enclosure rating: Type 4X

Zone system
Type of protection: Class I, Zone 2, AEx nA ic IIC T5
Enclosure rating: IP65

YH8000-C2 (FM Approval for Canada)
Type of protection: Ex nA nL IIC T5
Enclosure rating: IP65, Type 4X

YH8000-S2 (ATEX)
Type of protection: II 3 G Ex nA ic IIC T5 Gc
Enclosure rating: IP65 (In accordance with EN 60529)

YH8000-J2 (Japan Ex)
Type of protection: Ex nA ic IIC T5 Gc
Enclosure rating: IP54 (In accordance with IEC 60529) *1
*1: IP54 that is minimum requirement of Ex standards is confirmed at the conformance assessment of Japan Ex. YH8000 can be used in the environment required IP65.

YH8000-K2 (KOSHA)
Type of protection: Ex nA nL IIC T5
Enclosure rating: IP65 (In accordance with IEC 60529)
Applicable standards: Notice of Ministry of Labor No. 2013-54

YH8000-N2 (NEPSI)
Type of protection: Ex nA ic IIC T5 Gc
Enclosure rating: IP65 (In accordance with GB 4208)
Applicable standards: GB 3836.1-2010, GB 3836.4-2010, GB 3836.8-2014

YH8000-R2 (EAC)
Type of protection: 2Ex nA ic IIC T5 Gc X
Enclosure rating: IP65 (In accordance with GOST 14254-96)

● Calibration Cell
Used for off-line calibrations and validations. Appropriate process windows are included on calibration cell.

Optical Path Length: 500 mm
Material: 316 SS (eq.), Aluminum, BK-7, FKM
Part No.: K9777ZA
Weight: Approx. 4.6 kg
MODEL AND CODES

- **TDLS8100 Probe type Tunable Diode Laser Spectrometer** (Note)

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix Code</th>
<th>Option Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDLS8100</td>
<td></td>
<td></td>
<td>Probe type Tunable Diode Laser Spectrometer</td>
</tr>
<tr>
<td>Structure</td>
<td>-G1</td>
<td>General Purpose, cable entry/piping: NPT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-G2</td>
<td>General Purpose, cable entry: Metric thread, piping: Rc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-D1</td>
<td>FM (US) explosionproof, cable entry/piping: NPT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-C1</td>
<td>FM (Canada) explosionproof, cable entry/piping: NPT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-E1</td>
<td>IECEx explosionproof, cable entry: Metric thread, piping: Rc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-S1</td>
<td>ATEX explosionproof, cable entry: Metric thread, piping: Rc</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>-L</td>
<td>Standard < 600 deg C</td>
<td></td>
</tr>
<tr>
<td>Gas Parameter</td>
<td>-X1</td>
<td>O₂ < 600°C, 0-25% (%) (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-C2</td>
<td>CO ppm < 600°C (%) (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-C3</td>
<td>CO ppm < 600°C for combustion (%) (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-C4</td>
<td>CO ppm < 600°C or CH₄ 0-5%, for combustion (%) (2)</td>
<td></td>
</tr>
<tr>
<td>Probe length</td>
<td>-070</td>
<td>0.7m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-100</td>
<td>1m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-150</td>
<td>1.5m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-200</td>
<td>2m</td>
<td></td>
</tr>
<tr>
<td>Probe material</td>
<td>-S</td>
<td>316SS</td>
<td></td>
</tr>
<tr>
<td>Flange</td>
<td>-U2</td>
<td>ANSI CLASS150-2-RF(Eq.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-U3</td>
<td>ANSI CLASS150-3-RF(Eq.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-U4</td>
<td>ANSI CLASS150-4-RF(Eq.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-D5</td>
<td>DIN PN16-DN50-D(Eq.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-D8</td>
<td>DIN PN16-DN80-D(Eq.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-J5</td>
<td>JIS 10K-50-FF(Eq.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-J8</td>
<td>JIS 10K-80-FF(Eq.)</td>
<td></td>
</tr>
<tr>
<td>I/O interface</td>
<td>-A1</td>
<td>Analog with HART + Modbus Ethernet</td>
<td></td>
</tr>
<tr>
<td>SI Unit</td>
<td>-J</td>
<td>Only SI unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-N</td>
<td>SI unit or non SI unit (*3)</td>
<td></td>
</tr>
<tr>
<td>Always -N</td>
<td>-N</td>
<td>Always -N</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>/RX</td>
<td>Reference Cell for O₂ (*4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/RC</td>
<td>Reference Cell for CO (*5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/SCT</td>
<td>Stainless Steel Tag Plate</td>
<td></td>
</tr>
</tbody>
</table>

*1: When the process gas pressure is out of 90 to 130 kPa (abs.), please contact with YOKOGAWA.

