GENERAL
This document describes about CENTUM VP Production Control System (for Vnet/IP) which controls and monitors industrial plants such as oil and gas, petrochemicals, chemicals, electric power, pharmaceuticals, food and beverages, iron and steel, pulp and paper, and water supply and sewage treatment. The CENTUM VP system specifications, system components, and network specifications are found.

COMPONENTS AND SOFTWARE
CENTUM VP system consists of various components for operation and monitoring for process control and other equipments. CENTUM VP is composed of and communicates with each of those equipments via Vnet/IP, a real-time process control network and Ethernet.

Human Interface Station (HIS)
CENTUM VP uses a computer for its human machine interface. It is called HIS when the software packages for operation and monitoring functions are applied on the computer. The desk top type and a console type with assembled displays are selectable. It is also possible to apply both operation and monitoring functions and engineering functions on the HIS. For more details, refer to the following General Specifications (GS).

- Enclosed Display Style Console Assembly (GS 33K50B40-50E)
- Open Display Style Console Assembly (GS 33K50B50-50E)
- Standard Operation and Monitoring Function (GS 33K05D10-50E)
- Vnet/IP Interface Card (GS 33K50C10-50E)

Operation and Monitoring Software
- LHS1100 Standard Operation and Monitoring Function
- LHS1120 Console HIS Support Package for Enclosed Display Style
- LHS1130 Console HIS Support Package for Open Display Style
- LHS1140 Eight-loop Simultaneous Operation Package (for AIP831)
- LHS1150 Server for Remote Operation and Monitoring Function
- LHS2411 Exaopc OPC Interface Package (for HIS)
- LHS2412 CENTUM Data Access Library
- LHS4000 Million Tag Handling Package
- LHS4100 Configured Information Reference Package
- LHS4150 Output to External Recorder Package
- LHS4190 Line Printer Support Package
- LHS4200 Historical Message Integration Package (meeting FDA Regulations)
- LHS4410 Control Drawing Status Display Package
- LHS4420 Logic Chart Status Display Package
- LHS4450 Multiple Project Connection Package
- LHS4600 Multiple-Monitor Support Package
- LHS4700 Advanced Alarm Filter Package
- LHS6510 Long-term Data Archive Package
- LHS6530 Report Package
- LHS6660 Process Management Package (VP Batch)
- LHS6710 FCS Data Setting/Acquisition Package (PICOT)
Engineering Station (ENG)

CENTUM VP ENG is a computer used for system configuration and maintenance. It is also possible to use a single computer for both HIS and ENG functions. The engineering functions can be realized by applying the engineering-related software as listed below.

Engineering-related Software

Here is a list of engineering-related software for CENTUM VP. For more details, refer to the following.

- LHSS100 Standard Builder Function
- LHSS110 Access Control Package
- LHSS150 Graphic Builder
- LHSS165 Batch Builder (VP Batch)
- LHSS166 Recipe Management Package (VP Batch)
- LHSS170 Access Administrator Package (FDA:21 CFR Part 11 compliant) (*1)
- LHSS420 Test Function
- LHSS425 Expanded Test Functions
- LHSS426 FCS Simulator Package
- LHSS427 HIS Simulator Package
- LHSS450 Multiple Project Connection Package
- LHSS490 Self-documentation Package

*1: This package includes LHSS110 Access Control Package functions.

Both HIS and ENG work on the following Microsoft® Windows OS.

- Windows Vista Business Edition
- Windows 7 Professional Edition
- Windows Server 2008 Standard Edition
- Windows Server 2008 R2 Standard Edition

For the combination of CENTUM VP revisions and each of the OS Service Pack, please refer to GS for Standard Operation and Monitoring Function (GS 33K05D10-50E) and Standard Builder Function (GS 33K10D10-50E). For other the third-party software that works on the Windows OS, contact Yokogawa for limitations in use with CENTUM VP.

Documents

CENTUM VP instruction manuals are provided electronically in the DVD as same as other system software.

- LHSS495 Electronic Instruction Manual

For more details, refer to GS for LHSS495 Electronic Instruction Manual (GS 33K01W10-50E).

Remote Operation and Monitoring Function (HIS-TSE)

HIS-TSE enables to operate and monitor a plant, with some limitations, from a remote computer without installing CENTUM VP operation and monitoring functions. By utilizing the Windows server's terminal service (TS) it is possible to operate and monitor CENTUM VP operations simultaneously from several computers via network. Once the network is established, it is possible to display the same HIS views on a remote computer away from the control room.

- LHSS1150 Server for Remote Operation and Monitoring Function

For more details, refer to GS for LHSS1150 Server for Remote Operation and Monitoring Function (GS 33K05D20-50E).

Field Control Station (FCS)

FCS performs control computation functions for each function block and input/output functions for process and software inputs/outputs. Field control unit (FCU) is the core of FCS and following units are available.

- AFV30S: Field Control Unit (for Vnet/IP and FIO, 19-inch Rack Mountable Type)
- AFV30D: Duplexed Field Control Unit (for Vnet/IP and FIO, 19-inch Rack Mountable Type)
- AFV40S: Field Control Unit (for Vnet/IP and FIO, with Cabinet)
- AFV40D: Duplexed Field Control Unit (for Vnet/IP and FIO, with Cabinet)
- AFV10S: Field Control Unit (for Vnet/IP and FIO, 19-inch Rack Mountable Type)
- AFV10D: Duplexed Field Control Unit (for Vnet/IP and FIO, 19-inch Rack Mountable Type)

For more details, refer to GS for AFV30S, AFV30D Field Control Unit, Duplexed Field Control Unit (for Vnet/IP and FIO, 19-inch Rack Mountable Type) (GS 33K50E10-50E), AFV40S, AFV40D Field Control Unit, Duplexed Field Control Unit (for Vnet/IP and FIO, with Cabinet) (GS 33K50E20-50E) and AFV10S, AFV10D Field Control Unit, Duplexed Field Control Unit (for Vnet/IP and FIO, 19-inch Rack Mountable Type) (GS 33K50E30-50E).

