General Specifications

General

The JH12 is a plug-in type isolator that converts DC current or DC voltage signals into isolated DC current or DC voltage signals.

- Selection of square root extractor, input setting, I/O adjustment, I/O monitoring, and segmental point setting (for custom order only) can be made through a PC (VJ77) or Handy Terminal (JHT200).
- The operation indicating lamp shows the operating status, abnormal setting and the like.
- I/O adjustment can be made using a switch on the front of the JH12 without a setting tool such as Handy Terminal.

Model and Suffix Codes

Input signal
A: 4 to 20 mA DC
B: 2 to 10 mA DC
3: 0 to 1V DC
C: 1 to 5 mA DC 4: 0 to 10 V DC

D: 0 to $20 \mathrm{~mA} D C$
E: 0 to $16 \mathrm{~mA} D C$
5: 0 to 5 V DC
6: 1 to 5 V DC
F: 0 to 10 mA DC
7: -10 to +10V DC
0 : Customized voltage signals*

G: 0 to 1mA DC
Z: Customized current signals*

* See Customized Signal Specifications

Output-1 signal
A: 4 to 20mA DC
1: 0 to 10 mV DC
B: 2 to $10 \mathrm{~mA} \mathrm{DC} \quad 2: 0$ to 100 mV DC
C: 1 to $5 \mathrm{~mA} \mathrm{DC} \quad 3: 0$ to 1 V DC
D: 0 to 20mA DC $4: 0$ to 10V DC
$\mathrm{E}: 0$ to 16 mA DC $\quad 5: 0$ to 5 V DC
$\mathrm{F}: 0$ to $10 \mathrm{~mA} \mathrm{DC} \quad 6: 1$ to 5 V DC
G: 0 to 1 mA DC $\quad 7:-10$ to +10 V DC
Z: Customized current signals* 0 : Customized voltage signals*

* See Customized Signal Specifications

Output-2 signal
A: 4 to 20mA DC
6: 1 to 5V DC
Items to be Specified when Ordering

- Model and Suffix Codes: e.g. JH12-14-1AAA

Specify a lowcut point when "with square root extractor" is required: e.g. Lowcut point 0.4% The isolator will be shipped with a lowcut point of 0.6% if no specification of lowcut point. Specify segmental points (32 points) in Work Sheet when segmental line linearization is required.
The isolator will be shipped with proportional I/O if no specification of segmental points.

- Input/Output Specifications

Input signal: DC voltage or DC current signal Input resistance: Attach an external resistor for current input.

Input Range	Input Resistance	Input Range	Input Resistance
4 to 20mA DC	250Ω	0 to 1V DC	$1 \mathrm{M} \Omega$ during power on $10 \mathrm{k} \Omega$ during power off
2 to 10 mA DC			
1 to 5 mA DC			
0 to 20mA DC		0 to 10V DC	$1 \mathrm{M} \Omega$ during power on $800 \mathrm{k} \Omega$ during power off
0 to 16mA DC		0 to 5V DC	
0 to 10 mA DC		1 to 5V DC	
0 to 1 mA DC	$1 \mathrm{k} \Omega$	-10 to +10V DC	

Allowable input level:
Voltage input: Within ± 15 V DC
Current input: 40 mA or less for input resistance of 250Ω
10 mA or less for input resistance of $1 \mathrm{k} \Omega$
Square Root Extraction Function: Outputted against the result of extracting square root of input.
$Y=\left(\sqrt{\frac{\mathrm{X} \text { - (input } 0 \% \text { value) }}{\text { input span }}}\right) \times$ (output span) $+($ output 0% value)
Lowcut Function: Available only when the square root extraction function is specified.
Setting Range: 0.3 to 100% of input, setting available by 0.1 \% notch
Output for lowcut point or less is cramped with straight line proportional to input.

Output signal: DC voltage or DC current signal Allowable load resistance:

Output-1 Range	Allowable Load Resistance	Output-1 Range	Allowable Load Resistance
4 to 20 mA DC	750Ω maximum	0 to 10 mV DC	$250 \mathrm{k} \Omega$ minimum
2 to 10 mA DC	1500Ω maximum	0 to 100 mV DC	$250 \mathrm{k} \Omega$ minimum
1 to 5 mA DC	3000Ω maximum	0 to 1 V DC	$2 \mathrm{k} \Omega$ minimum
0 to 20 mA DC	750Ω maximum	0 to 10 V DC	$10 \mathrm{k} \Omega$ minimum
0 to 16 mA DC	900Ω maximum	0 to 5 V DC	$2 \mathrm{k} \Omega$ minimum
0 to 10 mA DC	1500Ω maximum	1 to 5 V DC	$2 \mathrm{k} \Omega$ minimum
0 to 1 mA DC	$15 \mathrm{k} \Omega$ maximum	-10 to +10 V DC	$10 \mathrm{k} \Omega$ minimum
Output-2 Range	Allowable Load Resistance	Output-2 Range	Allowable Load Resistance
4 to 20 mA DC	350Ω maximum	1 to 5 V DC	$2 \mathrm{k} \Omega$ minimum

