
Instruction
Manual

Yokogawa Electric Corporation

IM 34M6Q22-01E

BASIC CPU Modules and
YM-BASIC/FA Programming
Language

IM 34M6Q22-01E
1st Edition

<Toc> <Ind> <Rev> <Preface> i

IM 34M6Q22-01E

Applicable Products:
● FA-M3 Versatile-range Multi-controller

Model: F3BP20-0N and F3BP30-0N

Model name: BASIC CPU module

The document number and document code for this manual are as follows:

Document No.: IM 34M6Q22-01E

Document Code: DOCIM

Refer to the document number in all communications; also refer to the document number or
the document code when purchasing additional copies of this manual.

1st Edition : Oct.29,1999-00Media No. IM 34MQ22-01E (CD) 1st Edition : Oct. 1999 (YK)
All Rights Reserved Copyright © 1999, Yokogawa Electric Corporation

ii<Toc> <Ind> <Rev> <Preface>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

◆ Important

■ About This Manual
(1) This manual should be passed on to the end user.

(2) Before using the module, read this manual completely to get a thorough understand-
ing of the module.

(3) This manual explains the functions contained in this product, but does not warrant that
those will suit the particular purpose of the user.

(4) Under absolutely no circumstances may the contents of this manual be transcribed or
copied, in part or in whole, without permission.

(5) The contents of this manual are subject to change without prior notice.

(6) Every effort has been made to ensure accuracy in the preparation of this manual.
However, should any errors or omissions come to the attention of the user, please
contact the nearest Yokogawa Electric representative or sales office.

■ Safety Precautions when Using/Maintaining the Product
The following safety symbols are used on the product as well as in this manual.

CAUTION
This symbol indicates that the operator must follow the instructions laid out in this
manual in order to avoid the risk of personnel injuries or fatalities or damage to the
instrument. The manual describes what special care the operator must exercise to
prevent electrical shock or other dangers that may result in injury or the loss of life.

Protective ground terminal

Before using the instrument, be sure to ground this terminal.

Function ground terminal

Before using the instrument, be sure to ground this terminal.

Indicates alternating current.

Indicates direct current.

<Toc> <Ind> <Rev> <Preface> iii

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

(1) The following symbols are used only in the instruction manual.

WARNING
Indicates that the operator must refer to the instructions in this manual in order to
prevent the instrument (hardware) or software from being damaged, or a system
failure from occurring.

CAUTION
Draws attention to information essential for understanding the operation and functions.

TIP

Gives information that complements the present topic.

SEE ALSO

Identifies a source to which to refer.

(2) For the protection and safe use of the product and the system controlled by it, be sure
to follow the instructions and precautions on safety stated in this manual whenever
handling the product. Take special note that if you handle the product in a manner
other than prescribed in these instructions, safety cannot be guaranteed.

(3) If separate protection and/or safety circuits for this product or the system which is
controlled by this product are to be installed, ensure that such circuits are installed
external to the product.

(4) If component parts or consumables are to be replaced, be sure to use parts specified
by the company.

(5) If the product is to be used with a system or equipment whose reliable operation is
critical to the lives and safety of personnel - such as nuclear power equipment, devices
using radioactivity, railway facilities, air navigation facilities, or medical equipment,
consult Yokogawa Electric’s sales staff.

(6) Do not attempt to make modifications or additions internal to the product.

■ Exemption from Responsibility
(1) Yokogawa Electric Corporation (hereinafter referred to as Yokogawa Electric) makes

no warranties regarding the product except those stated in the WARRANTY that is
provided separately.

(2) Yokogawa Electric assumes no liability to any party for any loss or damage, direct or
indirect, caused by the user or any unpredictable defect of the product.

■ Software Supplied by the Company
(1) Yokogawa Electric makes no other warranties expressed or implied except as pro-

vided in its warranty clause for software supplied by the company.

(2) Use the relevant software with one specified computer only. You must purchase
another copy of the software for use with each additional computer.

(3) Copying the software for any purpose other than backup is strictly prohibited.

(4) Store the floppy disks (originals) of this software in a safe place.

(5) Reverse engineering, such as decompiling of the software, is strictly prohibited.

iv<Toc> <Ind> <Rev> <Preface>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

(6) No portion of the software supplied by Yokogawa Electric may be transferred, ex-
changed, or sublet or leased for use by any third party without prior permission by
Yokogawa Electric.

■ General Requirements for Using FA-M3 Controllers

● Avoid installing FA-M3 controllers in the following locations:

• Where the instrument will be exposed to direct sunlight, or where the operating tem-
perature is outside the range 0°C to 55°C (0°F to 131°F).

• Where the relative humidity is outside the range 10 to 90%, or where sudden tempera-
ture changes may occur and cause condensation.

• Where corrosive or inflammable gases are present.

• Where the instrument will be exposed to direct mechanical vibration or shock.

● Use the correct types of wire for external wiring:

• Use copper wire with temperature ratings of greater than 75°C.

● Securely tighten screws:

• Securely tighten module mounting screws and terminal screws to avoid problems
such as faulty operation.

• Tighten terminal block screws with the correct tightening torque of 0.8 N.m.

● Securely fasten connectors of interconnecting cables:

• Securely fasten connectors of interconnecting cables, and check them thoroughly
before turning on the power.

● Interlock with emergency-stop circuitry using external relays:

• Equipment incorporating the FA-M3 controllers must be furnished with emergency-
stop circuitry that uses external relays. This circuitry should be set up to interlock
correctly with controller status (stop/run).

● Ground FA-M3 controllers to an independent Japanese Industrial Standard
(JIS) Class 3 Ground:

• Avoid grounding the FG terminal of the FA-M3 controller to the same ground as high-
voltage power lines. Ground the terminal to an independent JIS Class 3 ground
(ground resistance up to 100 Ω).

● Observe countermeasures against noise:

• When assigning inputs/outputs, the user should avoid locating AC-supplied I/O mod-
ules in the vicinity of the CPU module.

● Keep spare parts on hand:

• Stock up on maintenance parts, including spare modules, in advance.

<Toc> <Ind> <Rev> <Preface> v

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

● Discharge static electricity before operating the system:

• Because static charge can accumulate in dry conditions, first touch grounded metal to
discharge any static electricity before touching the system.

● Never use solvents such as paint thinner for cleaning:

• Gently clean the surfaces of the FA-M3 controllers with a piece of soft cloth soaked in
water or a neutral detergent.

• Do not use solvents such as paint thinner for cleaning, as they may cause deforma-
tion, discoloration, or malfunctioning.

● Avoid storing the FA-M3 controllers in places with high temperature or
humidity:

• Since the CPU module has a built-in battery, avoid storing it in places with high tem-
perature or humidity.

• Since the service life of the battery is drastically reduced by exposure to high tem-
peratures, so take special care (storage temperature can be from –20° to 75°C).

● Always turn off the power before installing or removing modules:

• Turn off power to the power supply module when installing or removing modules,
otherwise damage may result.

● When installing ROM packs and changing switch settings:

• In some modules you can remove the right-side cover and install ROM packs or
change switch settings. While doing this, do not touch any components on the printed-
circuit board, otherwise components may be damaged and modules fail.

vi<Toc> <Ind> <Rev> <Preface>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

� Waste Electrical and Electronic Equipment
Waste Electrical and Electronic Equipment (WEEE), Directive 2002/96/EC
(This directive is only valid in the EU.)

This product complies with the WEEE Directive (2002/96/EC) marking requirement.

The following marking indicates that you must not discard this electrical/electronic product
in domestic household waste.

Product Category

With reference to the equipment types in the WEEE directive Annex 1, this product is
classified as a “Monitoring and Control instrumentation” product.

Do not dispose in domestic household waste.

When disposing products in the EU, contact your local Yokogawa Europe B. V. office.

<Toc> <Ind> <Rev> <Preface> vii

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

� Introduction

� Overview of the Manual
This instruction manual explains the specifications of the F3BP20-0N and F3BP30-0N
BASIC CPU modules for the FA-M3 versatile-range multi-controller, as well as the functions
and syntax of the YM-BASIC/FA programming language.

For details on the practical method of programming these modules, also refer to the BASIC
Programming Tool M3 instruction manual (IM 34M6Q22-02E), YEWMAC500 instruction
manual (if the module is F3MP30-0N) and other relevant documents.

� Structure of the Manual
This manual consists of three parts, Part A, “BASIC CPU Modules,” Part B, “Description of
YM-BASIC/FA,” and Part C, “Syntax of YM-BASIC/FA,” as outlined below.

� Part A: BASIC CPU Modules (F3BP�0-0N)

Explains the specifications, basic operation and functions of the BASIC CPU modules as
well as the programming tool for the modules.

� Part B: Description of YM-BASIC/FA (F3BP�0-0N)

Explains the features, basic syntax and functions (subprograms, real-time statements, data
exchange with ladder sequence programs, methods of access to I/O modules, etc.) of the
YM-BASIC/FA programming language.

� Part C: Syntax of YM-BASIC/FA (F3BP�0-0N)

Explains the instructions (commands, subcommands, statements, functions, etc.) that can
be used with YM-BASIC/FA.

� Notational Conventions
Symbol Marks Used in This Manual

The following symbol marks are used in Parts, “Description of YM-BASIC/FA” and “Syntax
of YM-BASIC/FA,” in this manual.

Refers to an instruction applicable to both the F3BP20-0N and F3BP30-0N BASIC
CPU modules. This instruction applies whether a personal computer is connected or
not.

Refers to an instruction applicable to both the F3BP20-0N and F3BP30-0N BASIC
CPU modules. This instruction applies only when a personal computer is connected.

viii<Toc> <Ind> <Rev> <Preface>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

� Other Instruction Manuals
In addition to this manual, refer to the following instruction manuals as necessary.

� Refer to the following instruction manual for details on the specifications,
configuration, installation/wiring, trial runs, and maintenance/inspection of
the FA-M3 versatile-range multi-controller.

• FA-M3 Versatile-range Multi-controller-Hardware (IM 34M6C11-01E)

Note: For details on the specifications of products other than the power supply modules, base mod-
ules, I/O modules, cables, and terminal block units, refer to their respective instruction manuals.

� Refer to the following instruction manual for details on the system-wide
restrictions on module installation.

• FA-M3 Hardware Manual (IM 34M6C11-01E)

� Refer to the following instruction manuals if your system uses an F3SP��
sequence CPU module.

• Sequence CPU Modules — Functions (IM 34M6P12-02E)

• Sequence CPU Modules — Instructions (IM 34M6P12-03E)

� Refer to the following instruction manual if your system uses an F3FP36
sequence CPU module.

• Sequence CPU Module F3FP36 (IM 34M6P22-01E)

� Refer to the following instruction manual when creating programs using
ladder language.

• Ladder Diagram Support Program M3 (IM 34M6Q13-01E)

� Refer to the following instruction manual when creating programs using
SFC language.

• Sequence Programming Tool for Windows POPMUSCAT (IM 34M6Q51-01E)

<Toc> <Ind> <Rev> <Preface> ix

IM 34M6Q22-01E

� Copyright and Trademarks Notices

� All Rights Reserved
The copyrights of the programs, online manuals and other works contained on the CD-
ROM belong to Yokogawa Electric Corporation. The online manuals are protected by PDF
security from unauthorized modification; however, they can be output via a printer. When
using the online manuals in a printed form, make sure the printouts are consistent with the
latest versions of the manuals by checking the versions with those shown on the latest
version of the CD-ROM.

No part of the online manuals and other software products included on the CD-ROM may
be reproduced, or transferred, sold or distributed (including distribution through a personal
computer communication network) to any third party. Nor may the online manuals be
stored or recorded on videotapes or other media.

� Trademark Acknowledgements
• Microsoft and Windows are registered trademarks of Microsoft Corporation in the USA

and other countries.

• The trade and company names that are referred to in this document are either trade-
marks or registered trademarks of the respective companies.

1st Edition : Oct.29,1999-00

Blank Page

Toc-1<Int> <Ind> <Rev>

IM 34M6Q22-01E

CONTENTS

1st Edition : Oct.29,1999-00

FA-M3
BASIC CPU Modules and
YM-BASIC/FA Programming Language

IM 34M6Q22-01E 1st Edition

� Important...ii

� Introduction ..vii

� Copyright and Trademarks Notices...ix

Part A: BASIC CPU Modules (F3BP�0-0N)
A1. Overview ... A1-1

A2. Specifications ... A2-1
A2.1 Function Specifications.. A2-1

A2.2 Operating Environment .. A2-2

A2.3 Model and Suffix Code.. A2-2

A2.4 Components and Their Functions.. A2-3

A2.5 External Dimensions .. A2-4

A2.6 Attaching/Removing the BASIC CPU Module ... A2-5

A2.7 System Configuration and Restrictions on Module Installation A2-7

A2.7.1 System Configuration ... A2-7

A2.7.2 Restrictions on Module Installation.. A2-7

A3 Basic CPU Operation and the CPU’s Functions A3-1
A3.1 CPU’s Operating Modes ... A3-1

A3.2 Module Operation during Power-on/off Sequences A3-2

A3.2.1 Module Operation during Power-on Sequence A3-2

A3.2.2 Module Operation during Power-off Sequence A3-2

A3.3 Module Operation during Momentary or Total Power Failure A3-3

A3.3.1 Module Operation during Momentary Power Interruption A3-3

A3.3.2 Setting the Mode for Detecting Momentary Power Interruption A3-4

A3.3.3 Module Operation during Power Failure .. A3-4

A3.4 Configuration Function .. A3-5

A3.4.1 Setting the Sizes of User and Common Areas A3-5

A3.4.2 Configuring the Shared Devices.. A3-7

A3.5 Program Residence Function .. A3-9

A3.6 ROM Writer Function... A3-10

A3.7 Access Using a Personal Computer Link .. A3-11

A3.7.1 Personal Computer Link System ... A3-11

A3.7.2 Accessing the Common Area ... A3-12

<Int> <Ind> <Rev>

IM 34M6Q22-01E

Toc-2

1st Edition : Oct.29,1999-00

A4. Programming Tool .. A4-1

A5. Corrective Actions in Case of Failure .. A5-1

Part B: Description of YM-BASIC/FA (F3BP u0-0N)
B1. Standard Specifications and Features of YM-BASIC/FA B1-1

B1.1 Standard Specifications of YM-BASIC/FA .. B1-1

B1.2 Features of YM-BASIC/FA ... B1-3

B2. Basic Syntax of YM-BASIC/FA .. B2-1
B2.1 Programs and Commands ... B2-1

B2.2 Sentences and Lines .. B2-1

B2.3 Character Set .. B2-4

B2.4 Data Types ... B2-5

B2.5 Constants .. B2-6

B2.6 Variables .. B2-8

B2.6.1 Naming a Variable ... B2-8

B2.6.2 Declaration of the Type of Variable .. B2-8

B2.6.3 Declaration of Variables and Their Defaults B2-9

B2.6.4 Length of a Character-string Variable .. B2-9

B2.6.5 Array Variables .. B2-10

B2.7 Type Conversion ... B2-12

B2.8 Expressions and Operations.. B2-15

B2.8.1 Arithmetic Operation ... B2-16

B2.8.2 Relational Operation ... B2-17

B2.8.3 Logical Operation ... B2-17

B2.9 Character-string Operation .. B2-18

B2.9.1 Concatenation of Character Strings .. B2-18

B2.9.2 Comparison between Character Strings B2-18

B2.10 Functions .. B2-19

B2.10.1 Intrinsic Functions ... B2-19

B2.10.2 User-defined Functions ... B2-19

B2.11 Priority of Operations ... B2-20

B3. Subprograms .. B3-1
B3.1 Structure of a Program ... B3-1

B3.2 Subprograms .. B3-2

B3.3 Call of Subprograms ... B3-3

B3.4 Independency of Programs .. B3-4

B3.5 Arguments Transferable to Subprograms ... B3-6

B3.6 Subprograms and Subroutines .. B3-7

B3.7 Variables and Labels ... B3-7

B4. Real-time Statements ... B4-1
B4.1 Execution Modes .. B4-1

Toc-3<Int> <Ind> <Rev>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B4.2 Wait for Events (WAIT) .. B4-2

B4.3 Interrupt ... B4-3

B5. Common Variables .. B5-1
B5.1 Common Area ... B5-1

B5.2 Basics of How to Use Common Variables.. B5-2

B5.2.1 Functions of COM Statement .. B5-2

B5.2.2 Clearing the Common Area .. B5-3

B5.2.3 Restrictions on the Use of Common Variables B5-3

B5.3 Statements Related to COM Statement ... B5-4

B5.3.1 SUBCOM Statement .. B5-4

B5.3.2 RECOM Statement ... B5-6

B5.4 Data Exchange with Subprograms .. B5-7

B6. Data Exchange with a Ladder Sequence Program B6-1
B6.1 Data Exchange between CPU Modules ... B6-1

B6.1.1 Data Exchange Using Common Variables B6-3

B6.1.1.1 Sharing of Sequence Devices B6-3
B6.1.1.2 BASIC Common Variables and Sequence Devices ... B6-4
B6.1.1.3 COM #S Statement ... B6-5
B6.1.1.4 Example of Data Exchange B6-11

B6.1.2 Data Exchange Using an ENTER or OUTPUT Statement B6-14

B6.1.2.1 ENTER Statement ... B6-15
B6.1.2.2 OUTPUT Statement .. B6-18
B6.1.2.3 Selectable Sequence Devices B6-21
B6.1.2.4 Example of Data Exchange B6-25

B6.1.3 Synchronization between Programs.. B6-26

B6.1.4 Precautions with Data Exchange .. B6-28

B6.2 Starting/Stopping a Ladder Sequence Program B6-30

B6.2.1 Starting/Stopping a Ladder Sequence Program B6-31

B6.2.2 Starting/Stopping a Ladder Sequence Program Block B6-31

B6.3 Reading the Operating Status of a Ladder Sequence Program B6-32

B6.4 Error Codes ... B6-33

B7. Methods of Access to I/O Modules .. B7-1
B7.1 Means of Access to I/O Modules .. B7-2

B7.2 Slot Number and Terminal Number .. B7-3

B7.3 Declaring Use of I/O Modules ... B7-5

B7.4 Access to Contact I/O Modules .. B7-7

B7.4.1 Contact Input Modules .. B7-7

B7.4.2 Interrupt from a Contact Input Module ... B7-16

B7.4.2.1 Interrupt from a Contact Input Module B7-16
B7.4.2.2 Interrupt Input from a High-speed Input Module B7-21