Basic Software

- LFS1700 Control Function for Field Control Station (for AFV30□/AFV40□, Vnet/IP and FIO)
- LFS1750 Node Expansion Package (for AFV30□/AFV40□)
- LFS1500 Control Function for Field Control Station (for AFV10□, Vnet/IP and FIO)
- LFS1550 Node Expansion Package (for AFV10□)

For more details, refer to LFS1700 Control Function for Field Control Station (for AFV30□/AFV40□, Vnet/IP and FIO), LFS1750 Node Expansion Package (for AFV30□/AFV40□), LFS1500 Control Function for Field Control Station (for AFV10□, Vnet/IP and FIO), LFS1550 Node Expansion Package (for AFV10□) (GS 33K15C20-50E).

Subsystem Communication Function

FCS communicates with subsystems and field devices to exchange data via network. The following subsystem communication functions are available for CENTUM VP. For more details, refer to the GS for each communication hardware.

Serial Communication:

- ALR111, ALR121 Serial Communication Module (for FIO) (GS 33K50G10-50E)

Ethernet Communication:

- ALE111 Ethernet Communication Module (for FIO) (GS 33K50G11-50E)

Foundation fieldbus Communication:

- ALE111 Ethernet Communication Module (for FIO) (GS 33K50G20-50E)

PROFIBUS-DP Communication:

- ALP121 PROFIBUS-DP Communication Module (for FIO) (GS 33K50G85-50E)
- ALP111 PROFIBUS-DP Communication Module (for FIO) (GS 33K50G80-50E)
Optional Software

Optional software packages are available that perform special functional blocks on FCS, other than the basic software.

LFS3132 Valve Pattern Monitor Package
LFS8620 Off-site Block Package
For details, refer to GS for each software package.

● Generic Subsystem Gateway (GSGW)

GSGW is a station for operation and monitoring subsystems. By using a computer as a platform, GSGW package establishes communications with subsystems via OPC interface defined by the OPC Foundation. Subsystem data is assigned to the GSGW's function blocks which can be controlled and monitored via HIS as same as other control stations.

LFS1250 Generic Subsystem Gateway Package
For more details, refer to GS for Generic Subsystem Gateway Package (GS 33K20F10-50E).

● Unified Gateway Station (UGS)

UGS is a station exclusively used for Vnet/IP to integrate CENTUM VP and subsystem controllers such as STARDOM controllers (FCN/FCJ) and other third-party programmable logic controllers (PLCs).

The UGS standard function allows CENTUM VP to communicate with subsystem controllers via various communication protocols such as Modbus, EtherNet/IP or OPC DA. And CENTUM VP is able to operate and monitor those subsystems via UGS in the same way as its own FCS.

With two units of UGS, the UGS can be configured in dual-redundant.

LBC1500 Unified Gateway Station Standard Function
LBC1501 Dual-redundant Package (for UGS)
LBC1550 OPC Communication Package (for UGS)
LBC1553 Modbus Communication Package (for UGS)
LBC1570 IEC 61850 IED Communication Package (for UGS)
LBC1591 EtherNet/IP Communication Package (for UGS)
For more details, refer to GS for each software package.

● System Integration OPC Station (SIOS)

SIOS is a station to integrate CENTUM VP and the third-party process control systems (PCSs). SIOS enables CENTUM VP exchanges data with and receives alarms and events from the third-party PCSs via OPC interface.

LBC2100 System Integration OPC Client Package
For more details, refer to GS for System Integration OPC client Package (GS 33K20D10-50E).

● Advanced Process Control Station (APCS)

APCS performs advanced control and computation for improving plant operation efficiencies.

LFS1200 APCS Control Functions
For more details, refer to GS for APCS Control Functions (GS 33K15U10-50E).

● Layer 2 Switch (L2SW)

L2SW relays communications among devices connected to the Vnet/IP network. The Vnet/IP domain refers to the Vnet/IP system area connected by L2SW. In the Vnet/IP domain, use L2SW with 1 Gbps communication speed.

● Layer 3 Switch (L3SW)

L3SW relays communications among Vnet/IP domains. For communication among Vnet/IP domains, use L3SW with 1 Gbps communication speed.

● SNTP Server

SNTP server performs time synchronization via networks. Connect Vnet/IP station to SNTP server for synchronizing its time to the Universal Time, Coordinated (UTC).

● V net Router

V net router connects and transmits control communications between the Vnet/IP and V net domains. The control data can be sent and received in both ways between the Vnet/IP and V net domains. Operation and monitoring of the control stations in the other domain, and vice versa, is enabled.

AVR10D Duplexed V net Router (duplexed communication modules and duplexed power supply modules)
For more details, refer to GS for Duplexed V net Router (GS 33K50D10-50E).

● Wide Area Communication Router (WAC Router)

WAC Router is the hardware equipment to connect Vnet/IP domains via Wide Area Network (WAN).

Operations and monitoring of the FCS/SCS that are distributed in remote areas can be achieved by the WAC Router. Satellite communications can also be used as a WAN.

AW810D Wide Area Communication Router
For more details, refer to GS for Wide Area Communication Router (GS 33K50D20-50E).

