CONTENTS

1. Introduction ... 1-1
 1.1 About This Manual ... 1-2
 1.2 Safety and Modification Precautions ... 1-3
 1.3 Trademarks ... 1-3
 1.4 Software License Agreement ... 1-4
 1.5 Package ... 1-5

2. General Description ... 2-1
 2.1 System Configuration .. 2-2
 2.2 Check Item .. 2-3
 2.3 Operation Procedure .. 2-4

3. Preparation ... 3-1
 3.1 Installation of FieldMate ... 3-1
 3.2 Disabling Write Protect Setting .. 3-2

4. Start-up .. 4-1
 4.1 Start-up from “Segment Viewer” ... 4-1
 4.2 Start-up from “Device Navigator” ... 4-7

5. SelectingLaunchingMode .. 5-1
 5.1 Default (Launching New Verification) .. 5-2
 5.2 Last Result (Launching from Last Verification Result) 5-3
 5.3 Loaded from DB (Launching from Data in Database) 5-4

6. Basic Data Management ... 6-1
 6.1 Saving Verification Data ... 6-1
 6.1.1 Saving to Database ... 6-1
 6.1.2 Saving as “dns” Format File ... 6-3
 6.2 Loading Verification Data .. 6-5
 6.2.1 Loading during Starting Up DTM .. 6-5
 6.2.2 Loading after Starting Up DTM .. 6-5
 6.3 Locking Verification Data ... 6-7
7. Operation .. 7-1
 7.1 Standard Verification .. 7-2
 7.1.1 Built-in Verification Check .. 7-4
 7.1.2 LCD Display Check .. 7-7
 7.1.3 Physical Appearance Check .. 7-8
 7.2 Enhanced Verification ... 7-9
 7.2.1 Analog Output Check .. 7-11
 7.2.2 Pulse Output Check .. 7-17
 7.2.3 Analog Input Check .. 7-22
 7.2.4 Transmitter Check .. 7-27
 7.2.5 Insulation Resistance Check ... 7-34
 7.3 Generating Test Report .. 7-39
 7.4 Printing Test Report ... 7-43
8. Termination ... 8-1
 8.1 Normal Termination .. 8-1
 8.2 Unexpected Termination .. 8-2
9. Error Message ... 9-1
Revision Information
1. Introduction

This user's manual provides instructions on the usage of “FSA130 ADMAG TI Verification Tool License Number” and the operation of “ADMAG TI Verification Tool”.

The ADMAG TI Verification Tool is a software tool for health check of the ADMAG TI Series AXG/AXW magnetic flowmeter of HART communication type. The functions of the tool are incorporated in the DTM file of the AXG/AXW magnetic flowmeter, which operates on FieldMate “Versatile Device Management Wizard”. Depending on the check items, AM012 “Magnetic Flowmeter Calibrator”, CA150 “HANDY CAL”, and/or MY40 “Insulation Resistance Tester” are used.

Read the documents in Table 1.1.1 to understand the related products when operating the Verification Tool. The document can be downloaded from the website of YOKOGAWA.

Website address:
http://www.yokogawa.com/fld/doc/
http://www.yokogawa.com/ymi/useful/download.htm

Table 1.1.1 List of Document

<table>
<thead>
<tr>
<th>Product</th>
<th>Document Title</th>
<th>Document Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXG/AXW Magnetic Flowmeter</td>
<td>ADMAG TI Series AXG/AXW Magnetic Flowmeter Read Me First</td>
<td>IM 01E21A21-01Z1</td>
</tr>
<tr>
<td>AXG Magnetic Flowmeter</td>
<td>ADMAG TI Series AXG Magnetic Flowmeter Installation Manual</td>
<td>IM 01E22A01-01EN</td>
</tr>
<tr>
<td></td>
<td>ADMAG TI Series AXG Magnetic Flowmeter Maintenance Manual</td>
<td>IM 01E22A01-02EN</td>
</tr>
<tr>
<td></td>
<td>ADMAG TI Series AXG Magnetic Flowmeter HART Communication Type</td>
<td>IM 01E22A02-02EN</td>
</tr>
<tr>
<td></td>
<td>ADMAG TI Series AXG Magnetic Flowmeter General Specifications</td>
<td>GS 01E22A01-01EN</td>
</tr>
<tr>
<td>AXW Magnetic Flowmeter</td>
<td>ADMAG TI Series AXW Magnetic Flowmeter Installation Manual</td>
<td>IM 01E24A01-01EN</td>
</tr>
<tr>
<td></td>
<td>ADMAG TI Series AXW Magnetic Flowmeter Maintenance Manual</td>
<td>IM 01E24A01-02EN</td>
</tr>
<tr>
<td></td>
<td>ADMAG TI Series AXW Magnetic Flowmeter HART Communication Type</td>
<td>IM 01E24A02-02EN</td>
</tr>
<tr>
<td></td>
<td>ADMAG TI Series AXW Magnetic Flowmeter [Size: 25 to 400 mm (1 to 16 in.)] General Specifications</td>
<td>GS 01E24A01-01EN</td>
</tr>
<tr>
<td></td>
<td>ADMAG TI Series AXW Magnetic Flowmeter [Size: 500 to 1800 mm (20 to 72 in.)] General Specifications</td>
<td>GS 01E25011-01EN</td>
</tr>
<tr>
<td>Magnetic Flowmeter Calibrator</td>
<td>Model AM012 Magnetic Flowmeter Calibrator</td>
<td>IM 1E6K2-E</td>
</tr>
<tr>
<td></td>
<td>Model AM012 Magnetic Flowmeter Calibrator General Specifications</td>
<td>GS 1E6K2-E</td>
</tr>
<tr>
<td>FieldMate</td>
<td>FieldMate Versatile Device Management Wizard</td>
<td>IM 01R01A01-01E</td>
</tr>
<tr>
<td></td>
<td>FieldMate Operational Precaution</td>
<td>IM 01R01A01-91E</td>
</tr>
<tr>
<td></td>
<td>FieldMate Wizard Getting Started</td>
<td>IM 01R01A04-01E</td>
</tr>
<tr>
<td></td>
<td>FieldMate Versatile Device Management Wizard General Specifications</td>
<td>GS 01R01A01-01E</td>
</tr>
<tr>
<td>Verification Tool</td>
<td>ADMAG TI Verification Tool (this manual)</td>
<td>IM 01E21A04-01EN</td>
</tr>
<tr>
<td></td>
<td>FSA130 ADMAG TI Verification Tool General Specifications</td>
<td>GS 01E21A04-01EN</td>
</tr>
<tr>
<td>Measuring Instrument</td>
<td>CA150 HANDY CAL</td>
<td>IM CA150E</td>
</tr>
<tr>
<td></td>
<td>CA150 HANDY CAL General Specifications</td>
<td>GS CA150-01E</td>
</tr>
<tr>
<td></td>
<td>MY40 Insulation Resistance Tester</td>
<td>IM MY40-E</td>
</tr>
<tr>
<td></td>
<td>Insulation and Earth Testers Brochure (including specifications)</td>
<td>Bulletin MY-E</td>
</tr>
</tbody>
</table>
1.1 About This Manual