Input adjustment: $\pm 1 \%$ of span minimum (Zero/Span) Output adjustment: $\pm 5 \%$ of span minimum (Zero/Span)

Standard Performance

Accuracy rating:

Input conditions	Accuracy
When the input range is between -2.5 and $+2.5 \mathrm{~V} \mathrm{DC}$,and the span is 1 V or more	$\pm 0.1 \%$ of span
When the input range is between -2.5 and +2.5 V DC, and the span is less than 1 V	$\frac{(0.1[\%] \times 1 \text { [V DC] })}{\text { Input span [V DC] }}$ [\%]
When the input range is between -10 and +10 V DC, and the span is 4 V or more	$\pm 0.1 \%$ of span
When the input range is between -10 and +10 V DC, and the span is less than 4 V	$\frac{(0.1[\%] \times 4[\mathrm{~V} \mathrm{DC]})}{\text { Input span [V DC] }}$ [\%]

When current input, apply [input range \times input resistance] to the above, and add the resistance error of $\pm 0.1 \%$.
Accuracy is not guaranteed for output levels less than 0.1 mA for the output codes D, E, and F, and for output levels less than 0.0125 mA for the output code G. $\pm 1 \%$ of span for the input from 1% to 2% when using square root extractor
Response speed: $200 \mathrm{~ms}, 63 \%$ response (10 to 90%)
Insulation resistance: $100 \mathrm{M} \Omega$ minimum at 500 V DC between input, output-1, output-2, power supply and grounding terminals mutually
Withstanding voltage: 2000 V AC for one minute between input, (output-1, output-2), power supply and grounding terminals mutually 1000 V AC for one minute between output-1, output-2 terminals mutually
Operating temperature range: 0 to $50^{\circ} \mathrm{C}$
Operating humidity range: 5 to $90 \% \mathrm{RH}$ (no condensation)
Supply voltage range: $24 \mathrm{~V} D \mathrm{D} \pm 10 \%$ 100 to 130 V AC/DC ($\pm 15 \%$) 200-240 V AC (-15\%, +10\%)
Effects of power line regulation: Up to $\pm 0.1 \%$ of span for the regulation within allowable range of each supply voltage range
Effects of ambient temperature variations: Up to $\pm 0.2 \%$ of span per $10^{\circ} \mathrm{C}$
Power consumption: 2.6 W at $24 \mathrm{~V} \mathrm{DC} ; 2.5 \mathrm{~W}$ at 110 V DC ; 5.0 VA at $100 \mathrm{~V} \mathrm{AC} ; 7.0 \mathrm{VA}$ at 200 V AC
\square Mounting and Appearance
Material: Case body; ABS resin (black), UL94 V-0 Socket; Modified polyphenylene oxide, including glass fiber (black), UL94 V-1

Mounting method: Wall or DIN rail mounting More than 5 mm interval is required for side-by-side close mounting.
Connection method: M3.5 screw terminals
External dimensions: $86.5(\mathrm{H}) \times 51$ (W) $\times 133$ (D) mm (including a socket)
Weight: Approx. 200 g (main unit), approx. 80 g (socket)

Accessories

Spacer: One (used for DIN rail mounting) Range labels: Two
Resistor: One (attached for current input)

\square Customized Signal Specifications Customized output

	Current Signal	Voltage Signal
Input range (DC)	-50 to +50 mA	-300 to +300 V
Span (DC)	0.1 to 100 mA	0.1 to 600 V
Output range (DC)	0 to 20 mA	-10 to +10 V
Span (DC)	1 to 20 mA	10 mV to 20 V
Zero elevation	0 to 150%	-125 to $+400 \%{ }^{*}$

Customized segmental line linearization

Segmental points: 32 (Set I/O relation by percentage)
Settable range of segmental points: -6 to $+106 \%$ for both of input and output

- Front Panel

I/O adjustment is available using selection switch and adjustment switch.

The position of a selection switch	Adjustment item
0	No function
1	Output-1 zero adjustment
2	Output-1 span adjustment
3	Output-2 zero adjustment
4	Output-2 span adjustment
5	Input zero adjustment
6	Input span adjustment

Terminal Assignments

1	OUTPUT-1	$(+)$
2	OUTPUT-1	$(-)$
3	N.C.	
4	N.C.	
5	INPUT	$(+)$
6	INPUT	$(-)$
7	SUPPLY	$(\mathrm{L}+)$
8	SUPPLY	$(\mathrm{N}-)$
9	GND	
10	OUTPUT-2	$(+)$
11	OUTPUT-2	$(-)$

Block Diagrams

External Dimensions

*1: RES-250 (250Ω) is attached for the input codes A to F, and RES-01K ($1 \mathrm{k} \Omega$) for the input code G.
<Mounting Dimensions>

Work Sheet

\square

Write at least 2 points for input and output segmental points data.

(Specification conditions)
Input conditions: $-6.0 \% \leqq X 0<X 1<X 2<\cdots \cdots \cdot X n-1<X n \leqq 106.0 \%$
Output conditions: $-6.0 \% \leqq(\mathrm{Y} 0$ to Yn$) \leqq 106.0 \%$

[^0]
[^0]: - The information covered in this document is subject to change without notice for reasons of improvements in quality and/or performance.