● Peripheral Devices

Printers and other peripherals devices which each OS support are available to use with CENTUM VP. For details of other peripherals, contact Yokogawa for information.
RELEVANT SYSTEMS

- **Plant Resource Manager (PRM®)**
 PRM is a software package for online asset management of field devices and equipments. By monitoring and managing the device status and the maintenance information, it enables to reduce plant's Total Cost of Ownership (TCO).
 PRM communicates with devices with digital communication functions such as Foundation fieldbus, HART, and field wireless (complies with ISA 100.11a) devices, as well as conventional analog devices with no digital communication function.
 For more details of the PRM specifications, refer to GS for Plant Resource Manager (GS 33Y05Q10-32E).

- **ProSafe-RS Safety Instrumented System**
 ProSafe-RS has certified by Technische Überwachungs Verein (TÜV) as a safety system to satisfy safety integrity level (SIL) 3 of IEC 61508.
 A safety control station (SCS) of ProSafe-RS monitors plant safety always, and it performs safety functions when needed. Safety engineering PC (SENG) performs engineering and maintenance of SCS. ProSafe-RS can be integrated with CENTUM VP, which enables SCS operation and monitoring from HIS.
 For more details, refer to GS for ProSafe-RS Safety Instrumented System (GS 32Q01B10-31E).

SECURITY MEASURES

- **Endpoint Security Service**
 The Endpoint Security Service helps reduce risks for computer from malware infection and provides various supports in maintaining control system’s security throughout its lifecycle.
 The Endpoint Security Service provides services such as AV/OS Implementation Service, AV/OS Update Service, Virus Check Service, and Software Backup Service.
 For more details, refer to GS for Endpoint Security Service (GS 43D02T30-02EN).

SYSTEM SPECIFICATIONS

- **HIS Operation/Monitoring Tags:**
 Maximum 100000 per system (when LHS4000 is in use, up to 1000000 per system).

- **Minimum System Configuration**
 A minimum system of CENTUM VP consists of the following equipments:
 - HIS x 1 unit
 - ENG x 1 unit
 - FCS x 1 unit
 HIS and ENG can be consolidated in one computer.

- **Maximum System Configuration**
 - 64 Vnet/IP devices/domain
 - 16 domains/system
 - 256 stations/system
 For maximum number of FCS per an entire system, refer to **REMARKS FOR SYSTEM CONFIGURATIONS/**
 - Maximum number of FCS per an entire system.
The Vnet/IP devices refer to a computer with Vnet/IP Interface Card (VI702), an FCS for Vnet/IP, and/or a V net router. Followings are Vnet/IP devices for CENTUM VP.

- HIS: Human Interface Station
- ENG: Engineering Station
- FCS: Field Control Station
- APCS: Advanced Process Control Station
- GSGW: Generic Subsystem Gateway
- UGS: Unified Gateway Station
- SIOS: System Integration OPC Station
- Exaopc: OPC Interface Package
- AVR10D: V net Router
- AW810D: WAC Router

Equipments connectable with CENTUM VP.

- SENG: Safety Engineering PC
- SCS: Safety Control Station
- PRM: PRM Server, Field Communications Server, etc.

Figure - An Example of System Configuration
System Expansion

By adopting layer 3 switch (L3SW), Vnet/IP domains can be connected to form a hierarchical system configuration. With a V net router, V net domains can be connected with other V net and/or VL net systems. The existing HF bus and/or RL bus systems cannot connect directly with Vnet/IP domains; however, it can be connected using a bus converter (BCV) on the V net via V net router. When the system is configured hierarchically using L3SW and V net routers, it is possible to expand the system scale exceeding the maximum system configuration per domain. It means that CENTUM VP system can be extendedly connected with other control systems in hierarchical layers beyond its maximum system scale.

No. of domains: Maximum 16 domains (Vnet/IP domains + V net domains)
No. of domain layers connected with Vnet/IP systems via V net routers: 3 layers (2 layers for bus converter, 3 layers for V net)
No. of operation/monitoring tags: Maximum 100000 (when LHS4000 is in use, up to 1000000 per system)
Connecting devices: L3SW, V net router, and Bus converter

When counting the number of V net layers, Vnet/IP domains and V net routers in the access paths are not counted as a layer. The figure below shows an example of layers in hierarchical configuration.

Figure An Example of System Expansion

A Vnet/IP domain and a V net domain can be configured as a single project for engineering. Or, a Vnet/IP domain and a V net domain can be treated as different projects and connect them by LHS4450 multiple project connection package.

For more details, refer to GS for Multiple Project Connection Package (GS 33K05K20-50E).
MULTIPLE PROJECT CONNECTION

CENTUM VP manages FCS and HIS engineering data, generated by the system builder functions, by the unit of project. The multiple project connection is a function to integrate operation and monitoring of the multiple projects. CENTUM VP HIS integratively monitors CENTUM VP, CENTUM CS 3000, CENTUM CS 1000, and CENTUM CS projects without changing the identical names (e.g. tag name, project name, and plant hierarchy name) and common resources (e.g. engineering unit, and operation mark).

There are two ways of multiple project connection.

- **Hierarchical Connection**
 CENTUM VP project on the upper-layer operates and monitors lower-level projects. In this case, CENTUM VP on the upper-level project requires installing a multiple project connection package. From the lower-level projects, operation and monitoring of the CENTUM VP on the upper-level is not available. Following types of multiple connections are available.