- This manual should be provided to the end user.
- Before using the ADMAG TI Verification Tool, read this manual thoroughly to comprehend its contents.
- The contents of this manual may be changed without prior notice.
- All rights are reserved. No part of this manual may be reproduced in any form without Yokogawa’s written permission.
- Yokogawa makes no warranty of any kind with regard to this material, including, but not limited to, implied warranties of merchantability and suitability for a particular purpose.
- If any question arises or errors are found, or if any information is missing from this manual, inform the nearest YOKOGAWA sales office.
- All reasonable effort has been made to ensure the accuracy of the contents of this manual. However, if any errors or omissions are found, please inform Yokogawa.
- Yokogawa assumes no responsibilities for this product except as stated in the warranty.
- Please note that this user’s manual may not be revised for any changes in specifications, construction changes or operating part changes that are not considered to affect function or performance.
- If the customer or any third party is harmed by the use of this product, Yokogawa assumes no responsibility for any such harm owing to any defects in the product which were not predictable, or for any indirect damages.
- This manual describes the operation of the ADMAG TI Verification Tool which operates on FieldMate. For the installation, operation, and function of FieldMate, please read the FieldMate user’s manual.
- The content of this manual corresponds to FieldMate R 3.02.10 and Device Files R 3.07.12. Read the manual of FieldMate on how to confirm the revision. Also, read the latest version manual of FieldMate for possible changes in its operation and function.
1.2 Safety and Modification Precautions

- The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to comply with these precautions or with specific WARNINGS given elsewhere in this manual violates safety standards of design, manufacture, and intended use of the product. Yokogawa assumes no liability for the customer’s failure to comply with these requirements. If this product is used in a manner not specified in this manual, the protection provided by this product may be impaired.

- Yokogawa will not be liable for malfunctions or damage resulting from any modification made to this product by the customer.

- The following safety symbols are used in this user’s manual and on the product.

WARNING

A WARNING sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death of personnel.

CAUTION

A CAUTION sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.

IMPORTANT

An IMPORTANT sign denotes that attention is required to avoid damage to the product or system failure.

NOTE

A NOTE sign denotes essential information for understanding operations and features.

1.3 Trademarks

- All the brand names or product names of Yokogawa Electric used in this document are either trademarks or registered trademarks of Yokogawa Electric Corporation.

- All the brand names or product names of other companies mentioned in this document are either trademarks or registered trademarks of their respective holders.

- In this manual, trademarks or registered trademarks are not marked with ™ or ®.
1.4 Software License Agreement

IMPORTANT - PLEASE READ THIS AGREEMENT CAREFULLY:

BY INSTALLING OR OTHERWISE USING THIS SOFTWARE PRODUCT “VERIFICATION TOOL” ON THE AXG/AXW DTM, YOU AGREE TO BE BOUND BY THE TERMS AND CONDITIONS OF THIS SOFTWARE LICENSE AGREEMENT (“AGREEMENT”).

IF YOU DO NOT AGREE TO THE TERMS AND CONDITIONS OF THIS AGREEMENT, DO NOT INSTALL OR USE THIS SOFTWARE PRODUCT AND PROMPTLY RETURN THE LICENSE NUMBER TO THE PLACE OF PURCHASE.

1 Grant of License

(1) Subject to the terms and conditions of this Agreement, Yokogawa Electric Corporation (“Licensor”) hereby grants to you (“Licensee”) a non-exclusive and non-transferable right to use the Verification Tool and associated materials and documentation in printed or electronic format (Collectively “Licensed Software”), in consideration of full payment by Licensee of the license fee separately agreed upon.

(2) Except as otherwise permitted by the terms of this Agreement or otherwise provided by Licensor, Licensee shall:
 a) have the right to use the Licensed Software on the environmental or other conditions defined by Licensee(*);
 b) use the Licensed Software on a single computer by single user at a time;
 c) not make the Licensed Software available over a network where it could be run or used by multiple computers at the same time; and
 d) use the Licensed Software solely for Licensee’s internal operation use.

(*) The operating environment is available in the readme file of “Yokogawa Device DTM Library” on Windows start menu.

2 Warranty

(1) Licensor warrants that the media on which the Licensed Software is provided is free of defects in materials and workmanship for a period of 90 days from the installation and shall replace the defective media free of charge.

(2) PARAGRAPH 2 (1) STATES THE ENTIRE WARRANTY AND LIABILITY OF LICENSOR IN CONNECTION WITH THE LICENSED SOFTWARE. PARAGRAPH 2 (1) REPRESENTS A REASONABLE ALLOCATION OF RISKS UNDER THIS AGREEMENT BETWEEN LICENSEE AND LICENSOR AND IS A FUNDAMENTAL ELEMENT OF THIS LICENSE. LICENSOR’S PRICING OF THE LICENSED SOFTWARE REFLECTS THIS ALLOCATION OF RISKS.

3 Terms

The license fee paid by the Licensee in relation to the Licensed Software hereunder shall be non-refundable unless otherwise expressly provided herein.

4 Reference

Unless otherwise provided in this Agreement, the DTM Library Software License Agreement provided by Licensor or accompanying the DTM Library Software (“DTM Library Agreement”) shall apply to the license of the Licensed Software mutatis mutandis, as if the Licensed Software were the DTM Library Software. If there are any inconsistencies between this Agreement and DTM Library Agreement, this Agreement shall prevail.
1.5 Package

Checking the Contents of the Package:

Open the package of “FSA130 ADMAG TI Verification Tool License Number” and check the following prior to use. If some items are missing, or there is a problem with the appearance, contact the place of purchase.

Contents of the package:

• License Sheet
• USB FieldMate Modem (when optional code B is selected)

Note: Read user's manual for FieldMate on the USB FieldMate Modem.

The form of the License Sheet is as below. The “Software License Number” is used to activate the Verification Tool. Read Section 4.1 on how to enter the license number.

![License Sheet Image]

ADMAG TI Verification Tool

Software License Number

Model and Suffix Codes:

Serial Number:

Software License Number:

IMPORTANT: Please keep this sheet.

Thank you for purchasing ADMAG TI Verification Tool. The software license number for the included Media is printed above. This number is used to ACTIVATE ADMAG TI Verification Tool software and to identify your software package by Yokogawa Electric Corporation.

Figure 1.5.1 Software License Number
2. **General Description**

The ADMAG TI Verification Tool operates on the FieldMate R3.02.10 or later, and Device Files R3.07.12 or later.

The performance of the AXG/AXW magnetic flowmeter can be verified by checking several items and this tool provides a certificate that the device (the AXG/AXW magnetic flowmeter) is operating properly.