B7.4.3 Contact Output Modules ... B7-24

B7.4.4 Defining the Operating Mode of a Contact Output Module............. B7-31

B7.4.5 Contact I/O Modules ... B7-33

B7.5 ... B7-35

<Int> <Ind> <Rev>

IM 34M6Q22-01E

Toc-4

B7.6 Contact Input/Contact Output Modules-Programming Exercise B7-36

B7.6.1 Contact Input Modules .. B7-36

B7.6.2 Contact Output Modules ... B7-37

B8. Libraries .. B8-1
B8.1 What Is a Library? ... B8-1

B8.2 Incorporating Libraries into a User Program .. B8-1

B8.3 Program Flow .. B8-2

Part C: Syntax
C1. Syntax Usage .. C1-1

C1.1 Positioning the Part “Syntax” ... C1-1

C1.2 Terms Used in This Part .. C1-2

C2. List of YM-BASIC/FA Functions .. C2-1
C2.1 Commands and Subcommands .. C2-1

C2.2 Statements .. C2-4

C2.3 Functions .. C2-7

C2.4 Libraries .. C2-9

C3. Syntax ... C3-1
ABS ... C3-4

ALLOCATE... C3-4

APPEND (A) ... C3-5

ARNAM ... C3- 6

ASC ... C3-6

ASSIGN ... C3 -6

ATN ... C3-7

AUTO ... C3-7

BCD ... C3-7

BINAND ... C3 -8

BINNOT ... C3 -8

BINOR ... C3-8

BINXOR ... C3 -9

BIT ... C3-9

BLEN ... C3-9

BYE ... C3-10

CALL ... C3-11

CALLLIB .. C3-1 2

CHG(C) ... C3-12

CHR$... C3-13

COM ... C3-14

CONT ... C3-15

CONTROL .. C3-16

1st Edition : Oct.29,1999-00

Toc-5<Int> <Ind> <Rev>

IM 34M6Q22-01E

COS ... C3-16

DATA ... C3-17

DATE$... C3-17

DEF FN ... C3-18

DEFAULT .. C3-1 9

DEFINT/DEFLNG/DEFSNG/DEFDBL .. C3-19

DEL ... C3-20

DIM ... C3-21

DISABLE .. C3-2 2

DISP (DP) ... C3-22

DISP USING (DU) ... C3-22

DIV ... C3-23

EDIT ... C3-23

ELSE ... C3-24

ENABLE ... C3-2 5

ENABLE INTR .. C3-25

END ... C3-25

END WHILE .. C3-26

ENDIF ... C3-26

ENTER ... C3-27

ERLIST ... C3-28

ERRC ... C3-28

ERRCE ... C3-28

ERRL ... C3-28

EXP ... C3-29

FIND (F) ... C3-29

FOR–NEXT ... C3-30

FREE ... C3-31

FREE ... C3-31

GOSUB–RETURN .. C3-32

GOTO ... C3-32

HALT ... C3-32

HEX$... C3-33

HINSTR ... C3-33

HLEFT$... C3-33

HLEN ... C3-34

HMID$... C3-34

HRIGHT$.. C3-34

IF … THEN .. C3-35

IFPCNV ... C3-36

IMAGE ... C3-38

INICOMM3 .. C3-43

1st Edition : Oct.29,1999-00

<Int> <Ind> <Rev>

IM 34M6Q22-01E

Toc-6

INIT COM .. C3-43

INSTR ... C3-43

INT ... C3-43

IOSIZE ... C3-44

LASTBIT ... C3- 44

LBCD ... C3-44

LBINAND .. C3-4 5

LBINNOT .. C3-4 5

LBINOR ... C3-4 5

LBINXOR.. C3-4 6

LBIT ... C3-46

LCOPY ... C3-47

LEFT$... C3-47

LEN ... C3-47

LET ... C3-48

LHEX$... C3-48

LINKLIB ... C3- 49

LIST (L) ... C3 -50

LOAD ... C3-51

LOG ... C3-51

LROTATE .. C3-52

LSHIFT ... C3-52

MERGE ... C3-53

MID$... C3-53

MOD ... C3-53

MOVE ... C3-54

NAM ... C3-54

NEW ... C3-54

NEXT ... C3-54

ON EOT/OFF EOT .. C3-55

ON ERROR/OFF ERROR ... C3-56

ON INT/OFF INT ... C3-57

ON SEQEVT/OFF SEQEVT .. C3-58

ON TIME/OFF TIME .. C3-59

ON TIMEOUT/OFF TIMEOUT ... C3-60

ON TIMER/OFF TIMER ... C3-61

ON … GOSUB .. C3-62

ON … GOTO ... C3-62

OPTION BASE ... C3-62

OUTPUT ... C3-63

PAUSE ... C3-63

PI ... C3-64

1st Edition : Oct.29,1999-00

Toc-7<Int> <Ind> <Rev>

IM 34M6Q22-01E

PRINT (PR) ... C3-65

PRINT USING (PU) ... C3-66

PROG ... C3-67

QUIT (Q) ... C3-67

RANDOMIZE .. C3-67

READ ... C3-68

RECOM ... C3-68

REM ... C3-68

RENUM ... C3-69

RESET ... C3-69

RESET STATUS ... C3-70

RESTORE... C3-70

RETURN ... C3-70

RETURN RETRY .. C3-70

RIGHT$... C3-71

RND ... C3-71

RNPAR ... C3-71

ROTATE ... C3-72

RUN ... C3-72

SAVE ... C3-73

SCRATCH... C3-75

SCRATCHP .. C3-75

SCRATCHV .. C3-75

SEQACTV... C3-76

SET STATUS .. C3-76

SET TIMEOUT .. C3-77

SETMD RES ... C3-77

SETMD RUN ... C3-78

SGN ... C3-78

SHIFT ... C3-79

SIN ... C3-79

SPC ... C3-79

SQR ... C3-79

STATUS ... C3-80

STEP ... C3-81

STOP ... C3-81

STR$... C3-82

SUB ... C3-82

SUBCOM .. C3-82

SUBEND... C3-83

SUBEXIT .. C3-83

SUBEXIT RETRY.. C3-83

1st Edition : Oct.29,1999-00

<Int> <Ind> <Rev>

IM 34M6Q22-01E

Toc-8

SWAP ... C3-83

TAN ... C3-84

TIME$... C3-84

TIMEMS ... C3-84

TRACE ... C3-85

TRACEP ... C3-86

TRACEV ... C3-87

TRANSFER .. C3-88

VAL ... C3-89

WAIT ... C3-90

WHILE/END WHILE .. C3-91

C4. Error Code List .. C4-1
C4.1 YM-BASIC/FA Error Codes ... C4-1

C4.2 Detail Error Codes... C4-6

Appendix 1. Listing of Internal Codes ..App1-1
Appendix 1.1 Data Formats ... App1-1

Appendix 1.2 Character Code Format .. App1-3

Appendix 1.3 Listing of Alphanumeric Character Codes App1-4

Appendix 2. Listing of Reserved Words ..App2-1

Appendix 3. Listing of MS-DOS Special Editing FunctionsApp3-1

Revision History

1st Edition : Oct.29,1999-00

<Toc> <Ind> <A1. Overview > A1-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

A1. Overview

■ Product Overview
The F3BP20-0N and F3BP30-0N BASIC CPU modules use high-speed real-time BASIC,
i.e. YM-BASIC/FA, that is in use with the FA500 controller and YEWMAC computer* and
has received favorable recognition within the industry. The modules are especially useful
where there is a need for communication or information handling.
* The FA500 is an intelligent programmable controller and the YEWMAC is an FA computer developed by Yokogawa

Electric Corporation.

■ Features
• Especially useful with a communication module that cannot be controlled using ladder

sequence, or when advanced computing is required.

• One of these modules can be installed in one of slots 1 to 4 of the main unit. Since the
module does not need a sequence CPU module to be used, it is possible to build a
BASIC controller.

• Can have direct access to I/O modules.

• Can exchange data with the ladder sequence, and can also be synchronized with the
ladder sequence by events.

• Structured programming is possible with subprograms.

• Access to the common data is possible using the PC link module, etc.

• Can be equipped with a ROM pack to execute ROM-based operation or store pro-
grams or common data.

• Allows programs to be developed or debugged on a general-purpose personal com-
puter.

Blank Page

<Toc> <Ind> <A2. Specifications> A2-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

A2. Specifications

A2.1 Function Specifications
Table A2.1 Specifications

Item
Specifications

F3BP20-0N F3BP30-0N

Programming language

Method

Number of tasks

Program capacity

Shared device

Self-diagnosis function

Other functions

Maximum number of
modules installed

Current consumption

External dimensions

Weight

YM-BASIC/FA

Interpreter (with pre-run function)

1

120 KB 510 KB

Shared registers (R): 1024 maximum
(Shared relays and extended shared relays/registers cannot be used.)

Memory failure, CPU failure, power failure, etc.

Configuration function (setting of the sizes of user and common areas)
Program residence function
Error log saving function
Program development and debugging function
Date/time function (year/month/day/hour/minute/second)
Access to common data (writing/reading) using PC link module
Writing of program data to ROM

1/unit

200 mA (5 V DC)

28.9 (W) × 100 (H) × 83.2 (D) mm (Note)

105 g
TA020101.EPS

Note: Excluding protrusions. (See the dimensional figures for more details.)

A2-2<Toc> <Ind> <A2. Specifications>

IM 34M6Q22-01E

A2.2 Operating Environment
The following table summarizes requirements for CPU modules that can be used in combi-
nation with the F3BPu0-0N BASIC CPU module.

Table A2.2 Applicable CPU Modules and Their Revisions

CPU Module Revision

F3SP21, F3SP25, F3SP35

F3FP36

No restrictions due to revision.

No restrictions due to revision.
TA020201.EPS

A2.3 Model and Suffix Code
Table A2.3 Model and Suffix Code

Model No. Suffix Code Style Code Option Code Remarks

F3BP20

F3BP30

-0N

-0N

…

…

…

…

120-KB memory

510-KB memory
TA020301.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <A2. Specifications> A2-3

IM 34M6Q22-01E

A2.4 Components and Their Functions

RDY
RUN
ALM
ERR

BPh0-0N CPU

PROGRAMMER

Connector for connecting to the programming tool

LED indicator lamps for maintaining the BASIC CPU module

FA020401.EPS

Figure A2.1 Components and Their Functions

● LED Indicator Lamps for Maintaining the BASIC CPU Module

Failures are indicated by these LED indicator lamps, as classified by the failure level, in the
upper section of the BASIC CPU module’s front panel.

Table A2.4 Status Indication by LED Indicator Lamps

LED Indicator Lamp Meaning

RDY (Ready) - green

RUN (Run) - green

ALM (Alarm) - yellow

ERR (Error) - red

TA020401.EPS

● Serious failure if unlit: The key hardware is disabled.
Example: CPU failure, memory failure

● Running when lit: The user program is running.

● Minor failure when lit: The BASIC CPU module is abnormal, though the
user program can still be run.
Example: Problem with power supply, I/O module failure, communication

failure
- Or -
● Debug mode when lit: The debug mode is in progress. (This indicator

lamp comes on when a personal computer is connected to the BASIC
CPU module and is developing or debugging programs.)

● Moderate failure when lit: The user program cannot be started or run any
further.
Example: Program failure, I/O module failure, instruction processing

failure

1st Edition : Oct.29,1999-00

A2-4<Toc> <Ind> <A2. Specifications>

IM 34M6Q22-01E

A2.5 External Dimensions

83.2 28.9
2

100

FA020501.EPS

Unit: mm

PROGRAMMER

RDY
RUN
ALM
ERR

Figure A2.2 External Dimensions

1st Edition : Oct.29,1999-00

<Toc> <Ind> <A2. Specifications> A2-5

IM 34M6Q22-01E

A2.6 Attaching/Removing the BASIC CPU Module

■ Attaching the Module
Figure A2.3 shows how to attach the BASIC CPU module to a base module. Hook the
BASIC CPU module onto one of the protruding tabs at the bottom of the base module.
Push the top of the communication module toward the base module in the direction indi-
cated by the arrow in the figure. Push in the BASIC CPU module until the lock clip on top
fully engages the opening at the top of the base module. Before attaching or removing the
BASIC CPU module, be sure to turn off the power to the module.

Base module

BASIC CPU module

Lock clip

FA020601.EPS

Figure A2.3 Attaching the BASIC CPU Module

CAUTION

When attaching the BASIC CPU module, exercise care to avoid bending any of the connec-
tor pins on the back of the module. Do not force the module onto the base module before
they are securely connected. Otherwise, the pins will be bent, resulting in the malfunction
of the BASIC CPU module. If the pins are bent during installation of the BASIC CPU
module, the message “Module Installation Error” will be given during self-diagnosis.

■ Removing the Module
Remove the BASIC CPU module from the base module in reverse order from the way it is
attached. Press in on the lock clip to disengage the module, and then pull the module
toward you and lift it out.

1st Edition : Oct.29,1999-00

A2-6<Toc> <Ind> <A2. Specifications>

IM 34M6Q22-01E

■ Attaching the Module in Areas of Intense Vibration
In anticipation of possible exposure to intense mechanical vibration, the BASIC CPU
module is designed to be securely fastened onto the base module with a screw. Figure
A2.4 shows how to fix the BASIC CPU module with a screw. Insert the screw specified
below into the hole on the top of the module. Using a Phillips screwdriver, fasten the screw
to the base module. Since the screwdriver needs to be somewhat angled to do this, allow a
clearance of at least 80 mm between the BASIC CPU module and the duct.

Type of Screw to Be Used

M4-size 12 to 14-mm long
binding-head screw

FA020602.EPS

Figure A2.4 Fixing the Module with a Screw

CAUTION

When fixing the BASIC CPU module, avoid overtightening the screw.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <A2. Specifications> A2-7

IM 34M6Q22-01E

A2.7 System Configuration and Restrictions on
Module Installation

A2.7.1 System Configuration
For details on the system configuration, see the “FA-M3 Hardware Manual” (IM 34M6C11-
01E) or “Sequence CPU Instruction Manual — Functions” (IM 34M6P12-02E)

A2.7.2 Restrictions on Module Installation
For details of the Restrictions on module installation, see the “FA-M3 Hardware Manual” (IM
34M6C11-01E).

WARNING

If you install the BASIC CPU module in the 5th or a higher-numbered slot and turn on the
power, the CPU memory is completely cleared and the module reverts to the state in which
it was shipped.

CAUTION

• If the system has multi-CPU configuration, any single output module (or an advanced
module having any Yuuuuu output relay) cannot be shared by more than one CPU.
If using such an output module together with a BASIC program, set the output module
in question to the Unused option in the CPU Configuration menu of the CPU that is not
used.

• If only the BASIC CPU module is used, it is not possible to have direct access to an FA
link module, FA link H module, or fiber-optic FA link H module. If you want to have
access to any of these FA link modules, use the BASIC CPU module in combination
with a sequence CPU module. See the FA Link, “FA Link H Module, and Fiber-optic
FA Link H Module” (IM 34M6H43-01E) instruction manual for more information.

• If the system has been configured into a loop using fiber-optic FA-bus 2 modules, the
case of cable discontinuity may result in an error occurring when subunits are ac-
cessed. If this happens, execute a retry process or use other means. See the “Fiber-
optic FA-bus Module and Fiber-optic FA-bus Type 2 Module” (IM 34M6H45-01E)
instruction manual for more information.

1st Edition : Oct.29,1999-00

Blank Page

<Toc> <Ind> <A3. Basic CPU Operation and the CPU’s Functions> A3-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

A3 Basic CPU Operation and the CPU’s
Functions

A3.1 CPU’s Operating Modes
The CPU has two operating modes: the REAL mode and the DEBUG mode.

■ REAL Mode
The REAL mode is the mode for practical system operation. If you specify the program in
question as a resident program, it starts automatically when the FA-M3 controller is turned
on. For details on the program residence function, see Section A3.5, “Program Residence
Function.” When the program is running in REAL mode, the RDY and RUN indicator lamps
are lit. When the program stops, only the RUN indicator lamp goes out.

■ DEBUG Mode
The DEBUG mode is the mode for developing and debugging programs with a personal
computer connected to the BASIC CPU module. It is also referred to as the command
input mode because you can input commands and statements from a keyboard. When the
BASIC CPU module is in DEBUG mode, the RDY and ALM indicator lamps are lit. When
you run the program in DEBUG mode, the RUN indicator lamp also comes on.

If you start the BASIC Programming Tool M3 and the program stops, the BASIC CPU
module changes from the REAL mode to the DEBUG mode. If you quit the BASIC Pro-
gramming Tool M3, the BASIC CPU module returns to REAL mode from DEBUG mode. It
is also possible to enable the program specified as a resident program to run automatically
in REAL mode (BYE&RUN mode) at the end of the DEBUG mode.

The LED indicator lamps turn on or off in the combinations shown in the following table,
depending on the operating mode selected.

Table A3.1 States of LED Indicator Lamps During Operation Modes

Operating Mode

LED Indicator Lamp

REAL Mode

Program in progress Program at a stop Program in progress Program at a stop

DEBUG Mode

RDY

RUN

ALM

ERR

s

s

d

d

s

d

d

d

s

s

s

d

s

d

s

d
TA030101.EPS

s: Lit; d: Unlit

A3-2<Toc> <Ind> <A3. Basic CPU Operation and the CPU’s Functions>

IM 34M6Q22-01E

A3.2 Module Operation during Power-on/off
Sequences

A3.2.1 Module Operation during Power-on Sequence
When the power is turned on, the BASIC CPU module initializes its settings to enable the
program to be run. During initialization the module diagnoses itself for such faults as
memory failure or CPU failure to verify that the CPU hardware is working normally. When
no failure is identified and the program specified as a resident program is in storage, the
module begins running the program from its starting point.

If a ROM pack is already installed, the module reads the program from the ROM pack to
start operation. If in ROM Writer mode, the module does not read any program from the
ROM pack and goes into a state of waiting for commands, such as a write-to-ROM com-
mand, without executing any programs.

Power-on

Self-diagnosis

Is everything
normal?

YES

Is it in ROM
Writer mode?

NO

Is a ROM pack
installed?

Is there a
resident program? Reads program from

ROM pack

YES

Program diagnosis

NO

YES

Is everything
Normal?

Program startup

YES

State of waiting for
program loading

NO

YES

Stop

NO

NO

The RDY indicator
lamp comes on

The RUN indicator
lamp comes on.

The ERR indicator
lamp comes on.