 CENTUM VP→CENTUM VP CENTUM VP→CENTUM CS 3000 CENTUM VP→CENTUM CS 1000 CENTUM VP→CENTUM CS

 CENTUM VP
 upper-level project
 ↓
 CENTUM VP
 lower-level project

 CENTUM VP
 upper-level project
 ↓
 CENTUM CS 3000
 lower-level project

 CENTUM VP
 upper-level project
 ↓
 CENTUM CS 1000
 lower-level project

 CENTUM VP
 upper-level project
 ↓
 CENTUM CS
 lower-level project

- **Bi-directional Connection**
 Operation and monitoring of the connected projects are enabled bi-directionally. The bi-directional connection is applicable only for CENTUM VP projects and/or CENTUM VP and CENTUM CS 3000 projects. Multiple project connection packages are required for both upper- and lower-levels of the systems.

 CENTUM VP→CENTUM VP CENTUM VP→CENTUM CS 3000

 CENTUM VP
 upper/lower level project
 ↓
 CENTUM VP
 lower/upper level project

 CENTUM VP
 upper/lower level project
 ↓
 CENTUM CS 3000
 lower/upper level project

 CENTUM VP
 upper/lower level project
 ↓
 CENTUM CS 3000
 lower/upper level project

For more details, refer to GS for LHS5450, LHS4450 Multiple Project Connection Package (GS 33K05K20-50E).
NETWORK SPECIFICATIONS

CENTUM VP uses Vnet/IP and Ethernet for communications among configured devices.

- **Vnet/IP**

 Vnet/IP is a gigabit Ethernet-based control network for process automation. It provides real-time communication with high reliability which is indispensable for stable plant operations. Vnet/IP is a dual-redundant control network, consisting of Bus 1 and Bus 2. Bus 1 is normally used for control communication to transmit control data; however, when the Bus 1 fails, it automatically switches its communication path and Bus 2 continues the control communication without stopping.

 It can be connected between Vnet/IP domains using the wide area communication router and WAN. The same is also available by the wide area connection via dedicated network using Layer 3 Switches. For the conditions of this connection, contact Yokogawa for further information.

Figure Network Configuration

Communication Specification

Control Communication
- Communication method: Read/write communication, message communication, link transmission
- Link transmission period: 100 ms

Transmission specifications
- Network topology: Star topology
- Transmission redundancy: Dual-redundant (for control network communication only)

Cable Specification
- Cable: Unshielded twist-pair (UTP) with enhanced category 5 or superior (ANSI: TIA/EIA-568-B-compliant)
- Connector: RJ-45 modular jack (ISO8877-compliant)

<table>
<thead>
<tr>
<th>Connection</th>
<th>Cable Standard</th>
<th>Speed</th>
<th>Maximum Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between component and a layer 2 switch</td>
<td>100BASE-TX (IEEE802.3u)</td>
<td>100 Mbps (*1)</td>
<td>100 m</td>
</tr>
<tr>
<td></td>
<td>1000BASE-T (IEEE802.3ab)</td>
<td>1 Gbps</td>
<td></td>
</tr>
<tr>
<td>Between layer 2 switches</td>
<td>1000BASE-T (IEEE802.3ab)</td>
<td>1 Gbps</td>
<td>100 m</td>
</tr>
<tr>
<td></td>
<td>1000BASE-LX (IEEE802.3z)</td>
<td>1 Gbps</td>
<td>5 km (*2)</td>
</tr>
<tr>
<td>Between a layer 2 switch and a layer 3 switch</td>
<td>1000BASE-T (IEEE802.3ab)</td>
<td>1 Gbps</td>
<td>100 m</td>
</tr>
<tr>
<td></td>
<td>1000BASE-LX (IEEE802.3z)</td>
<td>1 Gbps</td>
<td>5 km (*2)</td>
</tr>
</tbody>
</table>

*1: Applicable only for V net Router and ProSafe-RS SCS.
*2: 1000 BASE-LX standard defines the transmission distance as up to 5 km for a single mode optical fiber. In case further length is required, refer to Network Switch for Vnet/IP (T1 30A10A30-01E).

Communications between Instruments

Distance between the two arbitrary stations in a domain: Maximum 40 km

Note: Only one pair of media converters (SFP Modules) can be connected for establishing the communication among control stations such as FCS, ENG, and HIS, and Layer 2 switches.
Ethernet

Ethernet is a network used for file transfer and information communication among HIS, ENG, and other general-purpose Ethernet instruments. Ethernet communication is usually performed via an Ethernet card mounted a computer or a server. In this section the term, Ethernet communication, refers to the communication based on the various Ethernet-based standard protocols.

Communication Protocol

Based on IEEE802.3

Conditions for Ethernet Communication using Vnet/IP Bus 2

Ethernet communication usually uses a network independent from Vnet/IP. However, when all the following conditions are met, it is enabled to perform Ethernet communication by using Vnet/IP Bus 2. In case any one of the conditions is not met, it is recommended to use an independent network from Vnet/IP for Ethernet communication.

- A system is composed of only Vnet/IP network and has no connection with V net or VL net via V net router.
- A system includes none of the followings – Exaopc (*1), HIS-TSE, UGS (*2), SIOS, GSGW, or APCS.
- No integration with ProSafe-RS.
- When using PRM, PRM server and field communications server run on the same computer, and PRM client runs on a computer with Vnet/IP Interface Card, such as HIS or computer on which field communications server runs.
- 16 or less computers with Vnet/IP interface card for HIS and ENG. (*3)
- Instruments connected with L2SW for Bus 2 are Vnet/IP interface card’s Bus 2 port mounted on the computer, a network printer (*4), and a file server (*4) only.

When the Ethernet communication is performed by the Vnet/IP Bus 2, it is called an open communication. Vnet/IP realizes dual-redundancy of the control communication. Bus 2 always performs the open communication while Bus 1 is for control communication. When the Bus 1 control communication fails, Bus 2 performs both the control and the open communications.

