General Specifications

Model JH12 Isolator (2-output, Free Range Type) (with Square Root Extractor) **NTXUL**

GS 77J03H01-02E

General

The JH12 is a plug-in type isolator that converts DC current or DC voltage signals into isolated DC current or DC voltage signals.

- Selection of square root extractor, input setting, I/O adjustment, I/O monitoring, and segmental point setting (for custom order only) can be made through a PC (VJ77) or Handy Terminal (JHT200).
- The operation indicating lamp shows the operating status, abnormal setting and the like.
- I/O adjustment can be made using a switch on the front of the JH12 without a setting tool such as Handy Terminal.

■ Model and Suffix Codes

■ Items to be Specified when Ordering

• Model and Suffix Codes: e.g. JH12-14-1AAA

Specify a lowcut point when "with square root extractor" is required: e.g. Lowcut point 0.4% The isolator will be shipped with a lowcut point of 0.6% if no specification of lowcut point.

Specify segmental points (32 points) in Work Sheet when segmental line linearization is required.

The isolator will be shipped with proportional I/O if no specification of segmental points.

■ Input/Output Specifications

Input signal: DC voltage or DC current signal Input resistance: Attach an external resistor for current input.

Inp	ut Range	Input Resistance	Input Range		Range Input Resistand	
4 to	20mA DC					1 M Ω during power on
2 to	10mA DC		0	to	1V DC	10 k Ω during power off
1 to	5mA DC	250Ω				
0 to	20mA DC	25012	0	to	10V DC	
0 to	16mA DC		0	to	5V DC	1 M Ω during power on
0 to	10mA DC		1	to	5V DC	800 k Ω during power off
0 to	1mA DC	1kΩ	-10 to+10V DC		+10V DC	

Allowable input level:

Voltage input: Within ±15 V DC

Current input: 40mA or less for input resistance of 250 Ω 10mA or less for input resistance of 1k Ω

Square Root Extraction Function: Outputted against the result of extracting square root of input.

Lowcut Function: Available only when the square root extraction function is specified.

Setting Range: 0.3 to 100 % of input, setting available by 0.1 % notch
Output for lowcut point or less is cramped with straight line proportional to input.

Output signal: DC voltage or DC current signal Allowable load resistance:

Output-1 Range	Allowable Load Resistance	Output-1 Range	Allowable Load Resistance
4 to 20 mA DC	750 Ω maximum	0 to 10 mV DC	250 kΩ minimum
2 to 10 mA DC	1500 Ω maximum	0 to 100 mV DC	250 kΩ minimum
1 to 5 mA DC	3000 Ω maximum	0 to 1 V DC	2 kΩ minimum
0 to 20 mA DC	750 Ω maximum	0 to 10 V DC	10 kΩ minimum
0 to 16 mA DC	900 Ω maximum	0 to 5 V DC	2 kΩ minimum
0 to 10 mA DC	1500 Ω maximum	1 to 5 V DC	2 kΩ minimum
0 to 1 mA DC	15k Ω maximum	-10 to +10 V DC	10 kΩ minimum
Output-2 Range	Allowable Load Resistance	Output-2 Range	Allowable Load Resistance
4 to 20 mA DC	350 Ω maximum	1 to 5 V DC	2 kΩ minimum

Input adjustment: ±1% of span minimum (Zero/Span) Output adjustment: ±5% of span minimum (Zero/Span)

■ Standard Performance

Accuracy rating:

Input conditions	Accuracy		
When the input range is between -2.5 and +2.5V DC, and the span is 1V or more	±0.1% of span		
When the input range is between -2.5 and +2.5V DC, and the span is less than 1V	(0.1 [%]×1 [V DC]) Input span [V DC] [%]		
When the input range is between -10 and +10V DC, and the span is 4V or more	±0.1% of span		
When the input range is between -10 and +10V DC, and the span is less than 4V	(0.1 [%]×4[V DC]) Input span [V DC] [%]		

When current input, apply [input range \times input resistance] to the above, and add the resistance error of $\pm 0.1\%$.