State of waiting for
commands

FA030201.EPS

Figure A3.1 Module Operation during Power-on Sequence

A3.2.2 Module Operation during Power-off Sequence
When the power is turned off, the BASIC CPU module records the date and time to the
error log file within the CPU and shuts down.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <A3. Basic CPU Operation and the CPU’s Functions> A3-3

IM 34M6Q22-01E

A3.3 Module Operation during Momentary or Total
Power Failure

A3.3.1 Module Operation during Momentary Power Interruption
There are two modes for detecting a momentary power interruption: the standard mode
and the immediate detection mode. The way the BASIC CPU module behaves in cases of
momentary power interruption differs depending on the mode selected. Note that the
immediate detection mode can only be selected from the CPU Configuration menu when
an F3PU10-0N, F3PU20-0N or F3PU26-0N power supply module is used.

■ Standard Mode
If a momentary power interruption occurs, the BASIC CPU module records the date and
time to the error log file within the CPU. The CPU stops processing until the module recov-
ers from the momentary power interruption. This in turn causes a delay in timer updating.
After recovery from the momentary power interruption, the CPU resumes operation from
where it stopped processing.

AC supply voltage

Program

Run

Stop

Power failure detection level

FA030301.EPS

Figure A3.2 Module Operation during Momentary Power Interruption

■ Immediate Detection Mode
If a momentary power interruption occurs, the BASIC CPU module records the date and
time to the error log file within the CPU. The CPU stops processing until the module recov-
ers from the momentary power interruption. At this point, the CPU turns off the external
output to actuate the FAIL contact. After recovery from the momentary power interruption,
the CPU undergoes a reset-start process to resume operation from the starting point of the
program.

1st Edition : Oct.29,1999-00

A3-4<Toc> <Ind> <A3. Basic CPU Operation and the CPU’s Functions>

IM 34M6Q22-01E

A3.3.2 Setting the Mode for Detecting Momentary Power
Interruption
The BASIC CPU module can be set to either the standard or immediate detection mode.
The module is initially set to the standard mode. For more details on each of these modes,
see the “FA-M3 Hardware Manual” (IM 34M6C11-01E). Use the BASIC Programming Tool
M3 for Windows to define the mode for detecting momentary power interruption. For more
details on how to set the mode, see the “BASIC Programming Tool M3 for Windows” in-
struction manual (IM 34M6Q22-02E).

WARNING

If you carry out CPU configuration, all of the existing programs and their data stored in the
CPU will be lost. It is therefore advisable that you save the programs as necessary before
you carry out CPU configuration.

A3.3.3 Module Operation during Power Failure
If a power failure occurs, the BASIC CPU module behaves in the same way as when it is
turned off.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <A3. Basic CPU Operation and the CPU’s Functions> A3-5

IM 34M6Q22-01E

A3.4 Configuration Function

A3.4.1 Setting the Sizes of User and Common Areas
The F3BP20 and F3BP30 BASIC CPU modules have the program sizes of 120 KB and 510
KB, respectively. Each program is separated into the user area and common area, and the
size of each area can be defined or changed by the user.

User area

Common area

Program and data
(variables)

Free area

System management area

Work area
Program size

Shared device area

FA030401.EPS

Figure A3.3 Areas of a BASIC Program

These areas are used in the ways described below.

● User Area

This area is used as a work area for a user-created program and variables (data) declared
in the program, as well as for enabling the program to run. The user area is initialized with
the NEW command.

• System Management Area

This area is allocated for BASIC management and occupies approximately 6 KB. If
you execute the FREE command when there are no programs, the system shows the
size of the free area. Thus, you can learn the maximum size of a program you can
create.

• Program and Data (Variables)

This area is allocated to a user program and variables or array variables declared in
the program. Since an area for variables is secured during program execution, the
size of the free area differs between the start and end of program execution.

• Free Area

This area is used to run a BASIC program. Although the required size is dependent
on the type of program, allocate a size of approximately 10 KB to this area.

1st Edition : Oct.29,1999-00

A3-6<Toc> <Ind> <A3. Basic CPU Operation and the CPU’s Functions>

IM 34M6Q22-01E

● Common Area

This area is not initialized even when the BASIC CPU module is turned on or off. Use this
area when you want to save your data or exchange data between the main program and
subprogram. The common area is initialized by an INIT COM statement.

For more details on how to use the common area and on other relevant statements, see
Section B5, “Common Variables,” in Part B, “Description of YM-BASIC/FA,” in this manual.
Use the BASIC Programming Tool M3 for Windows to define or change the sizes of the user
and common areas within the following ranges. For more details on this procedure, see the
“BASIC Programming Tool M3 for Windows” instruction manual (IM 34M6Q22-02E).

Table A3.2 Sizes of User and Common Areas

Model

F3BP20

F3BP30

User area

Common area

User area

Common area

64 KB

4 KB

64 KB

4 KB

16 to 120 KB

0 to 104 KB

16 to 510 KB

0 to 256 KB

120 KB

510 KB

Area Default Configurable Range Maximum Setpoint*

TA030401.EPS

* Means the total sum of the sizes of user and common areas.

WARNING

If you carry out CPU configuration, all of the existing programs and their data stored in the
CPU will be lost. It is therefore advisable that you save the programs as necessary before
you carry out CPU configuration.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <A3. Basic CPU Operation and the CPU’s Functions> A3-7

IM 34M6Q22-01E

A3.4.2 Configuring the Shared Devices
In a system comprising two or more CPU modules, the BASIC CPU module can share data
with other CPUs. Data that can be shared is that of shared registers (up to 1024 units)
defined in the data areas that are shared among the CPUs. It is not possible for the CPUs
to share data, however, using the shared relays, extended shared relays or extended
shared registers of any sequence CPU module or IBM PC-compatible CPU module. Each
local CPU can read from/write to its own local shared register area only. Other CPUs can
only read from that shared register area. Each shared register area is not initialized even if
the CPU module is turned on or off. To initialize shared register areas, use the INICOMM3
standard library. Before each group of shared registers can be used, they must be allo-
cated to the local and remote CPUs using the CPU Configuration menu.

Slot 1

Shared register
area of sequence

CPU1
(F3SPxx)

CPU1 area

CPU2 area

CPU3 area

CPU4 area

READ

READ

READ

READ/WRITE

Read/write-enabled area

Read-only area
FA030402.EPS

Slot 2

Shared register
area of sequence

CPU2
(F3SPxx)

Slot 3

Shared register
area of sequence

CPU3
(F3SPxx)

Slot 4

Shared register
area of BASIC CPU

(F3BP20)

Figure A3.4 Shared Registers

The BASIC CPU module installed in slot 4 of the system shown in Figure A3.4 has read/
write access to the CPU4 area only. The module has only read access to the CPU1, CPU2
and CPU3 areas.

1st Edition : Oct.29,1999-00

A3-8<Toc> <Ind> <A3. Basic CPU Operation and the CPU’s Functions>

IM 34M6Q22-01E

For details on how the BASIC CPU module exchanges data with a sequence CPU module
using shared relays and registers, see Chapter B6, “Data Exchange with Ladder Sequence
Program,” in Part B, “Description of YM-BASIC/FA,” later in this manual.

Use the BASIC Programming Tool M3 for Windows to configure shared relays and registers
within the following ranges. For more details on this procedure, see the “BASIC Program-
ming Tool M3 for Windows” instruction manual (IM 34M6Q22-02E).

Table A3.3 Configurable Ranges of Shared Relays and Registers

Device Type

Shared relays*

Shared registers

0

0

0 to 2048 units (can be allocated freely to CPU1 to CPU4)

0 to 1024 units (can be allocated freely to CPU1 to CPU4)

Configurable Range Default

TA030402.EPS

* The configuration of these relays should be set in compliance with that of other CPUs. Data cannot be shared with any
sequence CPU using shared relays.

WARNING

If you carry out CPU configuration, all of the existing programs and their data stored in the
CPU will be lost. It is therefore advisable that you save the programs as necessary before
you carry out CPU configuration.

CAUTION

• Information on the allocation of shared relays and registers is managed separately by
each individual CPU. For this reason every two CPUs that exchange data with each
other must share the same information on the allocation of shared relays and regis-
ters. If the information differs between the two CPUs, data exchange may not be
carried out correctly. The configuration of shared relays should be set in compliance
with that of other CPUs.

• Shared devices in a sequence CPU are refreshed in asynchrony with scanning. For
this reason the simultaneity of data is not guaranteed. If necessary, refresh them
using an application program.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <A3. Basic CPU Operation and the CPU’s Functions> A3-9

IM 34M6Q22-01E

A3.5 Program Residence Function
The BASIC CPU module allows debugged or tuned programs to be specified as those
resident within the module. If a program resides in the module’s user area, it is executed
automatically when:

• the module is turned on;

• the module undergoes a reset-start sequence; or

• the module is set in BYE&RUN mode and DEBUG mode is quit.

By default, the program is specified as a non-resident program. The program disappears
from the main memory when the BASIC CPU module is turned off, subjected to a reset-
start sequence, or the DEBUG mode is quit.

Use the BASIC Programming Tool M3 for Windows to specify the program as a resident
program. For more details on this procedure, see the “BASIC Programming Tool M3 for
Windows” instruction manual (IM 34M6Q22-02E) or the SETMD RES and SETMD RUN
commands in Part C, “Syntax of YM-BASIC/FA,” later in this manual.

CAUTION

• If no program is loaded in the user area, executing a command for specifying the
program as a resident program results in an error.

• If any program is resident, any command or statement for loading other programs to
the user area results in an error. Before loading other programs to the user area,
cancel the program’s resident status.

• If you create a program and specify it to be resident in the user area without having
saved it at least once, it will be named ‘$$$$$$$$.’ Note that programs cannot be
saved under this name.

1st Edition : Oct.29,1999-00

A3-10<Toc> <Ind> <A3. Basic CPU Operation and the CPU’s Functions>

IM 34M6Q22-01E

A3.6 ROM Writer Function
The BASIC CPU module can be equipped with a ROM pack (RK30-0N) to save programs
or common-area data in the ROM pack, delete saved programs or data, or run programs
stored in the ROM pack. Such tasks as writing programs to a ROM pack, which are usually
done by a regular ROM writer, can also be performed using the BASIC CPU module.
These functions equivalent to those of a ROM writer are referred to as ROM writer func-
tions. The ROM writer functions are enabled in the ROM Writer mode, rather than the
normal operating mode. Programs/data can be written to or deleted from the ROM pack
when the BASIC CPU module is in ROM Writer mode. Since ROM Writer mode is retained
even if the power is turned off, the BASIC CPU module does not read programs from the
ROM pack when the power is turned back to on. Note that when in ROM Writer mode, the
BASIC CPU does not come into normal operation.

There are two ROM writer functions:

● Writing to ROM

• This function writes the BASIC program in the BASIC CPU and data in the common
area to the ROM. It is also possible to specify whether to have the common-area data
reside in the ROM or not.

• This function can also be used to write the same program to two or more ROMs. This
can be achieved by transferring the BASIC program to the ROM pack only once and
then replacing the ROM pack with another.

● Deleting from ROM

• This function deletes the contents of the ROM pack.

Table A3.4 Available Models of ROM Packs

Model

F3BP20

F3BP30

N/A

N/A

120 KB

N/A

N/A

510 KB

RK10-0N RK30-0N RK50-0N

TA030601.EPS

Use the BASIC Programming Tool M3 for Windows to move to or cancel the ROM Writer
mode and write/delete programs or data to and from the ROM. For more details on this
procedure, see the “BASIC Programming Tool M3 for Windows” instruction manual (IM
34M6Q22-02E).

CAUTION

• A program residing in a ROM pack should have been completely debugged and tuned.
It is not possible to edit any program or data residing in a ROM pack, for example, by
making a partial correction to it.

• If equipped with a ROM pack and turned on without being set in the ROM Writer
mode, the BASIC CPU module reads contents from the ROM pack even if the user
program is specified as a resident program.

• The user program has already been specified as a resident program if it is read and
executed from the ROM pack at power-on.

• If you write a program you have created to the ROM pack by setting the module in the
ROM without having saved it at least once, it will be named ‘$$$$$$$$.’ Note that
programs cannot be saved under this name.

• When in ROM Writer mode, the BASIC CPU module cannot execute any program. In
addition, any specified BYE&RUN mode is ignored.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <A3. Basic CPU Operation and the CPU’s Functions> A3-11

IM 34M6Q22-01E

A3.7 Access Using a Personal Computer Link

A3.7.1 Personal Computer Link System
You can have reference and access settings to common-area data and various other types
of information, through such external equipment as a personal computer or display unit
connected to a module (e.g., personal computer link module) with the personal computer
link function. (However, unlike with a sequence CPU module, a program cannot be loaded,
saved, started or stopped. In addition, you cannot access data other than that of the
common-area.)

Note that there is no need to create a new program for the purpose of this communication.

Personal computer

FA-M3

Display unit

FA-M3

Personal computer link module
FA030701.EPS

FigureA3.5 Example of a Personal Computer Link System

For details on the commands for personal computer link and the responses to these com-
mands, see the “Commands for Personal Computer Link” instruction manual (IM 34M6P41-
01E).

1st Edition : Oct.29,1999-00

A3-12<Toc> <Ind> <A3. Basic CPU Operation and the CPU’s Functions>

IM 34M6Q22-01E

A3.7.2 Accessing the Common Area
Access to the common area of the BASIC CPU module is obtained as specified below.

■ Word-based Access
To have word-based access to the common area, specify the device as D*****. D00001
represents the starting point of the common area, where one device is equivalent to one
word. For integer-type variables, one word is allocated to each integer variable. If a vari-
able of any other type is used for the common area, the variable must be converted to the
internal data format on the reading/writing side.
Note: For a sequence CPU module, the device “D” means a data register.

BASIC program

 DEFINT A-Z
 OPTION BASE 1
 COM A, B, RDATA(3)

 ……………

 A

 RDATA(1)

 RDATA(2)

 RDATA(3)

Common area
Device name for access
by personal computer link

D00001

D00002 B

D00003

D00004

D00005

FA030702.EPS

Figure A3.6 Word-based Access

■ Bit-based Access
To have bit-based access to the common area, specify the device as I*****. I00001 repre-
sents the starting point of the common area, where one device is equivalent to one bit. For
integer-type variables, 16 devices are allocated to each integer variable. Care must be
taken on the reading/writing side to ensure that the internal data format is consistent.
Note: For a sequence CPU module, the device “I” means an internal relay.

BASIC program

 DEFINT A-Z
 OPTION BASE 1
 COM A, B

 …………

MSB Common area LSB
Device name for access
by personal computer link

I00016......, I00002, I00001

I00032......, I00018, I00017

A

B

FA030703.EPS

Figure A3.7 Bit-based Access

1st Edition : Oct.29,1999-00

<Toc> <Ind> <A3. Basic CPU Operation and the CPU’s Functions> A3-13

IM 34M6Q22-01E

■ Accessible Range of Common Area
In the case of word- or bit-based access to the common area, the accessible range of the
common area differs depending on the type of module (e.g., a personal computer link
module) having the personal computer link function. The accessible ranges are summa-
rized in the following table.

Table A3.5 Accessible Range of the Common Area

Bit-based AccessWord-based AccessBit-based AccessWord-based Access

RK50-0NF3BP20

TA030701.EPS

Personal computer
link function of
sequence CPU

Ethernet interface
module

Other modules (e.g.,
personal computer
link module)

D00001 to D53248

D00001 to D53248

D00001 to D53248

I00001 to I99999*1

I00001 to I99999*1

I00001 to I99999*1

D000001 to D131072

D000001 to D131072

D00001 to D99999*2

I00001 to I99999*1

I00001 to I99999*1

I00001 to I99999*1

*1 12499 bytes (approximately 12 KB) from the starting point of the common area
*2 199998 bytes (approximately 195 KB) from the starting point of the common area

1st Edition : Oct.29,1999-00

Blank Page

<Toc> <Ind> <A4. Programming Tool> A4-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

A4. Programming Tool
The BASIC CPU module allows programs to be developed and debugged using a program-
ming tool that runs on a personal computer.

FA040101.EPS

Personal computer

FA-M3

Figure A4.1 Program Development on a Personal Computer

For details on the programming tool that runs on a personal computer, see the “BASIC
Programming Tool M3 for Windows” instruction manual (IM 34M6Q22-02E).

A4-2<Toc> <Ind> <A4. Programming Tool>

IM 34M6Q22-01E

■ BASIC Programming Tool M3 for Windows

● Model Number and Suffix Code

Model Number Suffix Code Style Code Option Code Description

SF560 …

-ECW

…

…

…

…

…

/ED

BASIC Programming Tool M3 for Windows

Microsoft Windows 98
Microsoft Windows 95
Microsoft Windows NT Workstation 4.0

Microsoft Windows 98
Microsoft Windows 95
Microsoft Windows NT Workstation 4.0
Supplied with instruction manuals

TA040101.EPS

● Operating Environment

Item Specifications

OS

Computer model

Supply medium

CPU

Free memory space

Free hard disk space

Communication requirements

Supported CPU module

Microsoft Windows 98
Microsoft Windows 95
Microsoft Windows NT Workstation 4.0 with Service Pack 3 or later

IBM PC-compatible

CD-ROM

75 MHz or faster Pentium

16 MB minimum

30 MB minimum

Interface: RS-232-C; Synchronization: start-stop;
Baud rate: 9600/19200 bps

F3BP20-0N and F3BP30-0N
TA040102.EPS

In BASIC Programming Tool M3 for Windows, the commands, subcommands, and key
operations [ESC], [CTRL]+[S], [CTRL]+[P], [CTRL]+[C], and the like, are operated from the
menu bar, toolbar or edit window.

TIP

A 166-MHz or faster CPU is recommended. If the CPU is slower, the tool may operate very slowly.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <A5. Corrective Actions in Case of Failure> A5-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

A5. Corrective Actions in Case of Failure
If the BASIC CPU module fails, get a full understanding of the current situation, consider
the relationship of the module to other equipment and the chance of the failure reoccurring.
Take corrective actions in accordance with the flow chart shown in Figure A5.1.

Start

Is RDY
lamp on CPU module

lit?

Connect personal
computer to CPU

module.

Replace CPU module
and then restart.

Is ERR or ALM
lamp lit?

Has it recovered
to normal?

Check such things as
equipment and signal

connections external to
FA-M3.

Visually check that
RDY lamps are lit on
all I/O modules that
have RDY lamps.

Is RDY
lamp on CPU
module lit?

End

To ‘Start’

Examine circuitry
related to power supply.

Is there
any I/O module whose

RDY lamp is
unlit?

The I/O module in
question is faulty.

1

1

Check I/O configuration
on personal computer.

Are all
modules
faulty?

Is any
I/O module faulty?

The I/O module
in question is faulty.