*1: NTPF100 Exaopc OPC Interface Package (refer to GS 36J02A10-01E). This condition is not applied for LHS2411 Exaopc OPC Interface Package (for HIS).

*2: For the dual-redundant configuration of UGS (refer to GS 33K20C10-50E), it is strongly recommended to perform Ethernet communication by the network connected to a UGS’s Ethernet card, and do not use Vnet/IP Bus 2 communication.

*3: When the number of computer with Vnet/IP interface card exceeds 16, it is suggested to perform Ethernet communication by the network connected to a computer’s Ethernet card, and do not use Vnet/IP Bus 2 communication. When the number of computer exceeds 50, this method is strongly recommended.

*4: When the Vnet/IP Bus 2 performs Ethernet communication, it is possible to connect a network printer or a fileserver to the Vnet/IP Bus 2. However, the sum of the communication band by these equipments should not exceed 300 Mbps.

For more information about using Vnet/IP bus 2 to perform Ethernet communication, refer to Vnet/IP Network Construction Guide(TI 30A10A05-01E).
I/O COMMUNICATIONS BUS

• ESB Bus/Optical ESB Bus for AFV30□/AFV40□

An ESB bus and an optical ESB bus are used as an input/output communication bus connecting an FCS’s intelligent part with an ESB bus node unit and optical ESB bus node unit.

Communication Specifications

Applicable units: ESB Bus Node Unit (ANB10□), Optical ESB Bus Node Unit (ANB11□), and Unit for Optical ESB Bus Repeater Module (ANT10U).

No. of communication units: Numbers of ESB bus node units and optical ESB bus node units that can be connected to ESB bus varies depending on the control functions. Number of unit for optical ESB bus repeater module is not included in the number of the communication devices.

<table>
<thead>
<tr>
<th>Field Control Unit</th>
<th>Control Function</th>
<th>No. of ESB and Optical ESB Bus Node Units (*1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFV30□ (2)</td>
<td>Control Function for Field Control Station (LFS1700)</td>
<td>Max. 3/FCU</td>
</tr>
<tr>
<td>AFV40□ (2)(3)</td>
<td>Control Function for Field Control Station (LFS1700) plus Node Expansion Package (LFS1750-V11)</td>
<td>Max. 9/FCU</td>
</tr>
<tr>
<td></td>
<td>Control Function for Field Control Station (LFS1700) plus Node Expansion Package (LFS1750-V21)</td>
<td>Max. 13/FCU</td>
</tr>
</tbody>
</table>

*1: Model codes for ESB Bus Node Unit ANB10□ and Optical ESB Bus Node Unit is ANB11□.

*2: For connecting ESB bus node units and optical ESB bus node units to the FCUs (AFV30□/AFV40□), install ESB Bus Coupler Modules (EC401 or EC402) in slots No. 7 and 8. Maximum 9 units of node units can be connected to EC401. As for EC402, maximum 9 units of node units can be connected to upper and lower sides each; however, the total number of the connected node units must not exceed the maximum numbers indicated in the above table.

*3: As for AFV40□, the maximum 11 units of ESB bus node units, optical ESB bus node units, and units for optical ESB bus repeater module can be installed in a single cabinet.

Transmission Specifications

Network topology: Bus topology

Transmission: Dual-redundant or single. When the processor module has a dual-redundant configuration, the dual-redundant transmission is mandatory.

Transmission speed: 128 Mbps

Transmission cable: Dedicated cable (YCB301), or optical fiber cable (*1)

Transmission distance: Max. 10 m (*2), and 50 km (with Optical ESB Bus Repeater Module) (*3)

*1: Optical fiber cable specifications
Connector: LC type (compliant to IEC 61754-20)
Cable: Quartz single-mode fiber (JIS C6835 SSMA-9.3/125, IEC 60793-2-50B1.1) is recommended.
No. of cores: 2

*2: Max. 10 m for EC401. Max. 10 m each on the upper and lower sides for EC402.

*3: It is possible to extend up to 5 km using ANT401/ANT502 and 50 km using ANT411/ANT512. Chain or star type topologies are applicable.
ESB bus can be extended using an optical ESB bus repeater module. Chain, star, or combinations of others are available for communication topologies.

ESB Bus for AFV10

An ESB bus is used as an input/output communication bus connecting an FCS’s intelligent part with an ESB bus node unit and optical ESB bus node unit.

Communication Specifications

Applicable units: ESB Bus Node Unit (ANB10)

No. of communication units: Numbers of ESB bus node units that can be connected to ESB bus varies depending on the control functions.

<table>
<thead>
<tr>
<th>Field Control Unit</th>
<th>Control Function</th>
<th>No. of ESB Bus Node Units (*1)</th>
<th>No. of Optical ESB and ER Bus Node Units (*1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFV10 (*2)</td>
<td>Control Function for Field Control Station (LFS1500)</td>
<td>Max. 3/FCU</td>
<td>Max. 3/FCU</td>
</tr>
<tr>
<td></td>
<td>Control Function for Field Control Station (LFS1700) plus Node Expansion Package (LFS1750-V11)</td>
<td>Max. 9/FCU</td>
<td>Max. 14/FCU</td>
</tr>
</tbody>
</table>

*1: Model codes for ESB Bus Node Unit is ANB10 and ER Bus Node Unit is ANR10.

*2: For connecting ESB bus node units in an AFV10, install ESB Bus Couple Modules (EC401) in slots No. 7 and 8.