Table 2.1.1 Applicable AXG/AXW Magnetic Flowmeter

<table>
<thead>
<tr>
<th>Model</th>
<th>Communication</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXG</td>
<td>HART</td>
<td>2.5 to 400 mm (0.1 to 16 in.)</td>
</tr>
<tr>
<td>AXW</td>
<td>HART</td>
<td>25 to 1000 mm (1 to 40 in.)</td>
</tr>
<tr>
<td>AXW</td>
<td>HART</td>
<td>500 to 1000 mm (20 to 40 in.)</td>
</tr>
</tbody>
</table>

*1: “” means any of the following.
002, 005, 010, 015, 025, 032, 040, 050, 065, 080, 100, 125, 150, 200, 250, 300, 350, 400

*2: “” means any of the following.
025, 032, 040, 050, 065, 080, 100, 125, 150, 200, 250, 300, 350, 400

*3: “” means any of the following.
500, 600, 700, 800, 900, 10L

When the communication specification is HART, the model and suffix code is as follows.

- **Integral Type Flowmeter and Remote Sensor**
 - AXG**sensor**-**transmitter**-**specification**-**size**: J
 - AXW**integral**-**transmitter**-**specification**-**size**: E, J, or L

- **Remote Transmitter**
 - AXG4A-**sensor****: J
 - AXW4A-**sensor****: J

Two Verification Modes (Standard and Enhanced):

The Verification Tool has two modes, Standard Verification (referred to as Standard VF) and Enhanced Verification (referred to as Enhanced VF). The former is performed in the device itself, and the latter utilizes other equipment to be connected with the device.

*: VF stands for “Verification”.

Data Storage and Report Printing:

This tool stores data of verification result (verification data) in a database in an organized manner, and can be used to print a Verification Report that has not only the individual check item result but also the overall status of “Passed” or “Failed”.
2.1 System Configuration

The following products, instruments and software are necessary to use the Verification Tool.

- ADMAG TI series AXG or AXW magnetic flowmeter of HART communication type
- PC (with software below)
 - FieldMate (Versatile Device Management Wizard) R3.02.10 or later, and Device Fields R3.07.12 or later.
- Printer (for printing verification report)
- USB FieldMate Modem
- AM012 calibrator for magnetic flowmeter (for Enhanced VF)
- CA150 HANDY CAL or equivalent (*) (for Enhanced VF)
 *: CA150 can be replaced by a general purpose instrument which has equivalent function to measure current value / pulse count and also to output current signal.
- MY40 Insulation Resistance Tester or equivalent (*) (for Enhanced VF)
 *: MY40 can replaced by other instrument which has equivalent function.

AXG or AXW Magnetic Flowmeter
- Circuit Check
- Device Status Check
- Physical Appearance Check

FieldMate
- USB FieldMate Modem
- Printer
- PC

Output Signal 4 to 20 mA / Pulse

AM012 Calibrator for Magnetic Flowmeter
- Transmitter Check (remote type only)

CA150 HANDY CAL or equivalent
- Analog Input Check
- Analog Output Check
- Pulse Output Check

MY40 Insulation Resistance Tester or equivalent
- Insulation Resistance Check

AXG or AXW Magnetic Flowmeter Remote Sensor

Figure 2.1.1 System Configuration
2.2 Check Item

The Verification Tool has two modes, the Standard Verification (Standard VF) and Enhanced Verification (Enhanced VF). It is always necessary to perform the Standard VF to obtain the overall verification result. See Table 2.2.1 for the whole check items.

1) **Standard VF**

 This mode checks the status of magnetic, excitation, and calculation circuit of the device. It also checks the status of alarm occurrence, alarm history, cable connection status for flow signal and excitation current, display board and LCD, and physical appearance of the device. This mode is performed with the AXG/AXW magnetic flowmeter being mounted onto process line filled with fluid.

2) **Enhanced VF**

 This mode checks analog input/output, pulse output, transmitter accuracy, and insulation resistance of the coil and signal electrodes for further device diagnosis.

 This mode is performed with the AXG/AXW magnetic flowmeter being demounted from process line.

 The necessary equipment is an AM012 calibrator to simulate the flow velocity signal for magnetic flowmeter, a CA150 handy calibrator to measure current value and pulse count, and also to output current signal, and an MY40 insulation resistance tester to measure the coil and electrode resistance. The CA150 and MY40 can be replaced by other instrument which has equivalent function.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Check Item</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Verification</td>
<td>Circuit</td>
<td>Magnetic Circuit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Excitation Circuit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calculation Circuit</td>
</tr>
<tr>
<td></td>
<td>Device Status</td>
<td>Alarm Occurrence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alarm History</td>
</tr>
<tr>
<td></td>
<td>Connection Status</td>
<td>Cable Connection Status</td>
</tr>
<tr>
<td>Enhanced Verification</td>
<td>Indicator /B Check (Display Board Check) (‘*1’)</td>
<td>Indicator Status (Display Status)</td>
</tr>
<tr>
<td></td>
<td>Physical Appearance</td>
<td>Flow Sensor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transmitter</td>
</tr>
<tr>
<td></td>
<td>Analog Output (‘*2’)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulse Output (‘*2’)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analog Input (‘*2’)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmitter (‘*3’)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insulation Resistance (‘*3’)</td>
<td>Coil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal (Electrode)</td>
</tr>
</tbody>
</table>

*1: For AXG/AXW magnetic flowmeter with no display, this item does not appear on the Tool.

*2: Input/Output items which are not equipped with AXG/AXW magnetic flowmeter are not displayed on the Tool.

*3: For integral type AXG/AXW magnetic flowmeter, these items do not appear on the Tool.
2.3 Operation Procedure

The verification procedure starts by activating the Verification Tool function in DTM file operating on the FieldMate. Note that “Default” mode (read section 5.1) cannot be selected when activating the Verification Tool by Device Navigator.

There are two verification modes, Standard VF (read section 7.1) and Enhanced VF (read section 7.2). Always perform at least Standard Verification to get the overall verification result.

See the figure below for the operation procedure.

The number in the figure shows the chapter or section to be referred to.

Figure 2.3.1 Operation Procedure
3. Preparation

![WARNING]

- Before operating the Verification Tool, the control loop must be set to manual mode in the host system.
- The following applications may cause inaccurate verification results:
 - Significantly low flow rate
 - Slurry fluid
 - Stray current
- When "unexpected issue ("1")" occurs while operating Verification Tool, follow Section 8.2 and Chapter 9.
- Set the automatic sleep mode of the computer off.

*1: "Unexpected issue" means disconnection between the AXG/AXW magnetic flowmeter and PC:
 - Physical disconnection between the AXG/AXW magnetic flowmeter and PC
 - Forced shutdown of PC
 - Unforeseen power-off of the AXG/AXW magnetic flowmeter

3.1 Installation of FieldMate

Read the manual for FieldMate including connection with the device. Be sure to install DTM files of the AXG and/or AXW magnetic flowmeter for HART communication in the installation procedure. If your FieldMate package does not include these DTM files, download them from the following website.