*2: When CO and CH₄ ingredient coexist, please contact with YOKOGAWA.

*3: Enable only to an end user located outside of Japan

*4: The Option “/RX” can be used when Gas Parameter “-X1” is selected.

*5: The Option “/RC” can be used when Gas Parameter “-C2”, “-C3” or “-C4” are selected. When both “-C3” or “-C4” of the Gas Parameter is selected, “/RC” must be specified.

(Note) When arranging TDLS8100, please refer to the following matrix and specify “probe, indicator direction” with the number of [].
YH8000 HMI Unit

<table>
<thead>
<tr>
<th>Model</th>
<th>Suffix Code</th>
<th>Option Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YH8000</td>
<td></td>
<td></td>
<td>HMI Unit</td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-G1</td>
<td></td>
<td></td>
<td>General Purpose, NPT thread for cable entry</td>
</tr>
<tr>
<td>-G2</td>
<td></td>
<td></td>
<td>General Purpose, Metric thread for cable entry</td>
</tr>
<tr>
<td>-GR</td>
<td></td>
<td></td>
<td>EAC General Purpose, Metric thread for cable entry</td>
</tr>
<tr>
<td>-D2</td>
<td></td>
<td></td>
<td>FM (US) Class I Div 2, Zone2, NPT thread for cable entry</td>
</tr>
<tr>
<td>-C2</td>
<td></td>
<td></td>
<td>FM (Canada) Class I Zone2, NPT thread for cable entry</td>
</tr>
<tr>
<td>-S2</td>
<td></td>
<td></td>
<td>ATEX Type of protection “n”, Metric thread for cable entry</td>
</tr>
<tr>
<td>-E2</td>
<td></td>
<td></td>
<td>IECEx Type of protection “n”, Metric thread for cable entry</td>
</tr>
<tr>
<td>-J2</td>
<td></td>
<td></td>
<td>Japan Ex / Zone 2, Metric thread for cable entry</td>
</tr>
<tr>
<td>-K2</td>
<td></td>
<td></td>
<td>KOSHA Type of protection “n”, Metric thread for cable entry</td>
</tr>
<tr>
<td>-N2</td>
<td></td>
<td></td>
<td>NEPSI Type of protection “n”, Metric thread for cable entry</td>
</tr>
<tr>
<td>-R2</td>
<td></td>
<td></td>
<td>EAC Type of protection “n”, Metric thread for cable entry</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-E</td>
<td></td>
<td></td>
<td>English and 9 languages (*1)</td>
</tr>
<tr>
<td>—</td>
<td>-N</td>
<td></td>
<td>Always -N</td>
</tr>
<tr>
<td>Option</td>
<td>/M</td>
<td></td>
<td>Mounting kit for TDLS8000 series</td>
</tr>
<tr>
<td></td>
<td>/P</td>
<td></td>
<td>Pipe mount</td>
</tr>
<tr>
<td></td>
<td>/W</td>
<td></td>
<td>Wall mount</td>
</tr>
<tr>
<td></td>
<td>/S</td>
<td></td>
<td>Sun Shield</td>
</tr>
<tr>
<td></td>
<td>/C</td>
<td></td>
<td>Local HMI connection cable: 3m</td>
</tr>
<tr>
<td></td>
<td>/SCT</td>
<td></td>
<td>Stainless Steel Tag Plate</td>
</tr>
<tr>
<td></td>
<td>/JA1</td>
<td></td>
<td>Cable gland for Japan Ex (Cable O.D. 8-12mm, G1/2), 1 pc(*2)</td>
</tr>
<tr>
<td></td>
<td>/JA2</td>
<td></td>
<td>Cable gland for Japan Ex (Cable O.D. 8-12mm, G1/2), 2 pc(*2)</td>
</tr>
</tbody>
</table>

*1: These languages are message languages on the display. One analyzer has English and 9 languages.
All languages are as follows; English, German, French, Spanish, Portuguese, Russian, Hungarian, Korean, Chinese and Japanese.