Transmission Specifications

- Network topology: Bus topology
- Transmission: Dual-redundant or single. When the processor module has a dual-redundant configuration, the dual-redundant transmission is mandatory.
- Transmission speed: 128 Mbps
- Transmission cable: Dedicated cable (YCB301)
- Transmission distance: Max. 10 m
ER Bus for AFV10

An ER bus is used as an input/output communication bus connecting an ER bus node unit with ESB bus node unit or FCU for AFV10.

Communication Specifications

Applicable units: ER Bus Node Unit (ANR10)
Number of ER buses: Max. 4 per FCU
No. of communication units: Numbers of ER bus node units that can be connected to ER bus varies depending on the control functions.

<table>
<thead>
<tr>
<th>Field Control Unit</th>
<th>Control Function</th>
<th>No. of ER Bus Node Units (*1)</th>
<th>No. of ESB and ER Bus Node Units (*1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFV10</td>
<td>Control Function for Field Control Station (LFS1500)</td>
<td>Max. 3/FCU</td>
<td>Max. 3/FCU</td>
</tr>
<tr>
<td></td>
<td>Control Function for Field Control Station (LFS1500) plus Node Expansion Package (LFS1550)</td>
<td>Max. 14/FCU (*2)</td>
<td>Max. 14/FCU</td>
</tr>
</tbody>
</table>

Note: No. of ER bus: Max. 4/FCU.
*1: Model codes for ESB Bus Node Unit is ANB10 and ER Bus Node Unit is ANR10.
*2: Up to 8 ER bus node units per ER bus can be connected.

Transmission Specifications

Network topology: Bus topology
Transmission: Dual-redundant or single. When the processor module has a dual-redundant configuration, the dual-redundant transmission is mandatory.
Transmission speed: 10 Mbps
Transmission cable: Coaxial cable (YCB141, YCB311). Use “YCB147/YCB149” Bus Adapter unit to connect YCB311 with YCB141 cable for extension. Use a Grounding Unit (YCB117) per segment (*1) when YCB311 is used.
Transmission distance:
For YCB141: Max. 185 m
When YCB141 and YCB311 are connected: Length of YCB141 + (185/500) x Length of YCB311 ≤ 185 m
No. of bus adapter units: Max. 4 per segment (*1)

For General-purpose Ethernet repeater:
The total transmission distance is limited by the number of repeaters.
L ≤ 4 − 0.5 x n
L: Total transmission distance (km)
N: No. of general-purpose Ethernet repeater (Max. 4 repeaters)

*1: When ER bus is used with repeaters, each part of the ER bus segmented by a repeater is called a segment.
Figure Example of ER Bus connection
REMARKS FOR SYSTEM CONFIGURATIONS

Use of server due to the number of computer in a system

When a CENTUM VP system consists of five or more computers, for use as HIS and others, consider if a server (OS: Windows Server) is required or not for storing CENTUM VP project data. A server is required when a CENTUM VP system with nine or more computers and LHS5425 Expanded Test Functions are applied. In case LHS5170 Access Administrator Package (for FDA: 21 CFR Part11 compliant) is applied where there are nine or more computers connected, provide a server for historical data storage.

Project Data Storage

When a CENTUM VP system consists of more than five clients use below calculations to judge if it requires a server for project data storage or not. In case the calculated value is greater than the value on the right side (i.e. 9) save the project data in a server.

Judging Criteria

- SSS5700 Engineering Tool for Fieldbus is not in use

 \[\text{Equation 1} : \text{No. of Exaopc + No. of HIS} + (\text{No. of ENG} - 1) \times 2 \geq 9\]

- SSS5700 Engineering Tool for Fieldbus is in use

 \[\text{Equation 2} : \text{No. of Exaopc + No. of HIS} + (\text{No. of ENG} - 1) \times 2 + 2 \geq 9\]

- LHS4450 Multiple Project Connection Function is in use.
 Calculate and judge by the criteria shown in the below table. When the number of stations is greater than the value on the right side of the equation, project data has to be stored on a server. Prepare two servers when the calculation results require one each for both upper and lower levels of the project. However, a server is not required when CENTUM CS is used for the lower-level project, and calculation is applied only for the upper-level project.

<table>
<thead>
<tr>
<th>Multiple Project Connection Function is in use</th>
<th>SSS5700 Engineering Tool for Fieldbus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper-level project</td>
<td>Equation 1</td>
</tr>
<tr>
<td>Lower-level project</td>
<td>Equation 2</td>
</tr>
</tbody>
</table>

Judging Criteria

\[\text{Equation 3} : \text{No. of Exaopc + No. of HIS} + (\text{No. of ENG} - 1) \times 2 + \alpha \geq 9\]

\[\text{Equation 4} : \text{No. of Exaopc + No. of HIS} + (\text{No. of ENG} - 1) \times 2 + 2 + \alpha \geq 9\]

\(\alpha\): No. of HIS with LHS4450 Multiple Project Connection Packages on the upper-level project

No. of Exaopc: No. of computer with NTPF100 Exaopc OPC Interface package.

(LHS2411 Exaopc OPC Interface Package is excluded.)

No. of HIS: No. of computer with LHS1100 Standard Operation and Monitoring Function

(Count all the number of this package used in the project.)

No. of ENG: No. of computer with LHS5100 Standard Builder Function.

(Count all the number of this package used in the project. When it is resided with the standard operation and monitoring function, count them independently.)

Audit Trail Management Data Storage

When the sum of computers is nine or more (for ENG, and Recipe Management computer) for stations connected to CENTUM VP while LHS5170 Access Administrator Package (FDA: 21 CFR Part11 compliant) is resided, save the audit trail management data in a server. Calculate the sum of computers to be connected by using the following Equation 5. When the calculation result is eight or less, there is no need for server.

\[\text{Equation 5} : \text{No. of stations connected} = \text{No. of recipe management package + No. of ENG}\]

No. of Recipe Management Package: No. of computer with LHS5166 Recipe Management Package (VP Batch).