3.2 Disabling Write Protect Setting

Before performing verification, set the hardware write protection function switch of the device OFF if it is set to ON. Follow the installation manual of the AXG/AXW magnetic flowmeter shown in Table 1.1.1 for the procedure.

If this was not done, the following window will appear during verification. Then set the hardware write protection switch OFF and click “OK” in Figure 3.2.1.

Also, if the software write protection function is enabled, the following window will appear during verification. In this case, enter the password for disabling the protection in the Password field of Figure 3.2.1, which has been set by customer, and click “OK”.

It is not necessary to disable the software write protection function in advance. By entering the password at the time the following window appears, the protection is automatically enabled again within 10 minutes after the verification is finished.
4. Start-up

The Verification Tool is one of the functions incorporated in the DTM operatable on the FieldMate. There are two ways as below in the FieldMate to start up the verification Tool in the DTM.

- From “Segment Viewer”
- From “Device Navigator”

If the device is not connected with a PC where FieldMate is operating, the verification function cannot be performed. However, it is available to view verification data performed in the past when starting up the Verification Tool from “Device Navigator”.

NOTE

- To operate the Verification Tool in “online” mode of FieldMate, start up DTM from Segment Viewer.
- To perform the Standard VF, start up DTM from Segment Viewer
- Starting from Segment Viewer is available only when the device is connected. Device Navigator can be used to read past data even if the device is not connected.

4.1 Start-up from “Segment Viewer”

Step 1: Start up the FieldMate and select “Segment Viewer” window.

![Segment Viewer Window of the FieldMate](image)

Figure 4.1.1 Segment Viewer Window of the FieldMate
Step 2: Start up the DTM by any of the following four methods.

(Method 1) Double-click the device icon. Then go to Step 4.

(Method 2) Click “Action” button and select “Select DTM...”.

Figure 4.1.2 Starting Up DTM by Device Icon

Figure 4.1.3 Starting Up DTM by Action Button
(Method 3) Click “Action” menu and select “Select DTM...”.

![Figure 4.1.4 Starting Up DTM by Action Menu](image1)

(Method 4) Right-click on the Segment Viewer window and select “Select DTM...”.

![Figure 4.1.5 Starting Up DTM by Right-clicking](image2)
Step 3: Select target DTM shown in the window and click “OK”. For the AXG models, select AXG4A FDT2.0 HART7 DTM. For the AXW models, select AXW4A FDT2.0 HART7 DTM.

Step 4: Select data to be loaded and click “OK”.
- Load from Database: Data saved in the database
- Load from File: Data saved as “dns” format file
- Load Default Data: Data of the currently connected device

Refer to the manuals for FieldMate on the database and “dns” format file. When performing a new verification, select “Load Default Data”.
Step 5: Click “Device” menu, select “Additional Functions” and, select “Verification Tool”.

![Figure 4.1.8 Selecting Verification Tool](image)

Figure 4.1.8 Selecting Verification Tool

Step 6: Enter the license number with 23 letters excluding hyphen “-“ and click “Active” button. This is only for the first start-up after installation. Refer to Section 1.5 for the license key.

![Figure 4.1.9 Entering License Key](image)

Figure 4.1.9 Entering License Key
Step 7: The license agreement shown in Section 1.4 is displayed. Confirm it and click “OK”.

Figure 4.1.10 Confirming License Agreement

Then the Verification Tool will start up as below.

Figure 4.1.11 Verification Tool Start-up Window
4.2 Start-up from “Device Navigator”

Step 1: Start up the FieldMate and select “Device Navigator” window.

Figure 4.2.1 Device Navigator Window of the FieldMate

Step 2: Start up the DTM by any of the three methods.

(Method 1) Click pull-down icon on the device list and select “Select DTM...”.

Figure 4.2.2 Starting Up DTM by Device List
(Method 2) Click “Action” menu and select “Select DTM…”.

![Figure 4.2.3 Starting Up DTM by Action Menu](F040203.ai)

(Method 3) Right-click on the device list and select “Select DTM…”.

![Figure 4.2.4 Starting Up DTM by Right-clicking](F040204.ai)
Step 3: Select target DTM shown in the window and click “OK”.
For the AXG models, select AXG4A FDT2.0 HART7 DTM.
For the AXW models, select AXW4A FDT2.0 HART7 DTM.

Figure 4.2.5 Selecting Target DTM

Step 4: Select from which to load data for the Verification Tool and click “OK”.
- Load from Database: Data saved in the database
- Load from File: Data saved as “dns” format file
- Load Default Date: Data of the currently connected device

Figure 4.2.6 Selecting Data to Load

Refer to manuals for FieldMate on the database and “dns” format file.
When performing a new verification, select “Load Default Data”.
Step 5: Click “Device” menu, select “Additional Functions” and, select “Verification Tool”.

Figure 4.2.7 Selecting Verification Tool

Step 6: Enter the license key and click “Active” button. This is only for the first start-up after installation. Read Section 1.5 for the license key.

Figure 4.2.8 Entering License Key
Step 7: The license agreement shown in Section 1.4 is displayed. Confirm it and click “OK”.

![License Agreement](image1)

Figure 4.2.9 Confirming License Agreement

Then the Verification Tool will start up as below.

![Verification Tool Start-up Window](image2)

Figure 4.2.10 Verification Tool Start-up Window
5. Selecting Launching Mode

To begin with, select one of the three launching modes as shown below. However, when “Device Navigator” is used to start up the DTM, “Default” cannot be selected. In order to select “Default”, “Segment Viewer” needs to be used to start up the DTM at the beginning.

• Default
 Select this mode when launching a new verification. Section 5.1 shows the operation.

• Last Result
 Select this mode when launching from the last verification result accidentally aborted by some error after the last start-up of the FieldMate on PC. Note that the data of the last result will be lost if the FieldMate is once exited from PC. Section 5.2 shows the operation.

• Loaded from DB
 Select this mode when launching from verification data stored in the database. Section 5.3 shows the operation.

![Figure 5.1.1 Verification Tool Launching Window](image_url)
5.1 Default (Launching New Verification)

Follow the procedure below to launch a new verification.

Step 1: Select “Default”
Step 2: Select “Remote” or “Integral” depending on which type of device is to be verified.
Step 3: Click “Next”.

Figure 5.1.2 Selecting “Default”
5.2 Last Result (Launching from Last Verification Result)

Follow the procedure below to launch from the last verification result if there is one saved and available.

Step 1: Select “Last Result”

Step 2: Click “Next”.

Figure 5.1.3 Selecting “Last Result”
5.3 Loaded from DB (Launching from Data in Database)

Follow the procedure below to launch from verification data stored in the database.
The loaded data from database by the procedure shown in Section 4.1 and 4.2 is used.
See the Step 4 in 4.1 (Start-up from “Segment Viewer”) or 4.2 (Start-up from “Device Navigator”).

Figure 5.1.4 Selecting “Loaded from DB”
6. Basic Data Management

This chapter describes basic management on saving, loading, and locking verification data, prior to the description on the operation of Verification Tool in the following chapter.