CPU module failure

Check detailed
display of CPU alarm.

Is the
CPU type ‘Sequence’

or ‘BASIC’?

1

Is there an alarm?

See error log.

Check the erroneous
line and error code to

identify the cause
of failure.

Take measures with
reference to the

analysis results, and
re-check operation.

End

Examine circuitry
related to power supply.

See error log to
check earlier analysis

results.

1

1

Check alarm monitor
presented by Ladder

Diagram Support
Program M.

Is there an
error alarm?

See error log to
analyze the cause

of failure.

1

Identify the cause of
failure with reference to the
block number, instruction
number, and error code.

Examine circuitry
related to power

supply.

Take measures with
reference to the

analysis results, and
re-check operation.

End

Re-check
the sequence

program.

Examine the module
with an I/O failure to
 identify the cause.

Identify the cause of failure
with reference to the block

number, instruction
number, and error code.

Examine the module
that has a CPU-to-CPU

failure to identify the
cause.

Correct the program with
reference to the block

number and instruction
number.

Identify the cause of
failure with reference to

the error code.

N

Y

N

Y N

N

Y

Y

N

N

Y

Y

Y

N

N

Y

N

Y

Sequence

BASIC

BASIC STOP Power fault

Replace the module,
correct the program,
or take other measures.

Self-diagnostic failure Scan timeout
Instruction processing
failure I/O collation failure

FA link failure

FA050101.EPS

CPU-to-CPU
communication failureI/O failure

Momentary power
interruption

CPU module failure

Check all CPUs.

Figure A5.1 Flow Chart for Corrective Actions

Blank Page

<Toc> <Ind> <B1. Standard Specifications and Features of YM-BASIC/FA> B1-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B1. Standard Specifications and Features of
YM-BASIC/FA

B1.1 Standard Specifications of YM-BASIC/FA
The standard specifications of the YM-BASIC/FA programming language are as follows.

• Method: Interpreter (with pre-run function)

• Number of tasks: 1

• Character code: See Appendix 1., “Table of Internal Codes,” later in this
manual.

• Data format: See Appendix 1.1, “Data Format,” later in this manual.

• Program execution mode: DEBUG mode (command input mode) and REAL mode

• Size of user area:

Controller Model CPU Model Number Size of User Area

FA-M3
F3BP20

F3BP30

120 KB

510 KB
TB010101.EPS

The sizes of user areas used with BASIC programs and common variables.

Area
Size

F3BP20 F3BP30

BASIC program

Common variable

16 to 120 KB

0 to 104 KB

16 to 510 KB

0 to 256 KB
TB010102.EPS

The total sum of each area must be smaller than the size of the user area.

• Structuring: Possible with subprograms (no limitation on their number)

• I/O module support: Contact inputs

Contact outputs

Analog inputs

Analog outputs

Communication control, etc.

See Chapter B7., “Accessing to I/O Modules,” later in this
manual for more details.

B1-2<Toc> <Ind> <B1. Standard Specifications and Features of YM-BASIC/FA>

IM 34M6Q22-01E

• Data types:

Integer: –32768 to 32767 (2 bytes internally)

Long integer: –2147483648 to 2147483647 (4 bytes internally)

Single-precision real number: An approximate range of 2.7 × 10–20 to 9.2 × 1018 for
absolute values. The number of significant digits is
approximately 7 (4 bytes internally).

Double-precision real number: An approximate range of 2.7 × 10–20 to 9.2 × 1018 for
absolute values. The number of significant digits is
approximately 16 (8 bytes internally).

Character string: 512 bytes maximum

• Arrays:

One-dimensional or two-dimensional arrays are available.

The number of elements allowed in a single array is:

32767 for one-dimensional arrays; and

32767 × 32767 for two-dimensional arrays.

• Operators:

 (,), ^, +, –, NOT, *, /, =, <, >, >=, <=, <>, AND, OR, and EXOR

For more details on the data types, see Appendix 1.1, “Data Format,” later in this manual.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B1. Standard Specifications and Features of YM-BASIC/FA> B1-3

IM 34M6Q22-01E

B1.2 Features of YM-BASIC/FA
The YM-BASIC/FA has the following features.

■ On-line Real-time Processing
The YM-BASIC/FA supports a wide choice of interrupts. It is a high-speed BASIC language
designed so that a program can promptly respond to external events. Using the YM-
BASIC/FA, you can easily create on-line, real-time programs.

Clock
BASIC
interpreter

User program

GOSUB
GOTO
CALL

ON to to

SEQEVT

(I/O error)
(Program error)

ERROR

INT

Input module

Sequence
program

CPU Sequence CPU

FB010201.EPS

TIME (time)
TIMER (fixed-interval)

■ Block Structure of Programs
The YM-BASIC/FA allows subprograms to be used with the BASIC CPU module.

With subprograms, you can control variables, line numbers and labels separately. This
feature further improves the developability, maintainability and recyclability of programs. It
is also possible to develop a main program and a subprogram separately and then combine
them using an APPEND command.

Main program Subprogram

CALL BCODE (X, Y$)

END

......

......

SUB BCODE (X, Y$)

SUBEND

............

FB010202.EPS

1st Edition : Oct.29,1999-00

B1-4<Toc> <Ind> <B1. Standard Specifications and Features of YM-BASIC/FA>

IM 34M6Q22-01E

■ Simple Combination with a Sequence Program
A ladder sequence program can be synchronized with a BASIC program using a SIGNAL
command, or ON SEQEVT, ENTER or OUTPUT statement. In addition, data exchange
can be easily achieved by reading from/writing to sequence devices using ENTER and
OUTPUT statements. Shared registers can also be used for data exchange. For more
details on data exchange, see Chapter B6., “Data Exchange with a Ladder Sequence
Program,” later in this manual. A sequence program block can be started using a
SEQACTV statement.

SIGNAL

......

A01

Block 1

Sequence
Event

Start of program
block

Data registers, etc.

BASIC

ON SEQEVT “A01” to

SEQACTV 2, 1; S

ENTER, OUTPUT

FB010203.EPS

…

■ I/O Support
The BASIC language can be used to have access to a serial communication module,
contact I/O module, analog I/O module, etc. Input and output can be achieved easily by
using ENTER and OUTPUT statements, respectively.

BASIC

ENTER…
OUTPUT…

Analog input
Analog output

Contact input
Contact output

Serial communication
RS-232-C
RS-422

Other special modules

FB010204.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA> B2-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B2. Basic Syntax of YM-BASIC/FA

B2.1 Programs and Commands
If you type a statement according to the BASIC syntax and press the return key () without
adding a line number to the statement when BASIC is active (the BASIC prompt is on
display), the statement is regarded as a command and executed immediately.

Example: BSC: PRINT “ABC” Command input

ABC
Prompt

Result of execution
FB020101.EPS

If lines are preceded by numbers (referred to as line numbers), the lines are stored as a
program and executed by a RUN command.

BSC: 10 PRINT “ABC”
BSC: 20 END
BSC: RUN
ABC

Program

RUN command
Result of execution

FB020102.EPS

B2.2 Sentences and Lines
Each BASIC program consists of several lines. Each line consists of a line number, sen-
tence that begins with a statement or label, and a line end.

10

20

30

Line
number

Statement or
label

Sentence

LET

PRINT

END

A=1

A

(Return)

Line
end

FB020201.EPS

B2-2<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA>

IM 34M6Q22-01E

■ Length of a Line (Maximum Number of Characters That Can Be Typed)
The maximum number of characters that can be typed is:

Line number (5 digits maximum) + One space + Statement (246 characters maximum)

A line is terminated by pressing the return key or typing the allowable maximum number of
characters.

CAUTION

— Precautions when Using a Commercially Available Editor —

Avoid exceeding the line number of 65535 when inputting a program using a commercially
available editor. If a program contains line numbers greater than 65535, the extra lines are
deleted when the BASIC Programming Tool M3 for Windows is used.

■ Line Numbers
Line numbers are whole numbers from 1 to 65535, and show the order in which lines in a
program are stored in memory. A program must not include the same line number. If you
type the same line number twice, the new line replaces the previous line with the same line
number. Lines are executed in the ascending order of their line numbers. Line numbers
are used in a sentence or command in order to branch the program or for editing purposes.

■ Labels
Labels can be used instead of line numbers in order to branch a program.

Example: When no labels are used

100 GOTO 200

:

200 PRINT “A”

Example: When labels are used

100 GOTO LP@

:

200 LP@ PRINT “A”

Labels are described using an upper-case alphanumeric character string (7 characters
maximum), preceded by a letter and followed by an At sign (@).

A label follows a line number and is placed in the beginning of a sentence. The label is then
followed by a line end or space, and then another statement. If it is followed by another
statement, there is no need for appending a colon to the end of the label to form a com-
pound sentence.

Example:

100 A@

110 END@

120 ABC@ PRINT A

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA> B2-3

IM 34M6Q22-01E

■ Description of Sentences
Use upper-case letters to write statements, etc. in a sentence. If the sentence contains a
series of statements or labels, as well as variables or constants, they must be separated
from each other by a space.

Example: Incorrect: IFA=1THEN GOTO 100

Correct: IF [A=1 [THEN [GOTO [100([denotes a space character)

As an exception, space characters can be omitted for special characters described in
Section B2.3.

Example: If the sentence is PRINT “Q”, the quotation mark (“) is a special character.

■ Compound Sentences
In each line, you can describe a series of sentences by separating them from each other
with a colon (:). This series of sentences is referred to as a compound sentence.

10 A=1 : PRINT A

When writing a program with compound sentences, the following restrictions apply.

(1) A sentence containing any of the following statements cannot be used in a com-
pound sentence.

OPTION BASE, DEFINT, DEFLNG, DEFSNG, DEFDBL, COM, END, FOR, NEXT,
DATA, IMAGE, ELSE, ENDIF, WHILE, END WHILE

(2) A sentence described using any of the following statements must not be followed
by a compound sentence.

REM, STOP, GOTO, GOSUB, REURN, ON…, WAIT, IF…, CALLLIB

If any sentence that does not adhere to these restrictions is typed, an error will result
when the program is input or executed.

Note 1: Despite the above-mentioned restrictions, a comment statement (one begin-
ning with REM or !) can follow any statement, other than DATA and IMAGE, to
form a compound sentence.

Note 2: For details on the “IF ...” statement, also see the item “IF ... THEN Statement”
in Part C, “Syntax of YM-BASIC/FA,” later in this manual.

The flow chart below summarizes the structure of a program. Use an END statement to
indicate the end of a program.

FB020202.EPS

Program

Line Line number Sentence:Sentence:…

Line Line number Label

Line number Label Sentence:Sentence :

Line Line number End

...

…End of program

1st Edition : Oct.29,1999-00

B2-4<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA>

IM 34M6Q22-01E

B2.3 Character Set
Characters that can be used are the English alphabet, numerals and special characters.

● Alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

● Numerals: 0123456789

● Special characters: [(space) ! ” # $ % ‘ ’ () * + , – . / : ; < = > ? @ [¥] { } – |

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA> B2-5

IM 34M6Q22-01E

B2.4 Data Types
There are five types of data that YM-BASIC/FA can deal with: integers, long integers,
single-precision real numbers, double-precision real numbers and character strings.

■ Integer
The value of this data type is a whole number from -32768 to 32767 and is represented
internally as 2-byte (16-bit) data.

■ Long Integer
The value of this data type is a whole number from -2147483648 to 2147483647 and is
represented internally as 4-byte (32-bit) data.

■ Single-precision Real Number
The value of this data type is a real number and is represented internally as 4-byte (32-bit)
data. The number of significant digits is approximately 7 in the decimal numbering system.
The absolute value of this data type is within an approximate range of 2.7 × 10–20 to 9.2 ×
10–18.

■ Double-precision Real Number
The value of this data type is a real number and is represented internally as 8-byte (64-bit)
data. The number of significant digits is approximately 16 in the decimal numbering sys-
tem. The absolute value of this data type is within an approximate range of 2.7 × 10–20 to
9.2 × 10–18.

■ Character String
The value of this data type is a character string. The maximum number of characters that
can be handled as a single character string is 512 bytes.

1st Edition : Oct.29,1999-00

B2-6<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA>

IM 34M6Q22-01E

B2.5 Constants
A constant is a data item that shows a value in itself. Constants are classified into numeric
constants and character-string constants.

■ Numeric Constants
A numeric constant is represented either in one of the decimal-number formats shown in
items 1 to 4 below, or in the hexadecimal format shown in item 5.

(1) Representation without a Decimal Point and Exponential Part

The numeric constant is simply a string of decimal numbers (0 to 9) having no decimal
point and exponential part. A sign (+ or –) may be appended to the string’s head.

Example: 10

–100

(2) Representation with a Decimal Point but without an Exponential Part

The numeric constant has a decimal point either at the start, in the middle, or at the
end of a string of decimal numbers. A sign (+ or –) may or may not be appended.

Example: 0.1

–21.0

0.585

(3) Representation with both a Decimal Point and Exponential Part

The numeric constant is represented in the same way as in item 2 but followed by an
exponential part. The exponential part is represented by the letter E followed by a
decimal number containing no decimal point. A sign (+ or –) may or may not be
appended.

Example: 1.2E10

–2.5E–4

0.367E8

(4) Representation without a Decimal Point but with an Exponential Part

The numeric constant is represented in the same way as in item 1 but followed by an
exponential part. A sign (+ or –) may or may not be appended.

Example: 1E12

–4E–7

(5) Representation in Hexadecimal Format

The numeric constant is represented as a hexadecimal constant preceded by a dollar
sign ($). The constant is significant up to 8 digits. It is of integer type if consisting of 1
to 4 digits, or of long integer type if consisting of 5 to 8 digits. If 9 or more digits are
used to specify the numeric constant, only the first 8 digits have any significance.

Example: $5A (equivalent to $005A)

$1FF3A (equivalent to $0001FF3A)
Note: If the numeric constant has 4 digits, any value from $8000 to $FFFF is interpreted as a negative (–) numeral. If the

numeric constant has 8 digits, any value from $80000000 to $FFFFFFFF is interpreted as a negative (–) numeral.
$FFFF=$FFFFFFFF=–1
$0FFFF=65535
$07FFF=$7FFF=32767
$8000=–32768
$08000=32768

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA> B2-7

IM 34M6Q22-01E

■ Character-string Constants
A character-string constant is a character string enclosed with double quotes (”). The
character string consists of characters from the alphabet, numerals and special characters.
However, two consecutive double quotes are regarded as one character.

Example: “ABC” (equivalent to A&B” C)

“X-3B2”

“A&B”“C”

1st Edition : Oct.29,1999-00

B2-8<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA>

IM 34M6Q22-01E

B2.6 Variables
A variable is where a value or character string is stored and given a name consisting of
upper-case alphanumeric characters. This name is referred to as a variable name.

Variables are classified into numeric variables to which a value can be assigned and
character-string variables to which a character string can be assigned.

B2.6.1 Naming a Variable

■ Numeric Variables
A numeric variable is a combination of upper-case letters and numerals, beginning with a
letter and comprising up to 8 characters.

Example: Z

APPLE

N1917A

■ Character-string Variables
A character-string variable is a combination of upper-case letters and numerals, beginning
with a letter, comprising up to 7 characters and ending with a dollar sign ($).

Example: F$

N3200A$

Note that reserved words, such as statements and intrinsic functions, cannot be used as
variable names. (See Appendix 2. later in this manual for more details on reserved words.)
Nor can any character string beginning with FN be used as a variable name.

B2.6.2 Declaration of the Type of Variable
Numeric and character-string variables are distinguished from each other by the way they
are named. Unless otherwise declared, a numeric variable is of single-precision real
number type. The type of each numeric variable can be specified using a type-declaring
statement (DEFINT, DEFLNG, DEFSNG or DEFDBL).

Example: DEFINT I All variables whose first letter is I are of integer type.

DEFDBL L-P All variables whose first letter is one among L to P are of
double-precision real number type.

Example of variable names after above-mentioned declaration:

ISLOT Integer type

RES1 Real number type

LDAT Double-precision real number type

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA> B2-9

IM 34M6Q22-01E

B2.6.3 Declaration of Variables and Their Defaults
A simple variable can be stated in a program without declaring it in particular. The default of
a variable is 0 (zero) for numeric variables and null ($00) for character-string variables.

CAUTION

Unless expressly cleared using an INIT COM statement, a common variable still retains the
previous value. For more details on this procedure, see Chapter B5., “Common Variables,”
in Part B, “Syntax of YM-BASIC/FA,” later in this manual.

B2.6.4 Length of a Character-string Variable
A maximum of 18 characters in terms of the alphanumeric character set (represented by
one bit) can be assigned to a character-string variable unconditionally. If you attempt to
assign characters in excess of the maximum number, the extra characters are truncated
without being assigned to the variable. The length of a character-string variable can be
extended up to 512 bytes by declaration using a DIM statement. Since the system actually
reserves memory space necessary for that length, for effective use of memory it is advis-
able that each character-string variable be kept only to the required length.

Example: DIM A$100 100 bytes

DIM Y$8 8 bytes

• Specify the length of a character-string variable as an even number of bytes. Note that
the terminator of a character-string variable is defined as null ($00). Consequently, if
the character-string variable contains any null among its characters, the character
string is only valid up to the point immediately before the null.

1st Edition : Oct.29,1999-00

B2-10<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA>

IM 34M6Q22-01E

B2.6.5 Array Variables
An array refers to a collection of data items having the same characteristics. The place
where such an array is stored is referred to as an array variable. An array variable is de-
clared using a DIM statement and its elements (respective data items) are sequenced
using suffixes. For this reason array variables are sometimes referred to as suffixed vari-
ables.

Examples:

Number of elements = 5

S(0)

S(1)

S(2)

S(3)

S(4)

T$(0, 0)

T$(1, 0)

T$(2, 0)

T$(3, 0)

T$(0, 1)

T$(1, 1)

T$(2, 1)

T$(3, 1)

T$(0, 2)

T$(1, 2)

T$(2, 2)

T$(3, 2)

Number of elements = 4 × 3 = 12

TB020601.EPS

Two-dimensional Array
DIM T$(3, 2)

One-dimensional Array
DUN S(4)

Since each series of suffixes begins with 0, the number of elements is calculated as the
“maximum suffix number + 1” in the case of a one-dimensional array.

However, the first suffix can be changed to 1 using an OPTION BASE statement. In that
case, the number of elements equals the maximum suffix number.

• YM-BASIC/FA can deal with arrays of up two dimensions.

• The maximum suffix number is 32767.

• The size of array data that can be copied using a MOVE statement is smaller than 64
KB.