ENG: No. of computer with LHS5100/LHM5100 Standard Builder Function.
Maximum number of FCS per an entire system

A control drawing describes FCS’s application program. It consists of several function blocks and inputs/outputs, and it describes a part of plant equipment control. When LFS1750 Node Expansion Package (for AFV30/AFV40) is used together with LFS1700 Control Function for Field Control Station (for AFV30/AFV40, Vnet/IP and FIO), the number of connectable nodes and application capacities can be expanded. When creating a new FCS definition using LFS1750, the number of control drawings can be specified by the builder function. The number of control drawings can be selectable as shown below.

No. of control drawings: Selectable from 200 (default), 300, 400, or 500

Note: When LFS1750 is not used, the number of control drawings is fixed at 200.

The maximum number of FCS to be configured in the entire system depends on how many control drawings per FCS are specified. The table below shows a guideline of the maximum number of FCS that can be configured in a system when all the FCS select the same number of control drawings per FCS. When different number of control drawings are assigned per FCS, the maximum number of FCS per system changes. Please contact Yokogawa for details.

Table: A Guideline of Maximum No. of FCS by the No. of Control Drawings

<table>
<thead>
<tr>
<th>No. of control drawings per FCS</th>
<th>Maximum No. of FCS per system</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>114 (*1)</td>
</tr>
<tr>
<td>300</td>
<td>83</td>
</tr>
<tr>
<td>400</td>
<td>65</td>
</tr>
<tr>
<td>500</td>
<td>54</td>
</tr>
</tbody>
</table>

*1: This is the sum of all types of FCS for Vnet/IP and V net. Out of 114 FCS, up to 86 of AFV30/AFV40 or 64 of AFV10 can be configured. Please contact Yokogawa for details.
COMPLIANCE TO FDA: 21 CFR PART 11

Part 11 of Title 21 of the Code of Federal Regulations (21 CFR Part 11) is a regulation issued by the U. S. Food and Drug Administration (FDA) providing a criteria of electronic records, electronic signatures, and handwritten signatures executed to electronic records as equivalent to paper records and handwritten signatures executed on paper. The main categories of the FDA: 21 CFR Part 11 requirements to the process control system can be interpreted as “limiting system access to authorized individuals” and “audit trail” functions.

- **Limiting System Access (Individual Authentication)**
 CENTUM VP has two approaches for limiting access to the system; one is “engineer/operator authentication” and the other is “confirmation of authentication.” Engineer/operator authentication is to identify engineers and operators in operation as well as to maintain operation records. Names of the engineers and operators are registered to the system in advance, and if their names and the passwords are not identified, the control system does not allow them to perform further operations. Confirmation of authentication is to confirm if an engineer or an operator has appropriate authorities to perform certain operations. The engineer/operator authentication and the confirmation of authentication will be performed independently as necessary.

- **Audit Trail Management**
 CENTUM VP audit trail function saves change data to the predefined database whenever an engineering work that may influence the product quality such as data downloads to FCS. All the actions performed are also stored in the historical log file. With this function, who, when, what, how, and why data is changed can be traced back.

Here is an example of CENTUM VP system configuration complied with 21 CFR Part 11. LHS5166 Recipe Management Package of VP Batch is adopted for recipe management.

Figure An Example of System Configuration

1: A removable media for storage.
CENTUM VP ENTRY CLASS SYSTEM CONFIGURATION

CENTUM VP Entry Class is a system designed for a small-scale project. CENTUM VP Entry Class controls and monitors up to 8000 tags.

- System Configuration and Software

CENTUM VP Entry Class offers the following software packages.

<table>
<thead>
<tr>
<th>Model Code</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHM1101</td>
<td>Standard Operation and Monitoring Function</td>
<td>No. of Tags: Maximum 8000</td>
</tr>
<tr>
<td>LHM1150</td>
<td>Server for Remote Operation and Monitoring Function</td>
<td>—</td>
</tr>
<tr>
<td>LHM4410</td>
<td>Control Drawing Status Display Package</td>
<td>—</td>
</tr>
<tr>
<td>LHM4420</td>
<td>Logic Chart Status Display Package</td>
<td>—</td>
</tr>
<tr>
<td>LHM6660</td>
<td>Process Management Package</td>
<td>No. of Active Recipe: Type A: 4 or less Type B: 10 or less Type C: 999 or less</td>
</tr>
<tr>
<td>LHM6710</td>
<td>FCS Data Setting/Acquisition Package (PICOT)</td>
<td>—</td>
</tr>
</tbody>
</table>

Software for Engineering

<table>
<thead>
<tr>
<th>Model Code</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHM5100</td>
<td>Standard Builder Function</td>
<td>—</td>
</tr>
<tr>
<td>LHM5150</td>
<td>Test Function</td>
<td>—</td>
</tr>
<tr>
<td>LHM5490</td>
<td>Self-documentation Package</td>
<td>—</td>
</tr>
</tbody>
</table>

The same packages for CENTUM VP system can be used other than the above packages. There is no limitation in FCS.

LHS4000 Million tag handling package (for one million tag) is not applicable to CENTUM VP Entry Class HIS. As for multiple project connection function for CENTUM VP Entry Class, refer to GS for Multiple Project Connection (GS 33K05K20-50E).