6.1 Saving Verification Data

There are two ways to save verification data. The one is saving to database. The other is saving as “dns” format file.

Refer to manuals on FieldMate for the database and “dns” format file.

6.1.1 Saving to Database

Step 1: Click “Device” menu and select “Offline Parameter” from the menu window of the Verification Tool.

Figure 6.1.1 Selecting “Offline Parameter”
Step 2: Click “Apply”.

![Figure 6.1.2 Applying “Offline Parameter”](image)

Step 3: Click the icon “Save to Database”

![Figure 6.1.3 Clicking “Save to Database”](image)

Step 4: Enter registration name and click “OK”.

![Figure 6.1.4 Entering Registration Name](image)
Step 5: Click “OK” to finish.

Figure 6.1.5 Saving to Database Completed

6.1.2 Saving as “dns” Format File

Step 1: Click “Device” menu and select “Offline Parameter” from the menu window of the Verification Tool.

Figure 6.1.6 Selecting “Offline Parameter”

Step 2: Click the icon “Apply”.

Figure 6.1.7 Applying “Offline Parameter”
Step 3: Click “Save to File”

Figure 6.1.8 Clicking “Save to File”

Step 4: Enter file name and click “Save”.

Figure 6.1.9 Entering File Name

Step 5: Click “OK” to finish.

Figure 6.1.10 Saving to Database Completed
6.2 Loading Verification Data

There are two ways to load verification data. One is loading data during starting up the DTM. The other is loading data after starting up the DTM. Refer to manuals on FieldMate for the database.

6.2.1 Loading during Starting Up DTM

Step 1: Select “Load from Database” in the window below which appears during starting up DTM.

Step 2: Select data from the list.

Step 3: Click “OK”.

Figure 6.2.1 Loading during Starting Up DTM

6.2.2 Loading after Starting Up DTM

Step 4: Click “Device” menu and select “Offline Parameter”.

Figure 6.2.2 Selecting “Offline Parameter”
Step 5: Click the icon “Load from Database”.

![Figure 6.2.3 Clicking “Load from Database”](image)

Step 6: Click “Yes”.

![Figure 6.2.4 Loading from database](image)

Step 7: Select data to load.

Step 8: Click “OK”.

![Figure 6.2.5 Selecting data](image)

NOTE

When the data was loaded while the Verification Tool was already operating, it is necessary to restart the Tool again to make the loaded data effective. Click “X” on the “Verification tool” tab to finish. Refer to Step 5 of Section 4.1 (Start-up from “Segment Viewer”) or Section 4.2 (Start-up from “Device Navigator”) for restart procedure.
6.3 Locking Verification Data

Verification data can be locked so that it cannot be edited. To lock the data, select “ON” button at “Data Lock” as shown in the window below. Click “OK” and the buttons except for “Generate Test Report” are disabled, making it impossible to edit the data.

Figure 6.3.1 Locking Verification Data
Below is an example of loading verification data that has been locked and saved. After clicking “OK”, the window shows a key-shaped icon below indicating that the data is locked.

![Figure 6.3.2 Locked Verification Data](image_url)

Figure 6.3.2 Locked Verification Data
7. **Operation**

This chapter describes how to use this Verification Tool.

The figure below shows general procedure of the verification. The number in the figure shows the section to be referred to. Perform the Standard VF at first. Then perform the Enhanced VF if necessary. After that, the test report can be generated and printed out. The test report shows “Overall Status”.

![Diagram](F070101.ai)

Figure 7.1.1 General Procedure of Verification

NOTE

- Be sure to always perform Standard VF because “Overall Status” in the verification report is generated only when “Standard VF” is being completed. If not being completed, “Overall Status” is not indicated.

- The verification report can be generated and printed even when “Standard VF” is not being completed.
7.1 **Standard Verification**

IMPORTANT

Do not turn off the power for the AXG/AXW magnetic flowmeter at least for 10 minutes after finishing the verification. If you turn the power off immediately, some of the parameters may be changed to different values from ones before performing the verification.

NOTE

- If Verification Tool turns to “offline” mode due to wiring disconnections, reconnect FieldMate and the AXG/AXW magnetic flowmeter. Verification Tool will be restored to “online” mode again.
- Fill the inside of the AXG/AXW pipe with fluid. If it is not in the full state, the result may not be accurate.

The figure below shows the procedure of the Standard VF. The number in the figure shows the chapter or section to be referred to.

![Figure 7.1.2 Procedure of Standard Verification](image.png)
Click “Start Verification” in the window below to start the Standard VF.

Figure 7.1.3 Starting Standard Verification
7.1.1 Built-in Verification Check

The Verification Tool utilizes the “Built-in Verification” function of the AXG/AXW magnetic flowmeter as a part of the Standard VF.

It checks the circuits (of magnetic field, excitation, and calculation), device status (alarm occurrence), wiring connection status (of signal and excitation cables), and the status of indicator/display board. Note that it takes approximately 15 minutes to complete this part.

The verification here is performed in two statuses. One is the status in which the fluid is flowing in the AXG/AXW magnetic flowmeter. The other is the status in which the fluid is not flowing, which means the flow velocity is zero. Either of them can be performed first.

Step 1: If the fluid is flowing, click “1. Flow”. If not flowing, click “1. No Flow”.

Step 2: Below is the case when selecting “No Flow” status. Make sure that the pipe of the AXG/AXW magnetic flowmeter is full with fluid and it is not flowing. Then click “OK”.

Figure 7.1.4 Selecting Order of Verification

Figure 7.1.5 Start of Verification
Step 3: The progress of the verification work and remaining time is displayed. When the progress reaches to 100%, the window of parameter reading for the verification result is displayed.

Figure 7.1.6 Progress Bar of Verification

Figure 7.1.7 Parameter Reading for Verification Result
Step 4: Below is an example showing the result, “Passed” (operating properly) or “Failed” (not operating properly) for each item.

Step 5: Click “Next” and the verification continues with the other status (“Flow” or “No Flow”) which was not selected at first. Continue from Step 2 for the other status.

Step 6: Click “Skip” to finish the procedure in this subsection.

![Figure 7.1.8 Example of Verification Result](image)
7.1.2 LCD Display Check

Check the display performance of LCD manually, after the Indicator /B Check which checks the display driving circuit.

Step 1: When skipping this check, check “N/A” and go to Step 4.
Step 2: Click “Start LCD Test” to check the LCD display.

Figure 7.1.9 Starting LCD Display Check

Step 3: If the LCD display is cycling through the four configurations (all lighting, not lighting, hound’s tooth, and reversed hound’s tooth) as per the image below, select “Passed”. If not, select “Failed”. The image changes at a cycle of 2 seconds, making 8 seconds for one round, and continuing 4 rounds for totally 32 seconds.

Step 4: Click “Next” to go to the next procedure.
7.1.3 Physical Appearance Check

Check visually the physical appearance of flow sensor, transmitter, and connected cables of the AXG/AXW magnetic flowmeter.