Accuracy is not guaranteed for output levels less than 0.1mA for the output codes D, E, and F, and for output levels less than 0.0125mA for the output code G. \pm 1% of span for the input from 1% to 2% when using square root extractor

Response speed: 200 ms, 63% response (10 to 90%) Insulation resistance: 100 M Ω minimum at 500 V DC between input, output-1, output-2, power supply and grounding terminals mutually

Withstanding voltage: 2000 V AC for one minute between input, (output-1, output-2), power supply and grounding terminals mutually 1000 V AC for one minute between output-1, output-2 terminals mutually

Operating temperature range: 0 to 50°C Operating humidity range: 5 to 90% RH (no conden-

sation) Supply voltage range: 24 V DC $\pm 10\%$ 100 to 130 V AC/DC ($\pm 15\%$) 200-240 V AC (-15%, +10%)

Effects of power line regulation: Up to $\pm 0.1\%$ of span for the regulation within allowable range of each supply voltage range

Effects of ambient temperature variations: Up to $\pm 0.2\%$ of span per 10°C

Power consumption:

2.6 W at 24 V DC; 2.5 W at 110 V DC; 5.0 VA at 100 V AC; 7.0 VA at 200 V AC

■ Mounting and Appearance

Material: Case body; ABS resin (black), UL94 V-0

Socket; Modified polyphenylene oxide, including glass fiber (black), UL94 V-1

Mounting method: Wall or DIN rail mounting

More than 5 mm interval is required for side-by-side close mounting.

Connection method: M3.5 screw terminals

External dimensions: 86.5 (H)×51 (W)×133 (D) mm

(including a socket)

Weight: Approx. 200 g (main unit), approx. 80 g (socket)

Accessories

Spacer: One (used for DIN rail mounting)

Range labels: Two

Resistor: One (attached for current input)

■ Customized Signal Specifications

Customized output

	Current Signal	Voltage Signal		
Input range (DC)	-50 to +50 mA	-300 to +300 V		
Span (DC)	0.1 to 100 mA	0.1 to 600 V		
Output range (DC)	0 to 20 mA	-10 to +10 V		
Span (DC)	1 to 20 mA	10mV to 20 V		
Zero elevation	0 to 150 %	-125 to +400 % *		

^{* -50} to +25% for the span of 20 mV DC or less.

Customized segmental line linearization

Segmental points: 32 (Set I/O relation by percentage)
Settable range of segmental points: -6 to +106% for
both of input and output

Front Panel

I/O adjustment is available using selection switch and adjustment switch.

The position of a selection switch	Adjustment item		
0	No function		
1	Output-1 zero adjustment		
2	Output-1 span adjustment		
3	Output-2 zero adjustment		
4	Output-2 span adjustment		
5	Input zero adjustment		
6	Input span adjustment		

■ Terminal Assignments

1	OUTPUT-1	(+)
2	OUTPUT-1	(-)
3	N.C.	
4	N.C.	
5	INPUT	(+)
6	INPUT	(-)
7	SUPPLY	(L+)
8	SUPPLY	(N-)
9	GND	
10	OUTPUT-2	(+)
11	OUTPUT-2	(-)

■ Block Diagrams

■ External Dimensions

*1: RES-250 (250 Ω) is attached for the input codes A to F, and RES-01K (1k Ω) for the input code G.

■ Work Sheet

Model and Suffix Codes	

Write at least 2 points for input and output segmental points data.

Input (%	6)	Output (%)	Input (%)		Output (%)	
X0	. Y0		X16		Y16	
X1	Y1		X17		Y17	
X2	. Y2		X18	·	Y18	
Х3	. Y3		X19		Y19	
X4	. Y4	·	X20		Y20	
X5	. Y5		X21		Y21	
X6	. Y6	·	X22		Y22	
Х7	. Y7	·	X23	·	Y23	
X8	. Y8		X24	·	Y24	
Х9	. Y9		X25		Y25	
X10	. Y10		X26		Y26	
X11	. Y11		X27		Y27	
X12	. Y12		X28		Y28	
X13	. Y13	·	X29		Y29	-
X14	. Y14		X30		Y30	
X15	. Y15		X31		Y31	

(Specification conditions)

Input conditions: -6.0%≦X0<X1<X2< · · · · · Xn-1<Xn≦106.0%

Output conditions: $-6.0\% \le (Y0 \text{ to } Yn) \le 106.0\%$

[•] The information covered in this document is subject to change without notice for reasons of improvements in quality and/or performance.