INSTALLATION ENVIRONMENT

Hardware standard installation environment is described as below, except for that of computer, Enclosed Display Style Console, Node Units and I/O Modules for FIO. For more details, refer to the specifications or GS for computer, HIS for enclosed display style console, open desktop style console, Node Units and I/O Modules for FIO node unit.

- Ambient temperature:
 - 5 – 40 °C (Desk for CENTUM (YAX101), General-purpose Desk(YAX801))
 - 0 – 50 °C (FCS, BCV, Bus Repeater, Node Unit)

- Ambient humidity:
 - 20-80 % RH
 - 10-90 % RH (FCS, BCV, Bus Repeater, Node Unit with no dew condensation)

- Temperature change rate: ± 10°C/hour

- Power supply:
 - 100-120V AC ± 10%, Frequency: 50/60 Hz ± 3 Hz
 - 220-240V AC ± 10%, Frequency: 50/60 Hz ± 3 Hz
 - 24 V DC ± 10%

- Withstanding Voltage:
 - 100-120 V AC: 1500 V AC for 1 minute
 - 220 V AC: 500 V AC for 1 minute

- Insulation resistance:
 - 20 MΩ/500 V DC
 - 10 MΩ/500 V DC (for YAX101 and YAX801)

- Grounding: Independent ground of up to 100 Ω resistance

- Noise:
 - Electrical Field: Up to 3 V/m (26 MHz to 1.0 GHz)
 - Up to 3 V/m (1.4 to 2.0 GHz)
 - Up to 1 V/m (2.0 to 2.7 GHz)

 Magnetic Field: Up to 30 A/m (AC), Up to 400 A/m (DC)

 Static: Up to 4 kV (direct discharge), Up to 8 kV (aerial discharge)

 Continuous Vibration:
 - Displacement amplitude: Up to 0.25 mm (1 to 14 Hz)
 - Acceleration: Up to 2 m/s² (14 to 100 Hz)
REGULATORY COMPLIANCE

CENTUM VP hardware conforms to the standards listed below. See respective GS to find out what standards each hardware complies.

Safety Standards (*1) (*2) (*3)
[CSA]
CAN/CSA-C22.2 No.61010-1
[CE Marking] Low Voltage Directive
EN 61010-1 and EN 61010-2-030
[EAC Marking]
CU TR 004

EMC Conformity Standards (*2)
[CE Marking] EMC Directive
EN 55011 Class A Group 1 (*4)
EN 61000-6-2 (*5)
EN 61000-3-2 (*6)
EN 61000-3-3 (*7)
[RCM]
EN 55011 Class A Group 1 (*4)
[KC Marking]
Korea Electromagnetic Conformity Standard
[EAC Marking]
CU TR 020

Standards for Hazardous Location Equipment
For selecting the right products for explosion protection, please refer to TI 33Q01J30-01E without fail.

[FM Intrinsic Safety]
Associated intrinsically safe apparatus for connection to
Class I, II and III, Division 1, Groups A, B, C, D, E, F and G or
Class I, Zone 0, Group II C
Class 3600: 2011
Class 3610: 2010
ANSI/ISA-60079-0: 2009
ANSI/ISA-60079-11: 2009

Note: In relation to the CE Marking, the manufacturer and the authorised representative for CENTUM in the EEA are indicated below:
Manufacturer: YOKOGAWA Electric Corporation
(2-9-32 Nakacho, Musashino-shi, Tokyo 180-8750, Japan.)
Authorised representative in the EEA:
Yokogawa Europe B.V.
(Euroweg 2, 3825 HD Amersfoort, The Netherlands.)

*1: For ensuring all the hardware devices to satisfy the safety standards, the dedicated breakers in the power supply distribution board must conform to the following specifications.
[CSA] CSA C22.2 No.5 or UL 489
[CE Marking] EN 60947-1 and EN 60947-3
[EAC Marking] EN 60947-1 and EN 60947-3

*2: To conform to the safety standards and the EMC conformity standards, install the 19-inch rack mountable type devices in a keyed metallic cabinet.

*3: Measurement inputs of this equipment are applied to Measurement category I for IEC/EN/CSA 61010-1:2001 and O (Other) for EN 61010-2-030. For details, see “CENTUM VP Installation Guidance” (TI 33K01J10-50E).

*4: A Class A hardware device is designed for use in the industrial environment. Please use this device in the industrial environment only.

*5: A lightening arrester or the like is required to meet this surge immunity standard. The length of the cable to feed the external power supply for AGS813 AO channels should not exceed 30 meters.

*6: An external device such as a power unit with harmonic current neutralizer and an active harmonics conditioner must be connected to meet this harmonic current emission standard.

*7: The specified limits of voltage drop across wiring must be satisfied to meet this standard.

*8: To meet the standard for hazardous location equipment, 19-inch rack-mounted devices must be installed in a keyed metallic cabinet approved by CSA or non-incendive regulator in your area.

*9: To meet the standard for hazardous location equipment, 19-inch rack-mounted devices must be installed in a keyed metallic cabinet approved by FM or non-incendive regulator in your area.

*10: “X” indicates specific condition of use. To be compatible with Type n, for example the requirements of cabinet must be met. For details, refer to the Explosion Protection (TI 33Q01J10-01E).

*11: Applied for products complied with Type n, except for AFV10S, AFV10D, AFV30S and AFV30D.

*12: Applied for the below products.
AFV10S, AFV10D, AFV30S and AFV30D

*13: ADR541 does not comply with Type n.
TRADEMARKS

• CENTUM, Vnet/IP, ProSafe, Exaopc, and PRM are registered trademarks of Yokogawa Electric Corporation.
• Other product and company names appearing in this document are trademarks or registered trademarks of their respective holders.