Step 1: Check visually the physical appearance of flow sensor if it has deformation, damage, corrosion, cracks, wear, or leakage. Select “Passed” if it has no such matters. Select “Failed” if it has any of such matters. Or select “N/A” to skip this check.

Step 2: Check visually the physical appearance of transmitter if it has damage, corrosion, dews inside the housing, or corrosion on printed-circuit board. Select “Passed” if it has no such matters. Select “Failed” if it has any of such matters. Or select “N/A” to pass this check.

Step 3: Click “Next” to show the result of the Standard VF.

![Figure 7.1.11 Physical Appearance Check](image)

Step 4: Click “Done” to finish the Standard VF.

![Figure 7.1.12 Result of Standard VF](image)
7.2 Enhanced Verification

NOTE

- Before performing the Enhanced VF turn off the power for AXG/AXW magnetic flowmeter and demount it from piping as it is necessary to change its input/output wiring.
- The connection diagram for wiring is displayed when the verification for input/output is performed. However, the diagrams are different depending on the specification of each AXG/AXW magnetic flowmeter model. Note that the diagrams appear in this manual are just examples and follow the actually displayed diagram when wiring.
- If Verification Tool turns to “ offline” mode due to wiring disconnections, reconnect FieldMate and the AXG/AXW magnetic flowmeter. Verification Tool will be restored to “online” mode again.

The figure below shows the procedure of the Enhanced VF. The details are in the following subsections. The number in the figure shows the subsection to be referred to.

![Enhanced Verification Diagram](F070201.ai)

NOTE

Note for Entering Result Value:
In the Enhanced VF, you may need to enter the value manually in the result field for “Passed” or “Failed” judgment. In this case, please input the numerical value in the result field and then press the Enter key or click on the Verification Tool window. By doing so, the judgment is carried out and the button for transition to the next window becomes effective.

Here is an example regarding the note above for “Analog Output”.
Step 1: Enter a value in the result field.

![Figure 7.2.2 Example of Entering Value](F070202.ai)

Step 2: Press the Enter key or click on the Verification Tool window. Then the result is displayed and the “Next” button becomes active.

![Figure 7.2.3 Example of Entering Value and Result](F070203.ai)
7.2.1 Analog Output Check

The check for analog outputs “AO1” and “AO2” is available. “AO2” is an optional output and only displayed when it is equipped with the AXG/AXW magnetic flowmeter.

Follow the procedure below to check the current output by a measuring instrument (CA150 or equivalent) for each at 4, 12, and 20 mA.

Step 1: Click “Analog Output”.

![Figure 7.2.4 Selecting Analog Output Check](image1)

Step 2: “N/A” can be checked for “AO1” and “AO2” individually to skip the check for one of them or both.

Step 3: Click “Start Verification” to perform the check.

![Figure 7.2.5 Starting Analog Output Check](image2)
Step 4: Perform wiring connection to the analog output terminals referring the displayed diagram. Note that the diagram shown below is an example and becomes different depending on the specification of the AXG/AXW magnetic flowmeter. Click “Next” to continue.

![Figure 7.2.6 Wiring for Analog Output Check](image1)

Step 5: Current value to be checked is indicated. Click “Next” to continue.

![Figure 7.2.7 Continuing Analog Output Check](image2)
Step 6: Read the current value measured by the measuring instrument against 4 mA and enter it in the “Enter measured value (mA)” field.

Step 7: Click “Next” to continue.

Figure 7.2.8 Entering Measured Analog Output Value

Step 8: Current value to be checked is indicated. Click “Next” to continue.

Figure 7.2.9 Continuing Analog Output Check
Step 9: Read the current value measured by the measuring instrument against 12 mA and enter it in the “Enter measured value (mA)” field.

Step 10: Click “Next” to continue.

Figure 7.2.10 Entering Analog Output Value

Step 11: Click “Next” to continue.

Figure 7.2.11 Continuing Analog Output Check
Step 12: Read the current value measured by the measuring instrument against 20 mA and enter it in the “Enter measured value (mA)” field.

Step 13: Click “Next” to continue.

Figure 7.2.12 Entering Analog Output Value

Step 14: Click “Done” to go back to the starting window of analog output check.

Figure 7.2.13 Continuing Analog Output Check
Step 15: When performing the check for “AO2”, follow the same procedure as for “AO1”. To finish the analog output check, click “Back”.

Figure 7.2.14 Finishing Analog Output Check
7.2.2 Pulse Output Check

The check for pulse outputs “PO1” and “PO2” is available. “PO2” is an optional output and only displayed when it is equipped with the AXG/AXW magnetic flowmeter.

Step 1: Click “Pulse Output”.

![Figure 7.2.15 Selecting Pulse Output Check](F070215.png)
Step 2: “N/A” can be checked selected for “PO1” and “PO2” individually to skip the check for one of them or both.

Step 3: Click “Start Verification” to perform the check.

Figure 7.2.16 Starting Pulse Output Check
Step 4: Perform wiring connection to the pulse output terminals referring the displayed diagram. Note that the diagram shown below is an example and becomes different depending on the specification of the AXG/AXW magnetic flowmeter. When using the calibrator CA150, set its setting mode “Contact Input” to ON, and select its measurement range (unit) to “CPM”. Click “Next” to continue.

Figure 7.2.17 Wiring for Pulse Output Check
Step 5: The pulse output rate from AXG/AXW magnetic flowmeter on this check is 100 pps or 2 pps depending on its specification. The pulse rate “2 pps” is applied when driving electromechanical counter. Click “Next” to continue.

Figure 7.2.18 Continuing Pulse Output Check

Step 6: Read the pulse count measured by the measuring instrument and enter it in the “pps” or “CPM” field.

Figure 7.2.19 Entering Pulse Output Value
Step 7: Click “Done” to go back to the starting window of pulse output check.

Figure 7.2.20 Continuing Pulse Output Check

Step 8: When performing the check for “PO2”, follow the same procedure as for “PO1”. To finish the pulse output check, click “Back”.

Figure 7.2.21 Finishing Pulse Output Check
7.2.3 Analog Input Check

The analog input is an optional input and only displayed when it is equipped with the AXG/AXW magnetic flowmeter.

Step 1: Click “Analog Input”.

Step 2: “N/A” can be checked to skip the check.

Step 3: Click “Start Verification” to perform the check.
Step 4: Perform wiring connection to the analog input terminals referring to the displayed diagram. Note that the diagram shown below is an example and becomes different depending on the specification of the AXG/AXW magnetic flowmeter. Click “Next” to continue.

NOTE

Tips on Using CA150 for Analog Input:
When using CA150 Handy Calibrator as a DC current source, connect its “+” terminal to “Iin+” and “-” terminal to “Iin-”. Also, set a minus value like “-12 mA” to the CA150. Then enter its plus value like “12 mA” in the “Enter input value (mA)” field of the Verification Tool.