Table B2.1 Maximum Suffix Numbers That Can Be Declared

One-dimensional Array Two-dimensional Array

Numeric array

Character-string array

DIM S (32767)

DIM S$ (32767)

DIM S2 (32767, 32767)

DIM S2$ (32767, 32767)
TB020602.EPS

However, these suffix numbers are restricted by such factors as the actual memory size
available.

• Calculation of arrays is carried out on an element-by-element basis.

Example:

20 FOR I=0 TO 4

30 A(I)=B(I) ………Calculated on an element-by-element basis.
40 NEXT I

There are statements and functions, however, that deal with an array as a whole.

Example:

20 MOVE B(*),A(*)

As shown above an array is stated using a variable name (*).

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA> B2-11

IM 34M6Q22-01E

Two-dimensional array variables, on the other hand, are stored in the following order
internally.

Example: DIM S3(5, 5)

(where the first suffix is defined as 1 in an OPTION BASE statement)

S3(1, 1)

S3(1, 2)

S3(1, 3)

S3(1, 4)

S3(1, 5)

S3(2, 1)

S3(5, 4)

S3(5, 5)

…

TB020603.EPS

1st Edition : Oct.29,1999-00

B2-12<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA>

IM 34M6Q22-01E

B2.7 Type Conversion
A numeric data item is automatically converted from its current type to another type, as
necessary.

■ Constants
A constant is converted to one of the following types, depending on its current notation.

● Integer

• A value from –32768 to 32767 without a decimal point

• Described as a hexadecimal constant

● Long integer

• A value from -2147483648 to 2147483647 without a decimal point

• Described as a hexadecimal constant

● Real number

• A data item without a decimal point, having no more than 6 significant digits and a
value that exceeds the range of integer-type data items

● Double-precision real number

• A data item without a decimal point, having no less than 7 significant digits

• A data item with a decimal point

• A data item with an exponential part

■ Type Conversion during Calculation

● Primary Rules

• If the types of two variables do not match during calculation, the system makes a
calculation after converting the variables to the type that is the furthest on the right of
the applicable types in the figure shown below.

Integer type < Long integer type < Single-precision real number type
< Double-precision real number type

FB020701.EPS

• The final result of calculation is given in the right-side member of the equation and
conforms to the type that is the furthest on the right of the applicable types in the figure
shown above.

• When substituted into the left-side member, the result of calculation in the right-side
member is converted to the data type of the left-side member.

• Division between two integer or long-integer variables is carried out after converting
them to single-precision real numbers. The result of calculation is also a single-
precision real number.

• Multiplication between two integer variables is carried out as they are. If the result is
out of the range from –32768 to 32767, both of them are converted to single-precision
real numbers and re-calculated. The result of calculation is also a single-precision real
number.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA> B2-13

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

• Multiplication between two long-integer variables is carried out as they are. If the
result is out of the range from –2147483648 to 2147483647, both of them are con-
verted to single-precision real numbers and re-calculated. The result of calculation is
also a single-precision real number.

● Exercise (Assume the integer variable as I, single-precision real number
variable as R, and double-precision real number variable as D)

• R1/R2*D1

(1) Since both R1 and R2 are single-precision real numbers, the result of R1/R2 is
also a single-precision real number.

(2) The result of step 1 is converted to a double-precision real number before oper-
ated on D1. The final result is also a double-precision real number.

• R1/D1*R2

(1) The calculation of R1/R2 is made by converting R1 to a double-precision real
number, and the final result is also a single-precision real number.

(2) R2 is converted to a double-precision real number before the result of step 1 is
operated on R2. The final result is also a double-precision real number.

• R1/R2*R3+D1

(1) The calculation of R1/R2*R3 is made using the single-precision real number
variables as they are. The final result is also a single-precision real number.

(2) The result of step 1 is converted to a double-precision real number before D1 is
added to the result. The final result is also a double-precision real number.

• I1/I2*I3

(1) The calculation of I1/I2 is made after converting both variables to single-precision
real numbers. The final result is also a single-precision real number.

(2) Since the result of step 1 is a single-precision real number, it is multiplied by I3
after I3 is also converted to a single-precision real number. The final result is also
a single-precision real number.

Example:

100 DEFINT I

110 DEFSNG R

120 DEFDBL D

130 R1=5:R2=7:R3=10

140 D1=4

150 I1=15:I2=24:I3=36

160 PRINT R1/R2*D1, R1/D1*R2, R1/R2*R3+D1, I1/I2*I3

170 END

The result of this calculation is as follows.

BSC:RUN

2.857142925262451 8.75 11.14285755157471 22.5

■ Logical Operations
Variables are first converted to integers before any logical operation is performed.

B2-14<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

■ Conversion from Real Numbers to Integers
To convert real numbers to integers, all decimal places are truncated. If the resulting value
exceeds the applicable range of integers, an overflow error will result.

Reference: Use an INT function when truncating the decimal places.

■ When a Double-precision Variable Is Substituted into a Single-precision
Variable

The double-precision variable is rounded to a number comprising 7 significant digits. In the
case of type conversion to a real number having a different level of precision, however, the
binary data is rounded off (i.e., rounding down to 0 and rounding up to 1 in a binary number
system) to its least significant digit. Consequently, an error may result when the internal
value (binary number) of that data is viewed (decimal number) using a PRINT command.

■ Functions
Each function has a predetermined type of variable and any variable is automatically
converted to that type.

■ Assignment Expressions
The result of calculation is converted according to the type of variables in the left-side
member.

■ Other Cases of Type Conversion
Type conversion is carried out as necessary when data is input or output. The number of
significant digits may change for reasons of read-out on a display or internal handling.
Modules relevant to this discussion include:

• I/O modules

• Communication modules

<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA> B2-15

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B2.8 Expressions and Operations
An expression is a mathematical representation of constants and variables combined using
an operator or operators.

A + 4

Constant

Operator

Variable
FB020801.EPS

Since the result of calculating an expression is either a single numeral or character string, a
mathematical representation consisting only of characters, numerals or variables is also
regarded as an expression.

An expression by itself does not form any independent statement. Rather, it is quoted in a
PRINT statement or an assignment statement (such as a LET statement).

Example: “GRAPE”

1.56

4+3.14

A+B/C–D

SIN(X)

Mathematical
expression

Expression Numeric constant

Numeric variable

Arithmetic operation

Relational operation

Logical operation

 Function

Character-string
expression

Character-string constant

Character-string variable

Character-string operation
(concatenation of character strings)

Relational operation
(comparison between character strings)
- The result is a numeral.

Function
FB020802.EPS

Use parentheses to change the order in which operation is carried out. Any expression
within parentheses precedes others during operation. Note that parentheses can be
nested into multiple layers.

B2-16<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B2.8.1 Arithmetic Operation
Table B2.2 Arithmetic Symbols and Priority

TB020801.EPS

Arithmetic Symbol Priority

Exponentiation
Multiplication and division
Addition and subtraction

^
*, /
+, –

High

Low

↔

Example: Algebraic Representation BASIC’s Representation

2x+y 2*X+Y

x-y
2 (X–Y)/2

z2+y2 X^2+Y^2

y(–x) Y*(–X)

■ Signs and Monadic Operators
In the case of ordinary operators, operation is carried out on the numerals or variables on
both sides of an operator. This type of operation is referred to as dyadic operation. On the
other hand, such operation as one using the minus sign as a symbol is referred to as
monadic operation.

X + Y Dyadic operation

–X Monadic operation

For example, “– –4” is regarded as “–(–4)” and results in “4”.

■ Division between Integers and Remainders
The result of division between integers is a real number. To evaluate the division as an
integer, use a function.

DIV(X, Y)

MOD(X, Y) …… Remainder

■ Division by Zero
If division by zero is carried out in calculating an expression, the error “Division by Zero”
occurs.

Y = X/0

■ Exponentiation of Zero and Zero to the Power of Zero
The exponentiation of zero are defined as shown below.

0 ^ (Positive value) = 0

0 ^ 0 = 1

0 ^ (Negative value) = Arithmetic overflow

<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA> B2-17

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B2.8.2 Relational Operation
A relational operator is used to compare two values. The dimensional relationship between
the two values is checked to determine whether it:

• matches (= true [i.e., 1]) the significance of the relational operator; or

• mismatches (= false [i.e., 0]) the significance.

Thus, the system returns a value representing either “true” or “false.”

Table B2.3 Relational Operators

TB020802.EPS

Operator Example Significance

<
>
=

<>
<=
>=

A<B
A>B
A=B

A<>B
A<=B
A>=B

A is smaller than B.
A is greater than B.
A equals B.
A does not equal B.
A is equal to or smaller than B.
A is equal to or greater than B.

Relational operators are often used in an IF statement.

Example: IF X=0 THEN GOTO 1000

The equal sign (=) is also used in an assignment statement.

Example: A=(B=C)

This statement means B is compared with C and, if B equals C, a value of 1 is substituted
into A; otherwise, a value of 0 is substituted into A.

B2.8.3 Logical Operation
Table B2.4 Types of Logical Operation and Their Results

TB020803.EPS

X Y X AND Y X OR Y X EXOR Y NOT X

True (1)
True (1)
False (0)
False (0)

True (1)
False (0)
True (1)
False (0)

1
0
0
0

1
1
1
0

0
1
1
0

0
0
1
1

Both the left-side and right-side members are converted to integers (by rounding off the
fractions), logical operation is carried out on them by regarding values other than 0 as 1,
and a value of 0 or 1 is returned.

Example:

(1) IF X AND Y THEN 800

If both X and Y are 1, execution is moved to the line numbered 800.

(2) IF NOT (A = 0) THEN X = 30

If A is not 0, a value of 30 is substituted into X.

B2-18<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B2.9 Character-string Operation

B2.9.1 Concatenation of Character Strings
Character strings can be concatenated using the + operator.

Example:

10 F$=“FA”

20 C$=“Computer”

30 A$=F$+“ ”+C$

40 PRINT A$

50 END

BSC:RUN

FA Computer

B2.9.2 Comparison between Character Strings
Like comparison between values, character strings can also be compared using one of the
following relational operators.

=, < >, <, <=, >, >=

In the case of character strings, characters in the left-side member are compared with
characters in the right-side member, one at a time, beginning with the leftmost one. If the
character strings in both members are completely the same, they are equal to each other.
If any two characters under comparison differ, the character whose internal code is larger is
judged to be greater.

Example:

“APPLE”=“APPLE”

“AA”<“AB”

“pen”>“PEN”

If a character string on either side is shorter than the other one and comparison finishes
halfway, then the shorter string is judged to be smaller. Note that a white space also has
significance in this comparison.

Example:

“WTD”<“WTDATA”

“PMK”<“PMK ”

For more details on the internal codes, see Appendix 1 later in this manual.

Order of JIS 7-bit codes (alphabet, numerals and symbols)

<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA> B2-19

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B2.10 Functions
A function carries out a predetermined operation on the given parameter (or argument) and
returns the result as a value.

Argument Function Value to be returned
FB021001.EPS

The data type function conforms to the type of data that the function returns.

Example:

SIN(X) …………… Numeric type

CHR$($41) ……… Character type

A function can be quoted by describing it in an expression after appending an appropriate
actual argument to the function’s end. As an actual argument, an expression can also be
used. In that case however, the number of units and the type must match between dummy
arguments and actual arguments. Functions are classified into intrinsic functions that are
previously defined by the YM-BASIC/FA and functions defined by the user. Some functions
do not have any argument.

Example:

DATE$

B2.10.1 Intrinsic Functions
Intrinsic functions can be used by the user without having to define them. They include
arithmetic functions, functions that deal with bits, and functions that deal with characters.
For more details on the intrinsic functions, see Section C2.3, “Functions,” in Part C, “Syntax
of YM-BASIC/FA,” later in this manual.

Example:

DIV(X, Y)

HEX$(A)

LEN(TEXT$)

B2.10.2 User-defined Functions
User-defined functions are defined by the user before they can be put in use. The name of
a user-defined function must always begin with FN. See the DEF FN statement in Part C,
“Syntax of YM-BASIC/FA,” later in this manual for more details.

Example:

10 DEF FNRAD(X)=X*PI/180

20 PRINT FNRAD(180)

30 END

B2-20<Toc> <Ind> <B2. Basic Syntax of YM-BASIC/FA>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B2.11 Priority of Operations
Operations are carried out in the following order of priority. If operators are at the same
priority level, they are processed in the order from left to right in the following table.

Table B2.5 Priority of Operations

TB021101.EPS

Type of Operation Symbol (Operator) Priority

Operation on expression within parentheses
Operation on function
Monadic operation
Exponentiation
Multiplication and division
Addition and subtraction
Relational operation
Logical operation
Logical operation

Parentheses ()
Function
+, –, NOT
^
*, /
+, –
=, <, >, >=, <=, <>
AND
OR, EXOR

Highest priority

Lowest priority

An equal-sign operator (=) in any assignment statement is even lower than the lowest
priority in the table above.

In the YM-BASIC/FA, monadic operation has priority over exponentiation in processing so
that the speed of operation is increased. When using the exponentiation operator, enclose
it with parentheses. This will make the expression identical to an algebraic representation.

–X2 ……………… –(X^2)

<Toc> <Ind> <B3. Subprograms> B3-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B3. Subprograms

B3.1 Structure of a Program
A program basically consists of two or more lines classified by the line number, where the
last line must end up with an END statement. This program is referred to as a main pro-
gram. Data for variables used in a main program are stored in the variables area.

Program Data

Variables area

END
FB030101.EPS

Note that the variables area discussed here is formed within the user area. Variables in this
area are also referred to as local variables, as they are used with this particular program
only. A regular BASIC program has this structure.

B3-2<Toc> <Ind> <B3. Subprograms>

IM 34M6Q22-01E

B3.2 Subprograms
Subprograms are programs separately created on a function-by-function basis. Their
variables and line numbers can be managed separately as well. They resemble a subrou-
tine represented by “GOSUB ... RETURN” in terms of the flow of a program.

Using a main program structured as explained in Section B3.1 of Part B, “Description of
YM-BASIC/FA,” in combination with multiple subprograms, you can create an even larger
program. Such a program is configured as shown in the following figure. Note that vari-
ables areas are reserved separately in their respective program blocks.

Main program (block)

Subprogram (block)

Subprogram (block)

Subprogram (block)

END

SUB …

SUBEND

SUB …

SUBEND

SUB …

SUBEND

FB030201.EPS

Any single BASIC program consists of one main program and several subprograms, though
subprograms are not always required. Each main program and subprograms is also
referred to as a program block. There is no particular rule that a statement be written in the
beginning of a main program; however, an END statement must always be placed at the
end of the program. In addition, a subprogram must begin with a SUB statement and end
up with a SUBEND statement.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B3. Subprograms> B3-3

IM 34M6Q22-01E

B3.3 Call of Subprograms
Any subprogram can be called from a main program or another subprogram. To call a
subprogram, use a CALL statement.

Example:

1000 CALL SB(A ,B)

10 SUB SB(X, Y)

2000 SUBEXIT

3000 SUBEND

Main program or another subprogram
(Where A and B are actual arguments)

Subprogram
In this example, X and Y in the subprogram
SB are dummy arguments.

…
…

FB030301.EPS

Declare the name and dummy arguments using a SUB statement in the beginning of a
subprogram. The subprogram name must be a string of no more than 8 alphanumeric
characters and begin with a letter. Define the type and quantity of dummy arguments
(parameters), to allow other blocks to be able to call the subprogram. If the definition of a
dummy argument is unnecessary it may be skipped.

Use a CALL statement, as shown in the figure above, in another program block from which
you call the subprogram in question. In that case, the type and quantity of the actual
arguments must match those of the dummy arguments defined using a SUB statement.
Upon the end of execution, the program that was called returns to the program block from
which it was called. At this point, a SUBEXIT statement is used. If the SUBEXIT statement
is omitted, a SUBEND statement serves the same purpose.

Note that END and STOP statements are only valid when used within a main program. If
used within any subprogram, the statements will result in an error when the program
attempts to execute them.

When the execution of the SUBEXIT statement is complete, program execution moves to
the statement that immediately follows the CALL statement of the program that called the
subprogram in question. Note that a subprogram cannot be used in such a recursive way
as calling itself. Nor can any subprogram call itself indirectly through another subprogram.

Example: Incorrect use of subprograms

CALL SB1

SUB SB1

CALL SB2

SUBEND

Main program

Subprogram

…
…

SUB SB2

CALL SB1

SUBEND

…
…

Subprogram

FB030302.EPS

1st Edition : Oct.29,1999-00

B3-4<Toc> <Ind> <B3. Subprograms>

IM 34M6Q22-01E

B3.4 Independency of Programs

■ Variables and Line Numbers (Labels)
One of the advantages of using subprograms is that you can separately use variable
names and line numbers within a particular subprogram only, irrespective of other pro-
grams. For example, you can use subprograms as shown in the following figure.

1000 AAA=1 Main program

Subprogram

…
…

…

SUB SB1

150 AAA=2

Subprogram

…
…

…

SUB SB2

2000 AAA=3

…
…

…

FB030401.EPS

In the figure above, the main program and two subprograms deal with variables having the
same name AAA. In terms of the characteristics of a program, however, these variables
are processed as totally different ones. Likewise, line numbers and labels can also be used
in an independent manner among the subprograms involved.

■ Statements Relevant to Various Declarations
Statements that make various declarations, such as interrupt definitions and type declara-
tions, are available with the YM-BASIC/FA. This item explains how widely these statements
apply to program blocks.

(a) Statements That Define Interrupts

An interrupt-defining statement beginning with “ON ...” is only valid within the program
block where it is defined or within a subprogram that is called from the program block.
The ON ... declarative statement is automatically turned into the OFF ... statement
when exiting the subprogram with SUBEXIT, nullifying the interrupt definition. If you
declare the same interrupt factor in two places within the same program block, only
the later declaration is valid. If you declare the same interrupt factor in different pro-
gram blocks, the later declaration results in an error. You must therefore be careful
when making declarations within subprograms. The ON ERROR statement is excep-
tional, however, as it is only valid within the program block where it is declared.

Statements that comply with the statements discussed here are as follows.

ON TIME

ON TIMER, ON SEQEVT,

ON EOT, ON INT, ON TIMEOUT

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B3. Subprograms> B3-5

IM 34M6Q22-01E

(b) Statements That Cancel Interrupts

An interrupt-canceling statement that begins with OFF ... should be used within the
program block where it was defined. Be careful since any OFF ... statement used
within program blocks other than the one where it was defined becomes invalid.

(c) Declarative Statements

The following declarative statements relevant to variables are only valid within their
respective own program blocks.