*2: For Japan Ex/Zone 2 certified model (YH8000-J2), specified cable glands shall be attached to each cable entry for wiring. For detailed information, refer to Japanese General Specifications (GS 11Y01D01-01JA).
EXTERNAL DIMENSIONS

TDLS8100 Probe type Tunable Diode Laser Spectrometer

<table>
<thead>
<tr>
<th>Flange</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI Class150-2-RF</td>
<td>150</td>
<td>120.7</td>
<td>4-Ø19</td>
<td>20</td>
</tr>
<tr>
<td>ANSI Class150-3-RF</td>
<td>190</td>
<td>152.4</td>
<td>4-Ø19</td>
<td>24</td>
</tr>
<tr>
<td>ANSI Class150-4-RF</td>
<td>230</td>
<td>190.5</td>
<td>8-Ø19</td>
<td>24</td>
</tr>
<tr>
<td>DIN PN16-DN50-D</td>
<td>165</td>
<td>125</td>
<td>4-Ø18</td>
<td>20</td>
</tr>
<tr>
<td>DIN PN16-DN80-D</td>
<td>200</td>
<td>160</td>
<td>8-Ø18</td>
<td>20</td>
</tr>
<tr>
<td>JIS 10K-50-FF</td>
<td>155</td>
<td>120</td>
<td>4-Ø19</td>
<td>16</td>
</tr>
<tr>
<td>JIS 10K-80-FF</td>
<td>185</td>
<td>150</td>
<td>8-Ø19</td>
<td>18</td>
</tr>
</tbody>
</table>

Unit: mm

Process window purge (IN): 1/4NPT or Rc1/4
Optical purge (IN): 1/4NPT or Rc1/4
Optical purge (OUT): 1/4NPT or Rc1/4

Validation gas (IN) x2: 1/4NPT or Rc1/4
Flow restrictor (note): 1/4NPT or Rc1/4
Cable entry: 3/4NPT or M25x1.5

(note) The flow restrictors are attached in the case of type -C1, -D1, -E1, -S1.
● Maintenance space

*1: When installing YH8000 on TDLS8100 with /M, it is necessary to secure this space.
*2: When connecting the calibration cell, it is necessary to secure this space. If install or uninstall of probe, need the additional space depend on probe length.

■ YH8000 HMI Unit

Earth terminal

Cable entry 1 (for TDLS8000 Series)
1/2NPT or M20x1.5

Cable entry 2 (for Modbus)
1/2NPT or M20x1.5
Mounting kit for TDLS8000 series (Option code: /M)

Front mounting

Right mounting

Available for left mounting

Pipe mount (Option code: /P)
Sun Shield (Option code: /S)

Wall mount (Option code: /W)

* The wall construction for mounting has to be designed for 4 times the weight of the YH8000. Bracket for wall mount can be placed in lengthwise.

When the sun shield is mounted, the bracket for wall have to be placed in widthwise.
■ Calibration Cell
Part number: K9777ZA

Wiring:

Wiring the TDLS8100 Probe type Tunable Diode Laser Spectrometer

- AO-1, AO-2, AI-1, AI-2, DI-1, DI-2, DO, FAULT
- SV-1, SV-2, PWR, VO (HMI)

- 4-20mA Input for Pressure transmitter
- 4-20mA Input for Temperature transmitter
- Digital Input
- Digital Output for programmable DO
- Digital Output for FAULT
- 4-20mA Output With HART
- Isolated 4-20mA Output

Magnified Terminal A
- Isolated 4-20mA Output
- 4-20mA Input for Temperature transmitter
- Digital Input
- Digital Output for programmable DO

Magnified Terminal B
- Solenoid Valve Control for Auto Cal
- Power Supply
- 24V DC Output for YH8000 Power
Wiring the YH8000 HMI UNIT

Local HMI configuration

- Ethernet port for DCS
- Ethernet port for TDLS8000 Series
- Connection for power
- Earth for shield wire

Port1 Port2

- Ethernet communication with TDLS8000 Series
- 24V DC power from TDLS8000 Series
- Connect to shield wire terminal

- Connection cable between TDLS8000 Series and YH8000 must be use special cable which can be specified option code “/C.”
- Maximum cable length between TDLS8000 Series and YH8000 is 3m.
- Maximum cable length between YH8000 and DCS is 100m.

Remote HMI configuration

Port1 Port2

- Ethernet communication with TDLS8000 Series via switching HUB
- 24V DC power
- Connect to shield wire terminal

- Maximum cable length between YH8000 and Switching HUB is 100m.