![Figure 7.2.24 Wiring for Analog Input Check](F070224.ai)
Step 5: Enter the current input value, which is flowing from measuring instrument (CA150 or equivalent) into the AXG/AXW magnetic flowmeter, in the “Enter input value (mA)” field.

Figure 7.2.25 Entering Analog Input Value

Refer to the “NOTE” in the next page relating to Step 4 and Step 5 in the above.

Step 6: Click “Next” and the window with a message “Wait until the value is stable…” appears.

Figure 7.2.26 Continuing Analog Input Check
Figure 7.2.27 Continuing Analog Input Check

Step 7: Click “Re-read the value” to perform this check again.

Step 8: Click “Done” to continue.

Figure 7.2.28 Continuing Analog Input Check
Step 9: Click “Back” to go back to the menu window of the Verification Tool.

Figure 7.2.29 Finishing Analog Input Check

The menu window of the Verification Tool appears again.

Figure 7.2.30 Finishing Analog Input Check
7.2.4 Transmitter Check

WARNING

Follow the user’s manual for the AM012 Magnetic Flowmeter Calibrator for correct operation and safe handling.

The accuracy of transmitter is checked using the AM012 calibrator. The cable connections need to be changed during this check, which must be changed back to the original connection after the check.

Step 1: Click “Transmitter”.

![Image](F070231.ai)

Figure 7.2.31 Selecting Transmitter Check
Step 2: Click “N/A” to skip this check.

Step 3: Click “Start Verification” to continue this check.

Figure 7.2.32 Starting Transmitter Check

Step 4: Connect the AM012 calibrator and the AXG/AXW magnetic flowmeter’s signal and excitation cable referring to the diagram shown in the window. Then click “Next”.

Figure 7.2.33 Wiring for Transmitter Check
Step 5: Set the function switch of the AM012 calibrator to “ADMAG” referring to the figure shown in the window. Then click “Next”.

Figure 7.2.34 Setting Function Switch of AM012 Calibrator
Step 6: The span flow rate of the AXG/AXW magnetic flowmeter (in flow velocity unit [m/s]) appears in the field shown in the window below. If necessary, it can be changed by entering another value. The check will be done using that value. The value set in the AXG/AXW magnetic flowmeter can be read again by clicking the icon.

After fixing the value in the field, set the span setting dial of the AM012 calibrator to the same value displayed in the field.

Step 7: Click "Next" to continue.

Figure 7.2.35 Setting Span Setting Dial of AM012 Calibrator
Step 8: The window below to check “0%” setting value appears. Click “Next” to continue.

Figure 7.2.36 Continuing Transmitter Check

Step 9: Set the output (%) dial of the AM012 calibrator to 0% as instructed in the window.

Step 10: Click “Next” to continue.

Figure 7.2.37 Setting Output Dial of AM012 Calibrator
Step 11: The progress bar of the verification work appears.

![Image of the progress bar for Transmitter Check](F070238.ai)

Figure 7.2.38 Progress Bar for Transmitter Check

Step 12: The window showing the result is displayed. If necessary, click “Re-read the value” to perform this check again.

Step 13: Click “Next” to continue.

![Image of continuing Transmitter Check](F070239.ai)

Figure 7.2.39 Continuing Transmitter Check
Step 14: Perform this check also for 25%, 50%, 75%, and 100% setting value just like done for 0%. After performing it for all the setting values, click “Done” to continue.

Figure 7.2.40 Continuing Transmitter Check

Step 15: The window with the result is displayed as an example below. Click “Back” to go back to the starting window of the verification operation.

Figure 7.2.41 Finishing Transmitter Check
7.2.5 Insulation Resistance Check

The insulation resistance for the excitation coil and signal electrodes is checked, using MY 40 insulation resistance tester or equivalent.

WARNING

Follow the user’s manual for the AXG/AXW magnetic flowmeter for correct operation and safe handling.

IMPORTANT

Before performing this check, make sure that the AM012 calibrator is not connected to the AXG/AXW magnetic flowmeter.

NOTE

- When checking the insulation resistance for the signal electrodes, make sure that the inside of measuring pipe of the AXG/AXW magnetic flowmeter is empty, the surface of signal electrodes are dry, and they have no material adhered to. When checking the insulation resistance for the excitation coil, it is not necessary to make the measuring pipe empty.

- In case of the submersible use AXG/AXW flowmeter, disconnect wiring at the transmitter side so that the insulation resistance can be measured at the cable terminals.

Step 1: Click “Insulation Resistance.”
Step 2: To skip the check of insurance resistance for excitation coil, select “N/A” in the “Coil” column. If it is sure that the insurance resistance is over the measurable range, select “Open Loop (O.L.)” in the “Coil” column and then this check can be passed.

Step 3: Click “Start Verification” to perform the check.

Figure 7.2.43 Starting Insulation Resistance Check

Step 4: A message window is displayed. Read the message and click “Next” to continue.

Figure 7.2.44 Continuing Insulation Resistance Check
Step 5: Measure the resistance value between terminals EX1 and C. Enter the measured value in the "Enter measured value (MΩ)" field. If the measurement result is over the measurement range, enter the maximum value of the range, or go back to Step 2 and select “Open Loop (O.L.)” in the “Coil” column.

Step 6: Click “Done” to continue.

Figure 7.2.45 Measuring Insulation Resistance
Step 7: To skip the check of insurance resistance for signal electrodes, select "N/A" in the "Signal (Electrode)" column. If it is sure that the insurance resistance is over the measurable range, select "Open Loop (O.L.)" in the "Signal (Electrode)" column and then this check can be passed.

Step 8: Click “Start Verification” corresponding to terminals “A-C” to perform the check.

Figure 7.2.46 Continuing Insulation Resistance Check

Step 9: Read the following explanation carefully and click “Next” to continue.

Figure 7.2.47 Continuing Insulation Resistance Check
Step 10: Measure the resistance value between terminals A and C by an insulation resistance tester. Enter the measured value in the “Enter measured value (MΩ)” field. If the measured resistance exceeds the measurement range, enter the maximum value of the range, or go back to Step 7 and select “Open Loop (O.L.)” in the “Signal (Electrode)” column.

Step 11: Click “Done” to continue.

Figure 7.2.48 Continuing Insulation Resistance Check

Step 12: Continue the same routine from Step 7 to Step 11 against terminals “B-C”. After that, the following result (for example) is displayed. Click “Back” to go back to the starting window of the verification operation.

Figure 7.2.49 Finishing Insulation Resistance Check
7.3 Generating Test Report

Click "Generate Test Report" after finishing the check items of verification.

Figure 7.3.1 Generating Test Report

The window below is an example. Items are not displayed which were not selected or selectable depending on the specification of the verified device.

Figure 7.3.2 Verification Report Window
The contents of each part of the verification report are shown in the figures and a table below.