DEFINT/DEFLNG/DEFSNG/DEFDBL, OPTION BASE, DIM, ALLOCATE, DEF FN,
COM, RECOM

(d) I/O-related Declarative Statements

I/O-related declarative statements are common to (and valid for) all program blocks.

I/Os are valid within a program block where an ASSIGN statement that defines mod-
ule configuration is made, or within a subprogram that is called from the program
block. As discussed in the preceding item, any I/O-related declaration within a subpro-
gram is released from the ASSIGN state when you exit that subprogram with
SUBEXIT. The ASSIGN declarative statement remains valid if it is executed once. It is
therefore advisable that you make an ASSIGN declaration within a main program.

1st Edition : Oct.29,1999-00

B3-6<Toc> <Ind> <B3. Subprograms>

IM 34M6Q22-01E

B3.5 Arguments Transferable to Subprograms
Arguments (parameters) can be defined when they are called between a main program and
a subprogram. The same quantity of arguments must be stated both on the caller side
(CALL statement) and recipient side (SUB statement).

■ Statements Where No Arguments Can Be Stated
No arguments can be stated in statements written in the format ON ×××× CALL ... Use a
common variable to pass data to a subprogram.

■ Items Statable As Arguments
The following six items can be stated as arguments.

(a) Variable

This argument can pass a character-string variable and a numeric variable. A whole
array can also be stated.

(b) [Variable]

This argument is for reference only within a subprogram and no data can be written
into it. The rest of the characteristics are the same as item (a).

(c) Arithmetic Expression

This argument is for reference only within a subprogram and no data can be written
into it.

(d) Character-string Expression

This argument is the same as item (c).

(e) Constant

This argument allows either a numeric constant or a character-string constant to be
stated. It is for reference only within a subprogram.

(f) Common Variable

This argument allows a common variable to be stated. Common variables can also be
stated within a subprogram.

The following is an example of how these arguments are stated.

CALL S1 (A (*), [B$], C+100, “DD”, F$), where F$ is a common variable.

SUB S1 (P (*), Q$, R, S$, T$)

• In this example, arguments that are for reference only are Q$, R and S$.

• P (*) denotes a whole array.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B3. Subprograms> B3-7

IM 34M6Q22-01E

B3.6 Subprograms and Subroutines
A subprogram should be interpreted as a subroutine and executed as a relatively large size
of program. A subroutine (GOSUB) should be interpreted as a relatively small size of
program.

A subprogram, when called, is placed into pre-run so that a necessary variable area is
reserved, for example. If at this point the necessary variable area is not reserved, the error
message “Insufficient Area” is given.

Since a subprogram reserves and cancels a variable area each time it is executed, the
efficiency of memory is increased. Its speed of execution is lower, however, compared with
a GOSUB subroutine. It is therefore advisable that a GOSUB subroutine be used in parts
of a program that need to be processed at higher speeds. Use subprograms for a program
that will take several hundred milliseconds to complete execution or has more than several
hundred steps. Use GOSUB subroutines for a program that will take only several tens of
milliseconds to complete execution or has only several tens of steps.

B3.7 Variables and Labels
Restrictions apply to the total sum of variables and labels allowed within a single program,
as shown below.

Total sum of variables and labels % 1637

Exceeding this limit results in the error code (ERRC) 80, “Insufficient Area.”

TIP

A program consisting of a main block only has only one program block. If a program has a subprogram or
subprograms, one subprogram equals one program block.

1st Edition : Oct.29,1999-00

Blank Page

<Toc> <Ind> <B4. Real-time Statements> B4-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B4. Real-time Statements
The YM-BASIC/FA is real-time BASIC. The programming language has an interrupt han-
dling function that, when a specific factor (event) occurs, stops the current execution and
runs a process appropriate for that factor, irrespective of the flow of a program.

B4.1 Execution Modes
The mode of regular system operation is referred to as the REAL mode. In contrast, the
mode in which programs are created, or debugged while being executed, is referred to as
the DEBUG (command input) mode.

To start a program in the DEBUG mode, use a RUN command. In the REAL mode, specify
the program as being resident in the FA-M3 controller so that it is executed when the power
is turned on.

B4-2<Toc> <Ind> <B4. Real-time Statements>

IM 34M6Q22-01E

B4.2 Wait for Events (WAIT)
Use a WAIT statement when bringing the program to a stop (wait state) or postponing the
execution of the program.

■ WAIT Statement
A WAIT statement is used to wait for an external interrupt to occur. It is when a certain
event occurs that the wait state due to a WAIT statement is cancelled. The wait state can
be cancelled by pressing the ESC key on the keyboard when the command-input mode is
active. Consequently, the program comes to a pause. When returning from a subroutine
branching off during a wait state or from a subprogram, the CPU moves to the line number
that immediately follows the WAIT statement. If you use a GOTO statement instead of a
WAIT statement and state as

160 GOTO 160,
then the GOTO statement is executed over and over again until an interrupt occurs. This
will increase the CPU load. For this reason, use a WAIT statement to wait for an interrupt.

■ WAIT statement for Delay Time
A WAIT statement for delay time causes the CPU to wait a specified time and then goes to
the next line number. A branch immediately takes place if any event occurs during a wait
state. When returning from a subroutine to which a branch was caused or from a subpro-
gram, the CPU waits until the remaining delay time expires and then goes to the next line
number.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B4. Real-time Statements> B4-3

IM 34M6Q22-01E

B4.3 Interrupt
When the flow of a program needs to be changed by means of an external factor, use an
interrupt. This feature enables real-time programming that carries out processes appropri-
ate for irregular events.

(1)Types of Interrupt
The types of interrupt are shown in Figure B4.1. The factors of interrupt include time, time
length, event notification from a ladder sequence program, and event notification* from an I/
O module, interpreter (in case of an error) or other BASIC programs.

Depending on the type, some interrupts cause a branch an indefinite number of times if
stated once while others cause a branch only once.

Clock
BASIC
interpreter

User program

GOSUB
GOTO
CALL

ON to to

SEQEVT

(I/O error)
(Program error)

ERROR

INT

Input module

Sequence
program

CPU Sequence CPU

FB040301.EPS

TIME (Time)
TIMER (Fixed-interval)

Figure B4.1 Types of Interrupt

Interrupts from a ladder sequence program are explained in Chapter B6 of Part B, “Descrip-
tion of YM-BASIC/FA,” later in this manual.

1st Edition : Oct.29,1999-00

B4-4<Toc> <Ind> <B4. Real-time Statements>

IM 34M6Q22-01E

(2)Interrupt Handling for Branches to Subroutines (ON Interrupt factor
GOSUB)

The following is a statement for declaring acceptance of interrupts.

ON Interrupt factor GOSUB
Line number
Label

In this statement, you define the interrupt factor and the line number to which a branch is
caused upon interrupt. The subsequent lines of the program are then executed in se-
quence. If an interrupt occurs after the execution of a statement for declaring acceptance
of interrupts, a subroutine jump takes place to the declared line number.

Upon the jump to the interrupt-handling subroutine, the system automatically places the
CPU in an interrupt-disabled (masked) state until a RETURN statement is executed. In this
state, no jump occurs, though interrupts are still accepted.

If the RETURN statement is executed in the subroutine, the system automatically places
the CPU in an interrupt-enabled (unmasked) state. If there is an interrupt while the inter-
rupt-handling subroutine is being executed (in a masked state), a jump takes place at that
time.

An indefinite wait using a WAIT statement while interrupt handling is in process in a masked
state will result in a syntax error.

ON GOSUB 200

Occurrence of interrupt

200

Interrupt-handling program

RETURN

Using an ON GOSUB Statement FB040302.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B4. Real-time Statements> B4-5

IM 34M6Q22-01E

(3)Interrupt Handling for Changing the Program Flow (ON Interrupt factor
GOTO)

Similar to the statement in the preceding item, the following is a statement for declaring
acceptance of interrupts.

ON Interrupt factor GOTO
Line number
Label

When an interrupt is accepted, a jump is caused to the line number specified in this state-
ment. The CPU however, cannot return to the line number where it was before the occur-
rence of the interrupt. It is therefore advisable not to use the statement except in excep-
tional cases. Create a program that executes at least one statement after a jump.

Since the CPU is still in an interrupt-unmasked state after a jump to the specified line
number, it takes another jump if another interrupt occurs. In that case, the user can control
the interrupt-masked/unmasked states using DISABLE/ENABLE statements.

If any ON ... GOTO branch is defined in a subroutine, the RETURN information is cleared
when the ON ... GOTO branch is executed. Consequently, executing a RETURN statement
after the jump will result in the error “No Destination of Return.”

ON
ON

GOTO 200
GOTO 500 200

Occurrence of interrupt

Occurrence of interrupt

Using an ON GOTO Statement

500

FB040303.EPS

(4)Interrupt Handling for Subprogram Jumps (ON Interrupt Factor CALL)
The following is a statement for declaring acceptance of interrupts.

ON Interrupt factor CALL Subprogram name

In this statement, you define the interrupt factor and the name of a subprogram to which a
jump is caused upon interrupt. Not arguments can be passed at this point. The rest of the
characteristics is the same as those of the subroutine jump discussed in item (2).

1st Edition : Oct.29,1999-00

B4-6<Toc> <Ind> <B4. Real-time Statements>

IM 34M6Q22-01E

(5)Interrupt Prohibition (OFF Interrupt Factor)
The following is a statement for declaring cancellation of accepting interrupts based on an
ON ... statement.

OFF Interrupt factor

All interrupts relevant to this factor which follow this statement are ignored. If the ON ...
statement is executed once again, interrupts are also accepted once again. Thus, you can
control the acceptance/prohibition of interrupts at your option according to the sequence of
processes in your program.

All interrupts are prohibited in the beginning of a program, as a matter of course. An inter-
preter error is regarded as a system interrupt in the absence of an ON ERROR statement,
causing the program to stop. Be careful since an OFF ... statement is only valid within a
program block where interrupts have been defined using an ON ... statement.

(6)Interrupt Statements

● Interrupt by Time

ON TIME #Timer number, Time [, Time interval][[

GOTO

GOSUB

CALL

Line number

Label

Subprogram name

[
[

1 to 8

OFF TIME # Timer number[[FB040304.EPS

With these statements, an interrupt occurs at the specified time. If only the time is speci-
fied, a branch takes place only once. When a time length is specified, an interrupt occurs
periodically after the specified time.

● Interrupt by Timer

ON TIMER # Timer number, Time interval[[

GOTO

GOSUB

CALL

Line number

Label

Subprogram name[

1 to 8

OFF TIMER # Timer number[[

[

(The timer number may be the same as
the one in the ON TIME statement.)[

FB040305.EPS

With these statements, an interrupt occurs at an interval specified in the Time Length field.
The timer numbers in the ON TIME and ON TIMER statements can be set separately;
therefore, the same number may be used for both.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B4. Real-time Statements> B4-7

IM 34M6Q22-01E

● Interrupt from an Input Module

ON INT Slot number, Device number [, Terminal number][[

GOTO

GOSUB

CALL

Line number

Label

Subprogram name[

OFF INT Slot number, Device number [, Terminal number][[

[

[

FB040306.EPS

With these statements, it is possible to handle interrupt input from any external device.
Note: The following input (or I/O) modules have no interrupt feature.

F3XD64-uu, F3WD64-uu

● Interrupt from the Interpreter

ON ERROR[[

GOTO

GOSUB

CALL

Line number

Label

Subprogram name[

OFF ERROR

[

[FB040307.EPS

These statements are instructions that cause the interpreter to generate an interrupt
without taking any action against an error resulting from faulty programs or data. Thus,
error handling is carried out by the user program. The ON ERROR statement is regarded
as an exceptional interrupt instruction, a branch takes place upon occurrence of an inter-
rupt even when a process based on another interrupt factor is in progress.

(a) Branching by ON ERROR GOTO Statement

Example:

50 ON ERROR GOTO A@

 :

100 OUTPUT XXX… ← Occurrence of error

 :

200 A@ DP ERRL, ERRC, HEX$(ERRCE)

 :

250 OUTPUT XXX… ← Occurrence of error

Any error occurring during the execution of an ON ERROR GOTO branch will result in an
indefinite loop. After the ON ERROR GOTO branch, be sure to execute an OFF ERROR
statement.

(b) Branching by ON ERROR GOSUB Statement

If another error occurs during the execution of a GOSUB branch, the program stops
because it is interrupted by the system. Therefore during the execution of an ON
ERROR branch, it is safer to avoid using such a statement as an error may occur
therein in an online state.

1st Edition : Oct.29,1999-00

B4-8<Toc> <Ind> <B4. Real-time Statements>

IM 34M6Q22-01E

If any error occurs in a statement of a compound sentence, a branch takes place immedi-
ately. Then, according to a RETURN statement, the CPU returns to the line that follows the
one from which it branched. A RETURN RETRY statement, when executed, causes the
CPU to return to the first field of the line number in question. For this reason it is advisable
that the statement be made using a simple sentence for operation involving I/O-related
actions.

Example:

100 A=1: OUTPUT 8,1;A$:C=1
 Error

110 D=1
If an error occurs in an OUTPUT statement, an error branch is caused without executing C
= 1. With a RETURN statement, the CPU returns to line number 110. With a RETURN
RETRY statement, the CPU resumes execution from the first field A=1 of line number 100.

● Interrupt from Sequence Program

ON SEQEVT Signal name [, Variable name][[

GOTO

GOSUB

CALL

Line number

Label

Subprogram name

[

OFF SEQEVT Signal name[[

[

[

FB040308.EPS

With these statements, an interrupt by a SIGNAL command in a sequence program is
accepted. This makes it possible to synchronize the sequence program with a BASIC
program. For example, these statements can be used to determine the time when the data
of sequence devices are read from the BASIC program using an ENTER statement. The
data can also be transferred in the form of a signal. Data transfer can be carried out at a
rate of one cycle per variable (integer-type).

● Interrupt at the End of Data Transfer

ON EOT Slot numbe, Device number[[

GOTO

GOSUB

CALL

Line number

Label

Subprogram name[

OFF EOT Slot number, Device number[[

[

[

FB040309.EPS

With these statements, an interrupt occurs at the end of data transfer by a TRANSFER
statement. These statements allow an action to be taken following the end of data transfer
to a communication module by a TRANSFER statement.

● Interrupt Generated when an I/O Action Does Not Finish within Specified
Time Length

ON TIMEOUT Slot number, Device number[[

GOTO

GOSUB

CALL

Line number

Label

Subprogram name[

OFF TIMEOUT Slot number, Device number[[

[

[

FB040310.EPS

These statements allow an action to be taken when an I/O action does not finish within the
length of time specified by a SET TIMEOUT statement.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B4. Real-time Statements> B4-9

IM 34M6Q22-01E

(7)Temporary Prohibition of Interrupts and Its Cancellation
The temporary prohibition and its cancellation of all interrupts declared by an ON ... state-
ment can be controlled using DISABLE/ENABLE statements. Although in an ON ... declara-
tion, DISABLE/ENABLE statements in a branch to a subroutine or subprogram are valid,
the statements do not make sense when the line is at the high level. Rather, the state in
question arises when the line returns to the low level.

● DISABLE [C] Statement

This statement temporarily prohibits all interrupts, except those set by an ON ERROR
statement. A DISABLE statement places all declared interrupts into a disabled (masked)
state. If you declare an interrupt using an ON ... statement after the execution of a DIS-
ABLE statement, the declaration is registered with the system with the interrupts kept in the
masked state. A DISABLE C statement, on the other hand, places interrupts declared
before the DISABLE C statement is executed into a masked state. Any interrupt declara-
tion implemented after the execution of the DISABLE C statement is placed into an enabled
(unmasked) state.

Interrupts are accepted even if they are in a masked state, and a branch takes place when
they are placed into an unmasked state.

Use a DISABLE C statement when you want to temporarily prohibit interrupts from occur-
ring.

Example:

Interrupt declaration 1

DISABLE

Interrupt declaration 2

Interrupt 1 or 2

Until placed into an unmasked state,
the interrupt is forced to wait.

(1) DISABLE

Interrupt declaration 1

DISABLE C

Interrupt declaration 2

Interrupt 1
Until placed into an unmasked state,
the interrupt is forced to wait.

(2) DISABLE C

Interrupt 2
A branch takes place immediately.

FB040311.EPS

Interrupts are placed into an unmasked state automatically if you execute a WAIT state-
ment in a masked state set by a DISABLE statement. As an exception, the status of control
on the masked state set by a DISABLE C statement does not change, however.

1st Edition : Oct.29,1999-00

B4-10<Toc> <Ind> <B4. Real-time Statements>

IM 34M6Q22-01E

● ENABLE [C] Statement

This statement places interrupts prohibited by a DISABLE statement into an unmasked
state (interruptible again). If an interrupt occurs in a masked state, a branch takes place
when this statement is executed.

An ENABLE statement cancels all the masked, prohibitive states of interrupts set by DIS-
ABLE [C] statements executed earlier. An ENABLE C statement places an interrupt prohib-
ited by the immediately preceding DISABLE C statement into an unmasked state (interrupt-
ible).

Example:

Interrupt declaration 1

DISABLE C

Interrupt declaration 2

(1) DISABLE

Interrupt declaration 1

DISABLE C

Interrupt declaration 2

All interrupt prohibitions
are cancelled.

(2) DISABLE C

DISABLE C

Interrupt declaration 3

DISABLE C

ENABLE

DISABLE C

Interrupt declaration 3

DISABLE C

ENABLE C

ENABLE C

FB040312.EPS

The interrupt prohibition against
interrupt declaration 3 is cancelled.

The interrupt prohibition against
interrupt declaration 2 is cancelled.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B4. Real-time Statements> B4-11

IM 34M6Q22-01E

● Using DISABLE/ENABLE Statements

As a rule, DISABLE/ENABLE statements are used as shown below.

Example (1)

Start

DISABLE

Interrupt declaration 1
(GOTO statement)

Interrupt declaration 2
(GOTO statement)

IDLE@

ENABLE

WAIT
statement for

making program wait
during interrupt

Interrupt handling 1

DISABLE DISABLE

Interrupt handling 2

GOTO IDLE@

FB040313.EPS

This way of using the statements enables you to handle interrupts without having the
program flow disturbed by other interrupts during interrupt handling based on a GOSUB
statement.

1st Edition : Oct.29,1999-00

B4-12<Toc> <Ind> <B4. Real-time Statements>

IM 34M6Q22-01E

Such programming as shown below is possible by combining DISABLE and ENABLE
statements with DISABLE C and ENABLE C statements.