No.1: Device Information

![Image of ADMAG Verification Report]

No.2: Result of Standard Verification

![Image of Standard Verification]

IM 01E21A04-01EN
No.3: Result of Enhanced Verification

No. 4 to 9: Overall Status of Verification, etc.
Table 7.3.1 Items in Verification Report Window

<table>
<thead>
<tr>
<th>No.</th>
<th>Item Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Device Information</td>
<td>Information on the verified AXG/AXW magnetic flowmeter is displayed.</td>
</tr>
<tr>
<td>2</td>
<td>Standard VF</td>
<td>The result of each item for the Standard VF is displayed.</td>
</tr>
<tr>
<td>3</td>
<td>Enhanced VF</td>
<td>The result of each item for the Enhanced VF is displayed.</td>
</tr>
<tr>
<td>4</td>
<td>Overall Status</td>
<td>Overall status of the verification result is displayed.</td>
</tr>
<tr>
<td>5</td>
<td>Comments</td>
<td>Comments (*) entered by customer can be displayed. They can be entered in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the “Comments” field on the right side of the window. For example, this can</td>
</tr>
<tr>
<td></td>
<td></td>
<td>be used for entering documentation number controlled by customer. Click “</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refresh” and they are reflected in the report.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*: Maximum 128 characters and 8 lines</td>
</tr>
<tr>
<td>6</td>
<td>Test Date</td>
<td>The date of test for each item of the Standard VF and Enhanced VF is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>displayed.</td>
</tr>
<tr>
<td>7</td>
<td>Report Information</td>
<td>The date when and the name of person by whom the verification was performed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>can be displayed (*). They can be entered in the “Date” and “Drawer”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fields on the right side of the window. Click “Refresh” and they are</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reflected in the report.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*: The default values are as below.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Date: When “Generate Test Report” was clicked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drawer: Blank</td>
</tr>
<tr>
<td>8</td>
<td>Signature</td>
<td>This is the signature column to be used after printing out the report.</td>
</tr>
<tr>
<td>9</td>
<td>Legend Symbol</td>
<td>Descriptions of the following symbols, shown in the result field of each</td>
</tr>
<tr>
<td></td>
<td></td>
<td>checked item of the verification, are listed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[---] : Inconclusive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[] : Not performed</td>
</tr>
</tbody>
</table>
7.4 Printing Test Report

Follow the procedure below to print the test report. The sizes of paper that can be printed properly are A4 and Letter size. Other sizes are not suitable for printing this report. The default setting is A4 size.

Step 1: Click "Page Setup" icon.

Step 2: Select the paper size.

Step 3: Click "Print" icon and the report will be printed out.
A sample of the printed report is shown below.

Figure 7.4.4 Sample of Verification Report
8. Termination

This chapter describes “Normal Termination” and “Unexpected Termination”.

IMPORTANT

Make sure to keep the power for the AXG/AXW magnetic flowmeter on at least for 10 minutes after finishing the verification. If you turn the power off immediately, parameters may be changed to different values from ones before performing the verification.

Also, when the software write protection function was disabled following Section 3.2, the protection will automatically become enabled within 10 minutes after finishing the verification. When the hardware write protection function switch was set OFF, set it ON again after 10 minutes or more from the finish of the verification.

8.1 Normal Termination

Save the verification data if necessary by referring to Section 6.1 before terminating the Verification Tool. Then click “X” on the “Verification tool” tab to terminate this tool.

![Termination of Verification Tool](image)

Figure 8.1.1 Termination of Verification Tool
8.2 Unexpected Termination

If the Verification Tool terminates abnormally, make sure that the AXG/AXW magnetic flowmeter and the FieldMate are connected correctly and restart the Verification Tool.

If there are parameters that have been changed during verification and have not been restored to the values before the verification, the following window is displayed. Refer to Chapter 9 for the list of error messages.

Step 1: Click “OK” and the parameter recovery process starts.

![Figure 8.1.2 Recovery from Unexpected Termination](image1)

![Figure 8.1.3 Progress Bar in Recovery](image2)
Step 2: After the recovery, the window below is displayed. Click “OK” to continue.

![Recovery Completed](F080203.ai)

Figure 8.1.4 Recovery Completed
9. Error Message

Error messages which may appear during verification are listed below. See the following table with error occurrence conditions and countermeasures.

Error Message 1:

![Error Message 1](F090101.ai)

Error Message 2:

![Error Message 2](F090102.ai)

Error Message 3:

![Error Message 3](F090103.ai)

Error Message 4:

![Error Message 4](F090104.ai)

Error Message 5:

![Error Message 5](F090105.ai)
Table 9.1.1 List of Error Message

<table>
<thead>
<tr>
<th>Error Message No</th>
<th>Message</th>
<th>Error Occurrence Condition</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connection Error. Check connections and then restart Verification Tool. Press OK to continue</td>
<td>Restoring parameters while starting up Verification Tool or after restarting up Verification Tool.</td>
<td>Click “OK” in the message window. Then the window of the Verification Tool will be closed. Check the communication connection and restart the Verification Tool.</td>
</tr>
<tr>
<td>2</td>
<td>Connection Error. Check connections. Press OK to continue.</td>
<td>Occurrence of communication error while any item of verification was going to start.</td>
<td>Click “OK” in the message window. Then the Standard VF will go back to the window for selecting “Flow” or “No Flow”. The Enhanced VF will go back to the starting window of each item to check. Check the communication connection and restart the aborted item to check.</td>
</tr>
<tr>
<td>3</td>
<td>Error occurred during verification. Verification has terminated. Check connections and then restart Verification Tool. Press OK to continue.</td>
<td>Occurrence of communication error while any item of verification was going on.</td>
<td>Click “OK” in the message window. Then the window of the Verification Tool will be closed. Check the communication connection and restart the Verification Tool. If the parameter recovery window shown in Section 8.2 appears, click “OK”. To display the data before this error, select “Last Result” at “Data load option” referring to Section 5.2.</td>
</tr>
<tr>
<td>4</td>
<td>This device is verifying. Do you want to stop the current verification and to execute the new verification?</td>
<td>Action to start new verification while the built-in verification is being performed.</td>
<td>Click “OK” in the message window. Then abort the verification currently being performed to start the new verification with new settings. Or click “Cancel” and the verification tool will go back to the window for selecting “Flow” or “No Flow”.</td>
</tr>
<tr>
<td>5</td>
<td>Loop current mode is “Disabled”. Retry verification after setting Loop current mode to “Enabled”.</td>
<td>Action to start the verification of analog output when the parameter “Loop current mode” is set to “Disabled”.</td>
<td>Start the verification of analog output again after setting the parameter “Loop current mode” to “Enabled”.</td>
</tr>
</tbody>
</table>
Revision Information

Title: ADMAG TI Verification Tool
Document No.: IM 01E21A04-01EN

<table>
<thead>
<tr>
<th>Edition</th>
<th>Date</th>
<th>Page</th>
<th>Revised Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Aug. 2017</td>
<td>-</td>
<td>New publication</td>
</tr>
</tbody>
</table>