Example (2)

Start

DISABLE

Interrupt declaration 1
(GOTO statement)

Interrupt declaration 2
(GOTO statement)

IDLE@

ENABLE

WAIT
statement for

making program wait
during interrupt

Interrupt handling 1

DISABLE C
Interrupt declaration 3

DISABLE C
Interrupt declaration 3

Interrupt handling 2

GOTO IDLE@

RETURN

Interrupt handling 3

Interrupt declaration 3
(GOSUB statement)

FB040314.EPS

Interrupt handling 3 is always feasible even when interrupt handling 1 and 2 is in process.
This way of writing a program is convenient when immediate processing is always needed
in communication sessions, for example.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B4. Real-time Statements> B4-13

IM 34M6Q22-01E

In the case of interrupt handling 1 and 2 in Examples (1) and (2) discussed earlier, a DIS-
ABLE statement must be made in the line that is first executed after the occurrence of an
interrupt branch. The YM-BASIC/FA is designed so that interrupt factors are checked for at
the end of each line number. If there is any unprocessed interrupt factor, an interrupt
branch takes place. For this reason, make a DISABLE statement in the line to which the
interrupt branch is caused, as shown in Example (3-1) below. In either case in Example (3-
2), if there are any unprocessed interrupt factors upon completion of line 190, a branch is
caused to the interrupt handling corresponding to that factor.

Example (3-1) Correct Use

(Branch to Line Number)

50 ON SEQEVT “EVENT1” GOTO 190

 :

180 ! Interrupt handling 1

190 DISABLE

200 :

(Branch to Label)

50 ON SEQEVT “EVENT2” GOTO EVT2@

 :

180 ! Interrupt handling 2

190 EVT2@ DISABLE

200 :

Example (3-2) Incorrect Use

(Branch to Line Number)

50 ON SEQEVT “EVENT1” GOTO 190

 :

190 ! Interrupt handling 1

200 DISABLE

 (Branch to Label)

50 ON SEQEVT “EVENT2” GOTO EVT2@

 :

180 ! Interrupt handling 2

190 EVT2@

200 DISABLE

1st Edition : Oct.29,1999-00

B4-14<Toc> <Ind> <B4. Real-time Statements>

IM 34M6Q22-01E

(8)Timing for Interrupts
The YM-BASIC/FA is designed so that an interrupt branch takes place after the completion
of the line number currently under execution. This is still true even if the interrupt is stated
using a compound sentence; thus, the branch takes place after all statements included
within the line number have been executed.

• Branch due to occurrence of error

A branch immediately takes place upon occurrence of an error. In a line where state-
ments are made with a compound sentence, those subsequent to the statement
where the error occurred are excluded from the execution. Statements relevant to
error handling include ON ERROR and SET STATUS.

• WAIT statement

In the case of a WAIT statement, interrupts are accepted as an exception even while
the statement is being executed.

(9)Priority of Interrupts
This item explains how interrupts are accepted in a case where there is a number of inter-
rupt factors.

• Order of declaration

Acceptance of interrupts are declared using an ON ... statement. There are no par-
ticular restrictions on the order and number of interrupts. An acceptance table is
created within the user area for each ON ... statement. If you declare exactly the same
interrupt factor twice, however, the later declaration takes precedence.

• Order of acceptance

Interrupts are accepted in the order of their occurrence. For each interrupt, a branch
takes place to an interrupt-handling subroutine created by the user. The order of
accepting interrupts that have occurred exactly at the same time depends on the
hardware and system. Interrupts are never ignored since the system still accepts
them even when any user interrupt is being processed.

• Two or more interrupts caused by the same interrupt factor

The CPU remembers only one interrupt for each interrupt factor. The second and
subsequent interrupts are ignored. The CPU clears its memory when a branch is
caused to an interrupt-handling subroutine, however. Consequently, interrupts due to
the same interrupt factor as above are accepted when the interrupt-handling subrou-
tine is in progress. A branch takes place to the same interrupt-handling subroutine
once again when the CPU returns from that subroutine.

(10) Interrupt-handling Programs
Interrupt-handling subroutines, subprograms and DISABLE statements must be processed
as quickly as possible since they are executed with other interrupts placed into a masked
state. An indefinite wait using a WAIT statement while interrupt handling is in process in a
masked state will result in a syntax error.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B4. Real-time Statements> B4-15

IM 34M6Q22-01E

(11) Quantity of Interrupts That Are Accepted
If too many interrupts come in at the same time, the system may not accept some of them
even if they are of different types. If more than 40 interrupts come in while any single line is
being executed, all subsequent interrupts are ignored unconditionally.

CAUTION

If more than 40 interrupts come in while an interrupt-handling subroutine based on an ON
Interrupt factor GOSUB statement is being executed, all subsequent interrupts are ignored
unconditionally.

1st Edition : Oct.29,1999-00

Blank Page

<Toc> <Ind> <B5. Common Variables> B5-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B5. Common Variables

B5.1 Common Area
The BASIC user-controlled area consists of a user area (program area) and a common
area. The common area is not intialized even if the BASIC CPU module is turned on or off.
To initialize the common area, use an INIT COM statement. The size of the common area
can be determined in advance by means of software configuration.

User area

Areas within BASIC CPU module

Common area

BASIC user-controlled area

FB050101.EPS

B5-2<Toc> <Ind> <B5. Common Variables>

IM 34M6Q22-01E

B5.2 Basics of How to Use Common Variables

B5.2.1 Functions of COM Statement
A COM statement is used to define variable names in the common area. Like a DIM
statement, you can also declare arrays and specify the length of a character string. A DIM
statement places definitions in the program area, while a COM statement sets definitions in
the common area. Variables declared by a COM statement are referred to as common
variables.

State as shown below to secure a common area within the local user area.

COM [Variable name [, Variable name,]

where the description within the brackets [] is for a case when there is more than one
variable.

Variables declared by COM statements are allocated to the common area in the order in
which they are stated in a program. Declared variables are not referenced correctly unless
their data type, quantity (number of elements if in an array), and order are consistent
between programs. In addition, if the variables are of character-string type, the length of
any particular element must be the same between programs.

Matching as to whether the variable is an array variable or a simple variable is not required
as long as the above-mentioned conditions are satisfied. A variable name need not neces-
sarily be the same between programs.

CAUTION

When declaring any character-string variable in the common area by a COM or COM #
statement, be sure to specify it using an even number of bytes. If you specify the variable
using an odd number of bytes, an error may occur in a library or the program performance
(execution speed) may be degraded.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B5. Common Variables> B5-3

IM 34M6Q22-01E

B5.2.2 Clearing the Common Area
The common area exists separately from the program area and is not cleared even by a
NEW command. To initialize the common area, use an INIT COM statement. The common
area that is initialized at this point is that of a user program where the INIT COM statement
has been executed.

B5.2.3 Restrictions on the Use of Common Variables
It is not possible to use a common variable for any of the following parameters of state-
ments.

• A device number in an I/O statement, such as ENTER/OUTPUT statements

• An I/O buffer variable in a transfer action

• A variable representative of specifications in an IMAGE statement

• A counter variable in a FOR ... NEXT statement

1st Edition : Oct.29,1999-00

B5-4<Toc> <Ind> <B5. Common Variables>

IM 34M6Q22-01E

B5.3 Statements Related to COM Statement

B5.3.1 SUBCOM Statement
A SUBCOM statement is used when the common area needs to be separated into one
shared with other programs (main programs) and one shared by the main program and
subprograms. As shown in Example 1 below, common areas for subprograms are secured
in sequence, beginning with the common area specified by the SUBCOM statement that
immediately precedes it.

A SUBCOM statement is designed to be used within a main program. If you use more than
one SUBCOM statement at the same time, the program may fall into an uncertainty state of
operation for such reasons as interrupts. Do not use more than one SUBCOM statement at
the same time (see Example 2).

Example 1:

COM A

COM B

COM C

SUBCOM C

COM D

END

Main program

A

B

C

D

SUB SB1

COM C

COM D
:
:
:
:
:

SUBEND

Subprogram

Subprogram

Common to other programs

Program Common area

Common to SB1 and SB2 subprograms

SUB SB2

COM C

COM D
:
:
:
:
:

SUBEND

FB050301.EPS

CAUTION

It is not possible to use a SUBCOM statement together with a COM # statement that
defines a common area for other programs.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B5. Common Variables> B5-5

IM 34M6Q22-01E

Example 2:

COM A

COM B

COM C

COM D

ON ~ CALL SB1

SUBCOM B
:
:
:

SUBCOM C
:
:

END

SUB SB1

COM X

COM Y
:
:

SUB END

A

B X

C Y

D

Arrangement of common variables
when the branch is caused in case (1)

Program

Common variables shared by
the main program and subprograms

A

D Y

C X

B

Arrangement of common variables
when the branch is caused in case (2)

Common variables shared by
the main program and subprograms

(1)

(2)

FB050302.EPS

The first of the common variables
differs between cases (1) and (2)
depending on where the branch is
caused.

In Example 2 above:

(1) The branch in case (1) results in the variable names B and X sharing the same data
and the variable names C and Y sharing the same data, respectively.

(2) The branch in case (2) results in the variable names C and X sharing the same data
and the variable names D and Y sharing the same data, respectively.

1st Edition : Oct.29,1999-00

B5-6<Toc> <Ind> <B5. Common Variables>

IM 34M6Q22-01E

B5.3.2 RECOM Statement
A RECOM statement is used when you specify the same location of a common variable
under a different variable name. In the example shown below, COM statements that follow
the RECOM B statement allocate variables, beginning with the variable B. In other words, a
RECOM statement registers the same common variable under more than one name within
the program’s local common area. If a RECOM statement having no parameters is used,
allocation begins with the first of variables in the common area. Any variable name de-
clared by a COM statement can also be used after making a RECOM statement. In the
example, the variables B and D share the same data.

Although this example is given for a main program, a RECOM statement can also be used
in exactly the same way for subprograms. Note that a RECOM statement can be used
together with a COM # statement that defines common areas to be shared with other
programs.

COM A

COM B

COM C

RECOM B

COM D

COM E

Program

B

Common area

A

D

C E

FB050303.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B5. Common Variables> B5-7

IM 34M6Q22-01E

B5.4 Data Exchange with Subprograms
In data exchange between a main program and subprograms, each COM statement
allocates common variables in sequence in the same area, as shown below.

X

COM X

COM Y

CALL S1

END

Program

Common area

SUB S1

COM Z

SUBEND

Main program

Y

Z

Subprogram

The variables X and Z
share the same location.

Area as viewed
from the main
program

Area as viewed
from the
subprogram

FB050401.EPS

Common Area Shared with Two or More Subprograms

If you want the common area shared by more than one subprogram, allocate dummy
variables before using the common area.

COM A, B

COM C, D

Program

SUB SUB1

COM A, B

SUB SUB2

COM X1, X2

COM C, D

Main program

SUB1 subprogram

SUB2 subprogram
X1 and X2 are dummy variables.

A

B

X1

X2

C

D

Area shared with
SUB1 subprogram

Area shared with
SUB2 subprogram

Common area

FB050402.EPS

1st Edition : Oct.29,1999-00

Blank Page

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B6. Data Exchange with a Ladder Sequence
Program

B6.1 Data Exchange between CPU Modules
The FA-M3 multi-controller has the following functions necessary for a BASIC program and
a ladder sequence program to exchange data with each other.

(1) Data Exchange
Data exchange between a BASIC program and a ladder sequence program can be
achieved 1) by common variables and shared registers or 2) by using an ENTER or OUT-
PUT statement.

Data exchange using common variables and shared registers

• Statements in the BASIC program are executed irrespective of how the ladder se-
quence program is scanned.

• Since actual data exchange is carried out asynchronously, you must consider the
timing at which data is transferred.

• This method has superior program readability and maintainability since data access
can be achieved using variable names.

• Any change in data allocation can be coped with by simply changing the declarative
statement.

Data exchange using an ENTER or OUTPUT statement

• It is possible to directly gain read/write access to all devices from a BASIC program.

• Since actual data exchange is carried out synchronously, you need not consider the
timing at which data is transferred.

• The execution time of statements in the BASIC program depends on how the ladder
sequence program is scanned.

• Since sequence devices are directly accessed from the BASIC program using device
addresses, it is relatively difficult to change the program or use the program for other
purposes. (In other words, the program maintainability is poor.)

(2) Synchronization between Programs (Interrupts)
Synchronization can be achieved between the BASIC program and the ladder sequence
program in two ways:

• Using an ENTER or OUTPUT statement, read/write binary-digit data from/to the
internal relays of sequence devices; or

• Apply interrupts from the ladder sequence program to the BASIC program.

In this case, execute an ON SEQEVT statement in advance in the BASIC program to
declare acceptance of interrupts. To apply an interrupt from the ladder sequence
program, use a SIGNAL command.

B6-2<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E

(3) Running/Stopping the Ladder Sequence Program
This function runs or stops the ladder sequence program.

(4) Status Reading
This function reads the operating status (RUN/STOP) of the ladder sequence program.

This chapter explains the functions discussed in items (1) to (4) above.

Table B6.1 lists the statements in a BASIC program that are used to exchange data be-
tween the BASIC program and ladder sequence program.

TB060101.EPS

Statement in BASIC Program Function Description

ASSIGN sequence ID=Sc

ENTER Sc, Device name’s character-
string expression; Input variable

OUTPUT Sc, Device name’s character-
string expression; Output variable

CONTROL Sc, 1 ; I

STATUS Sc, 1 ; I

COM #S Sc Common variable’s name

ON SEQEVT ...

OFF SEQEVT ...

SEQACTV Sc, Block number; I

Declares use of a sequence CPU module from the BASIC
program.

Inputs data from sequence devices.

Outputs data to sequence devices.

Starts or stops the ladder sequence program on the CPU
module whose use has been declared.

Read the operating and error status of the CPU module
whose use has been declared.

Declares data access to be carried out between the
BASIC program and the ladder sequence program using
common variables.

Declares acceptance of interrupts from the ladder
sequence program.

Cancels the declaration of acceptance of interrupts from
the ladder sequence program.

Starts or stops the ladder sequence program that has
been divided into program blocks.

Sc: Slot number
I: Start/stop setting.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-3

IM 34M6Q22-01E

B6.1.1 Data Exchange Using Common Variables
As explained earlier, data can be exchanged between a BASIC program and a ladder
sequence program 1) by using common variables and shared registers or 2) by using an
ENTER or OUTPUT statement. This subsection explains how to use common variables
and shared registers for data exchange. For details on how to use an ENTER or OUTPUT
statement for data exchange, see subsection B6.1.2, “Data Exchange Using an ENTER or
OUTPUT Statement,” later in Part B, “Description of YM-BASIC/FA.”

B6.1.1.1 Sharing of Sequence Devices
The YM-BASIC/FA programming language is designed so that data can be shared between
the BASIC CPU module and a sequence CPU module.

The data that can be shared are those of shared registers (up to 1024 units) defined in the
data area shared by the CPUs. In a BASIC program, shared registers can be referenced/
configured as BASIC variables.

Shared register
area of sequence
CPU1 (F3SPxx)

Shared register
area of sequence
CPU2 (F3SPxx)

READ

READ

READ

READ/WRITE

Shared register
area of sequence
CPU3 (F3SPxx)

CPU1 area

CPU2 area

CPU3 area

CPU4 area

Slot 1 Slot 2 Slot 3

Shared register
area of BASIC
CPU (F3BP20)

Slot 4

Read/write-enabled area

Read-only area
FB060101.EPS

Figure B6.1 Shared Registers

The BASIC CPU module installed in slot 4 in such a system as shown in Figure B6.1 has
read/write access to the CPU4 area only. It has only read access to the CPU1 to CPU3
areas.

TIP

A shared register is basically equivalent to a sequence common register installed in an FA500 controller.
Be careful however, as they differ in the following points.

• The data area that can be shared differs between them, as shown below.

FA500 = B register; FA-M3 = R register

The size of shared registers is 1024 words, irrespective of the number of CPUs. The configurable
area of each CPU is defined using the configuration function.

• Restrictions apply to the area to which data can be written, as noted below.

Each CPU has read/write access to its own local area. The CPU has only read access to the area of
the other CPU.

1st Edition : Oct.29,1999-00

B6-4<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E

B6.1.1.2 BASIC Common Variables and Sequence Devices
Carry out data exchange using the shared registers (R registers) within the sequence CPU
and the BASIC common area. (Before data exchange can be carried out, an area [shared
register area] for data exchange with the sequence CPU must be created within the BASIC
CPU module using the configuration function.)

BASIC CPU(CPU1) Sequence CPU (CPU2)

CPU1 shared-
register buffer

CPU2 shared-
register buffer

 10 COM #S1 WDATA
 20 COM #S2 RDATA

...
...

 100 WDATA = 321
 110 II = RDATA

BASIC program Ladder program

(3) Writing
(2) Reading

(4) Refreshing for sharing

(1) Writing
(5) Reading

FB060102.EPS

CPU1 shared-
register buffer

CPU2 shared-
register buffer

Figure B6.2 Common Variables and Sequence Devices

Data flow from sequence CPU to BASIC CPU

(1) The sequence CPU writes arithmetic results to the CPU2 shared-register buffer within
its own CPU at the end of a scan.

(2) The BASIC CPU reads data from the CPU2 shared-register buffer within the se-
quence CPU when executing a statement.

Data flow from BASIC CPU to sequence CPU

(3) The BASIC CPU writes data to the CPU1 shared-register buffer within its own CPU
when executing a statement.

(4) The sequence CPU reads the CPU1 shared-register buffer within the BASIC CPU into
its own CPU1 shared-register buffer, asynchronously, irrespective of how it is scanned
(refreshing for sharing).

(5) When refreshing for sharing is complete, the sequence CPU reads data in the CPU1
shared-register buffer into the shared registers, at a scan break, so that the data can
be used for computing.

TIP

• If in a ladder program you have written values to the shared registers and send an interrupt telling the
BASIC CPU that data has been written to the BASIC program, do so after having waited one scan
after writing. This is because the BASIC CPU reads the result of the previous scan when a scan of
the written data is being executed.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-5

IM 34M6Q22-01E

CAUTION

• Information on the allocation of shared relays and registers is managed separately by
each individual CPU. For this reason every two CPUs that exchange data with each
other must share the same information on the allocation of shared relays and regis-
ters. If the information differs between the two CPUs, data exchange may not be
carried out correctly. The configuration of shared relays should be set in compliance
with that of other CPUs.

• Shared devices in a sequence CPU are refreshed in asynchrony with scanning in
units of one shared register (16 bits). For this reason the simultaneity of data exceed-
ing the size of one shared register (16 bits) is not guaranteed. Be especially careful
when using a long-integer variable (32 bits) or specifying the data using a whole array.
If necessary, declare common variables in your application program.

• It is only possible to write to the local CPU’s own area. When exchanging data with a
sequence CPU, define write-only and read-only common variables separately.

• Sequence devices that can be used in a COM #S statement are shared registers only.

B6.1.1.3 COM #S Statement
Use a COM #S statement to declare data exchange based on common variables to be
carried out with a specified sequence CPU. A COM #S statement has the following format.
For more details on the format, see “COM Statement” in Part C, “Syntax of YM-BASIC/FA,”
later in this manual.

COM [#S Slot number [Common variable......

Slot number: Slot where the CPU is installed

Common variable: Integer variable or long-integer numeric variable. Multiple common
variables and common variables in an array are also acceptable.

Like other declarations of common variables, common variables declared by a COM #S
statement are allocated to the shared registers of a specified sequence CPU, in the order in
which they are stated in the program (see Figure B6.2). Variables that can be declared by a
COM #S statement are integer and long-integer variables only. Using a variable of other
types will result in an incorrect value. To be able to use an integer variable (16 bits), the
variable must be declared to be of integer type in advance by a DEFINT statement. One
16-bit integer variable is equivalent to one shared register.

Likewise, to be able to use a long- integer variable (32 bits), the variable must be declared
to be of long-integer type in advance by a DEFLNG statement. One 32-bit long-integer
variable is equivalent to two shared registers.

When using a COM #S statement, carry out shared-device configuration in advance using
the BASIC Programming Tool M3 for Windows.

CAUTION

• Shared devices in a sequence CPU are refreshed in asynchrony with scanning in
units of one shared register (16 bits). For this reason the simultaneity of data exceed-
ing that of one shared register (16 bits) is not guaranteed. Be especially careful when
using a long-integer variable (32 bits) or specifying the data using a whole array. If
necessary, declare common variables in your application program.

1st Edition : Oct.29,1999-00

B6-6<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E

Example 1:

From a BASIC program that runs on a CPU in slot 1, you declare data exchange with an
add-on sequence CPU installed in slot 3. Any name may be used for common variables in
the BASIC program. For example, you can use the signal names of shared registers in the
ladder sequence program for the names of common variables in the BASIC program.

BASIC program

DEFINT A-Z

OPTION BASE 1

COM #S1 RDATA (2)

COM #S3 LDATA (2)

RDATA (1)=1

RDATA (2)=2

A=LDATA (1)+LDATA (2)

PRINT A

Signal name

“RDATA1”

Shared registers in sequence CPU

“RDATA2”

“LDATA1”

“LDATA2” 4

3

R0001

R0002

R0003

R0004

The allocation of shared registers in
the example above is as follows.
R0001 and R0002: BASIC CPU
R0003 and R0004: Sequence CPU

FB060103.EPS

Figure B6.3 Allocation of Common Variables (1 of 2)

Example 2:

The correlation of long-integer variables with the shared registers is as follows.

BASIC program

10 DEFLNG A-Z

20 OPTION BASE 1

30 !

40 COM #S3 A, B, C

Shared registers in sequence CPU

R0001

R0002

R0003

R0004

FB060104.EPS

In addition, the correlation of the higher-order and lower-order words of a long-integer
variable with the higher-order and lower-order words of a shared register is as follows.

BASIC long-integer variable Shared registers in sequence CPU

R0001

R0002

R0003

R0004

Higher-order word

Lower-order word
A

Note: One word = 16 bits

Lower-order word

Higher-order word

FB060105.EPS

Figure B6.4 Allocation of Common Variables (2 of 2)

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-7

IM 34M6Q22-01E

CAUTION

• If any long-integer variable is used, the simultaneity of data in the higher- and lower-
order words is not guaranteed. If necessary, declare common variables in your appli-
cation program.

If a two-dimensional array of integer variables is used, the variables are allocated as shown
below.

RDATA (1, 1)

RDATA (1, 2)

RDATA (2, 1)

RDATA (2, 2)

RDATA (2, 2)

FB060106.EPS

Figure B6.5

After declaration of common variables, data is exchanged within the BASIC program as
described below.

■ Data Output from BASIC Program to Sequence Program
You can pass data to a ladder sequence program by simply inputting the data to a common
variable.

BASIC program

DEFINT A-Z

OPTION BASE 1

COM #S1 ADATA (10)

A = 1 : B = 1

ADATA (1) =20

ADATA (2) =A+B

Signal name

ADATA(1)

Shared registers in sequence CPU

ADATA(2)

R0001

R0002

FB060107.EPS

Figure B6.6

If the frequency of access to common variables in a BASIC program is extremely high,
transfer the data of the common variables to the local variables of the BASIC program
before processing the data. This strategy saves time consumed by gaining access to the
common variables.

BASIC program

DEFINT A-Z

OPTION BASE 1

COM #S1 ADATA (100)

DIM LDATA (100)

FOR I = 1 TO 100

 LDATA (I) =-2*A

NEXT I

MOVE LDATA(*), ADATA(*)

Local variable Common variable
FB060108.EPS

The data of common variables
are transferred to the local
variables by a MOVE statement.

Figure B6.7

1st Edition : Oct.29,1999-00

B6-8<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E

■ Data Input from Sequence Program to BASIC Program
You can receive data from a ladder sequence program by simply referencing the given
common variable.

BASIC program

DEFINT A-Z

OPTION BASE 1

COM #S1 ADATA (10)

A=ADATA (1)+ADATA (2)

PRINT A

Signal name

“ADATA1”

Shared registers in sequence CPU

“ADATA2”

“ADATA3”

2

1 R0001

R0002

R00033

FB060109.EPS

Figure B6.8

If the frequency of access to common variables in a BASIC program is extremely high,
transfer the data of the common variables to the local variables of the BASIC program
before processing the data. This strategy saves time by gaining access to the common
variables.

BASIC program

DEFINT A-Z

OPTION BASE 1

COM #S1 ADATA (100)

DIM LDATA (100)

MOVE ADATA(*), LDATA(*)

PRINT LDATA(*)

Local variable
Common variable

FB060110.EPS

The data of common
variables are transferred to
the local variables by a
MOVE statement.

Figure B6.9

TIP

A local variable refers to a variable that is used within a particular single main program or subprogram. If
you use a common variable in your program, you gain access to the ladder sequence program each time
you use the variable. Too frequent access therefore involves a decrease in the processing speed of the
BASIC program. Transfer the data of common variables to local variables when making a program so that
the frequency of access to the common variables is minimized.

Common variables can be used as variables or elements in an array. When specifying the common
variables using a whole array, pass them to local variables using a MOVE statement. This strategy
enables the whole array to be transferred in a very efficient manner.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-9

IM 34M6Q22-01E

■ Data Exchange between Multiple Subprograms and a Ladder Sequence
Program

To exchange data between a BASIC program having multiple subprograms and a ladder
sequence program, use a COM #S statement for each program block. This method causes
common variables to be allocated so that the first line of each program block corresponds
to the first line of shared registers, as shown in Figure B6.10.

Note that common variables that are declared by a COM #S statement cannot be used with
a SUBCOM statement. If the area needs to be shared among subprograms, allocate
dummy variables to the COM #S statement so that the common variables are not used
(see Figure B6.10).

BASIC program

DEFINT A-Z

COM #S1 A, B, C, D

Signal name Shared registers in sequence CPU

R0001

R0002

R0003

R0004

SUB SUB1

DEFINT A-Z

COM #S1 A, B

SUB SUB2

DEFINT A-Z

COM #S1 X1, X2, C, D

Dummy variables

DATA1

DATA2

DATA3

DATA4

FB060111.EPS

Figure B6.10

1st Edition : Oct.29,1999-00

B6-10<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E

■ RECOM #S Statement
A RECOM #S statement is used when you specify the same location for a common vari-
able under a different variable name. Common variables thus stated can be used just like
common variables declared by other COM statements. For more details on this statement,
see “RECOM Statement” in Part C, “Syntax of YM-BASIC/FA,” later in this manual.

DEFINT A-Z
COM #S1 A, B, C

RECOM #S1 B
COM #S1 X, Y, Z

Signal name

DATA1

DATA2

DATA3

DATA4

R0001

R0002

R0003

R0004

BASIC program Shared registers in sequence CPU

FB060112.EPS

Figure B6.11

■ Clearing Shared Registers
Shared registers are not cleared even if an INIT COM statement is executed. To initialize
shared registers, use an INICOMM3 standard library or write 0 to the registers in the
BASIC program or ladder sequence program.

■ Restrictions on the Use of Variables Declared by a COM #S Statement
Like other common variables, it is not possible to use a common variable declared by a
COM #S statement as any of the following parameters of statements.

• A device number in an I/O statement, such as ENTER/OUTPUT statements

• An I/O buffer variable in a transfer action

• A variable representative of specifications in an IMAGE statement

• A counter variable in a FOR ... NEXT statement

■ Arguments of a Library
Any variable declared by a COM #S statement cannot be used as an argument of a library.

■ COM IS Statement
A COM IS statement cannot be used together with a COM #S statement.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-11

IM 34M6Q22-01E

B6.1.1.4 Example of Data Exchange
This item shows an example of how data is exchanged between a BASIC program and a
ladder sequence program. In the following example, information on input relays acquired
by the ladder sequence program is computed (the square root is evaluated) by the BASIC
program. Then, the result is output externally from output relays by the ladder sequence
program.

● Hardware Configuration

321 4

Output module (F3YD32, for example)

Input module (F3XD32, for example)

Add-on sequence CPU (F3SP21)

Main CPU (F3BP20)

5 6 7

FB060113.EPS

Power
supply
module

● Programs

The allocation of shared registers in the example above is as follows.
R0001 and R0002: BASIC CPU
R0003 and R0004: Sequence CPU

Main CPU in slot 1
↓

BASIC program

100 REM Exercise to Find a Square Root

110 DEFINT A-Z

120 COM #S1 WDATA1,WFLG

130 COM #S2 RDATA1,RDATA2

140 ASSIGN SP21 = 2

150 WFLG = 0

160 ON SEQEVT "OUTEND" GOSUB OUTEND@

170 ON SEQEVT "SWON" GOSUB SWON@

180 !

190 LOOP@

200 WAIT

210 GOTO LOOP@

220 STOP

300 SWON@

310 WDATA1 = INT(SQR(RDATA1))

320 WFLG = 1

330 RETURN

400 OUTEND@

410 WFLG = 0

420 RETURN

500 !

510 END

1st Edition : Oct.29,1999-00

B6-12<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E

(0002)

(0001)

(0003)

00001

(0004)

(0005)

(0006)

(0007)

(0008)

00013

00006

00008

Exercise to find a square root by a BASIC program

R0003X00501MOV

I00100DIFU

SIGNAL

5sT0001TIM

Y00601 0MOV

Y00601R0001MOV1=R0002

1SWON

R0003X00501MOV
X00517

I00100

T0001

0

SIGNAL 1OUTEND 0

FB060114.EPS

Add-on CPU in slot 2
↓

Ladder sequence program

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-13

IM 34M6Q22-01E

● Relationship between Common Variables and Shared Registers

Common variables
in BASIC program

WDATA1

RDATA1

WFLG

RDATA2

Shared registers in
ladder sequence program

R0004

R0001

R0003

R0002

FB060115.EPS

Common variables are related to
shared registers by COM #S
statements in lines 120 and 130 of
the BASIC program.

The actual memory area serves as
shared registers of the ladder
sequence program.

● Program Flow

BASIC program Ladder sequence program

FB060116.EPS

(4) A branch takes place to a subroutine having the
SWON@ label by the declaration of acceptance of
interrupts in line 170.

(5) A square root is found in line 310.

(10) The WFLG flag is cleared.

(6) The WFLG end-of-operation flag is turned on by line
320.

(9) A branch takes place to a subroutine having the
OUTEND@ label by the declaration of acceptance of
interrupts in line 160.

(8) The output relay is turned off 5 seconds later and the
“OUTEND” interrupt is applied to the BASIC program.

(3) The “SWON” interrupt is applied to the BASIC
program at the next scan of the X00517 input relay.

(2) One word’s worth of a value is transferred from the
X00501 input relay to the R0003 shared register.

(1) The X00517 input relay turns on.

(7) When shared register 3 (WFLG) turns on, the value
(square root) of the R0001 shared register is output
from the Y00601 output relay to one word’s worth of a
relay for 5 seconds.

1st Edition : Oct.29,1999-00

B6-14<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E

B6.1.2 Data Exchange Using an ENTER or OUTPUT Statement
From the BASIC program, you can read data from sequence devices in a sequence CPU or
write data to the sequence devices, using an ENTER or OUTPUT statement. To be able to
use these functions, you must use an ASSIGN statement to declare the use of a CPU
module to which you gain read/write access in the first line of your program. By taking
advantage of the function for writing data to sequence devices, you can achieve synchroni-
zation between the BASIC program and the ladder sequence program.

Another method of carrying out data exchange between the BASIC program and the ladder
sequence program is to use common variables and shared registers. For details on this
method, see subsection B6.1.1, “Data Exchange Using Common Variables,” earlier in Part
B, “Description of YM-BASIC/FA.”

ENTER and OUTPUT statements are handled according to the following procedure.

(1) When executing an ENTER (OUTPUT) statement, the BASIC CPU makes a process-
ing request to the sequence CPU.

(2) The sequence CPU accepts the processing request as a CPU service of the periph-
eral processing system and reads from (writes to) sequence devices at the end of a
scan.

(3) The sequence CPU returns a response to the BASIC CPU.

(4) Upon receipt of the response from the sequence CPU, the BASIC CPU goes to the
next statement.

BASIC CPU(CPU1) Sequence CPU (CPU2)

 10 ASSIGN SP35 = 2

...
...

 100 ENTER 2,"D0001";J

 110 J = J * 2

BASIC program Ladder program

Issue of processing
request to the sequence
CPU

Read/write access to
sequence devices at
the end of a scan

Response from the
sequence CPU

FB060117.EPS

Data Exchange based on an ENTER or OUTPUT Statement

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-15

IM 34M6Q22-01E

B6.1.2.1 ENTER Statement
Using an ENTER statement, you can read the data of sequence devices in a ladder se-
quence program from a BASIC program. For details on the sequence devices from which
data can be read, see item B6.1.2.3 later in Part B, “Description of YM-BASIC/FA.”

An ENTER statement is in the following format.

ENTER [Slot number, device name’s character-string expression [[NOFORMAT]; input
variable

Slot number: Integer-type expression

Device name’s character-string expression:

Character-string expression

This expression represents the device address of a sequence device.

Input variable: Simple numeric variable or array numeric variable

This variable is of integer, long-integer or character-string type, to which
data of a sequence device is input.

CAUTION

Note the following when reading data from sequence devices using an ENTER statement.

• I/O relays (X and Y relays) from which values can be read using an ENTER statement
are only those relays* whose use has been declared in the specified sequence CPU
module. If the use of selected I/O relays has not yet been declared in the specified
sequence CPU module, values that are read become uncertain.

• If reading/writing data using a 16-bit address (XmmmnnW), specify nn as 01, 17, 33 or
49 (the first of devices names given at intervals of 16 bits). If reading/writing data
using a 32-bit address (YmmmnnL), specify nn as 01 or 33 (the first of devices names
given at intervals of 32 bits).

• When reading data using an ENTER statement, the simultaneity of the data is guaran-
teed in units of:

• statements, if data of any single sequence device is read;

• statements also, if data of more than one sequence device is read; and

• 32 devices,

if data of sequence devices that are consecutive from a specified device is read
collectively. If data needs to be exchanged in units of any larger amounts, specify
accordingly in your application program.

* Denote the I/O relays set to the BIN or BCD option in the DI/O Setting box of the Configuration menu of the Ladder
Diagram Support Program M3.

1st Edition : Oct.29,1999-00

B6-16<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E

The following examples are given to explain how to specify a device name’s character-
string expression and input variable in an ENTER statement.

■ Reading Data of Any Single Sequence Device
(1) ENTER [1, “I0001” ; I

This statement reads the ON/OFF status of the I0001 sequence device (internal relay)
of the CPU installed in slot 1 into the variable I.

(2) ENTER [2, “Z001” ; D1

This statement reads the value of the Z001 sequence device (special register storing
the latest scan time) of the CPU installed in slot 2 into the variable D1.

■ Reading Data of More than One Sequence Device
(1) ENTER [1, “I0001 [TP001 [D0001” ; I, J, K

This statement reads:

• the ON/OFF status of the I0001 sequence device (internal relay) into the variable I,

• the value of TP001 (timer’s current value) into the variable J, and

• the value of D0001 (data register) into the variable K,

among the sequence devices of the CPU installed in slot 1.

When specifying more than one sequence device at the same time, separate them
with a space character ([) or comma (,). Specify each sequence device using its
device address; you cannot use its signal name.

When reading more than one sequence device, you can also specify them as an array, as
shown below. For variables in any single array, you can specify up to 32 sequence devices.

10 DEFINT AÅ|Z

20 OPTION BASE 1

30 !

40 DIM DEVICE$8(8)

50 DIM I(4)

60 ASSIGN SP21=1

70 DEVICE$(1)=“I0001 [”
80 DEVICE$(2)=“TP001 [”
90 DEVICE$(3)=“D0001 [”
100 DEVICE$(4)=“X00501 [”

:

:

500 ENTER 1,DEVICE$(*);I(*)

:

:

800 END

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-17

IM 34M6Q22-01E

DEVICE$(1) I0001 [I(1) Contents of I0001

DEVICE$(2) TP001 [I(2) Contents of TP001

DEVICE$(3) D0001 [I(3) Contents of D0001

DEVICE$(4) X00501 [I(4) Contents of X00501

FB060118.EPS

■ Collectively Reading Data of Sequence Devices That Are Consecutive
from a Specified Device

(1) ENTER [1, “D0001*512” [NOFORMAT ; I (*)

This statement collectively reads the values of 512 sequence devices that are con-
secutive from D0001 (data register), i.e., from D0001 to D0512 among the sequence
devices of the CPU installed in slot 1, into the array I (*). If I is a one-dimensional
array, the values are read into I (1) to I (512) (when an OPTION BASE 1 statement is
used).

TIP

• Collective read-out must be carried out in units of 16 bits (one word) or 32 bits (two words). To do so,
add *111 (where, 111 is the number of devices to be collectively read) to the device name’s character
string with which values are read in units of 16 or 32 bits using an ENTER ... NOFORMAT statement.
For more details on the unit of read-out values and the device names’ character strings, see item
B6.1.2.3 later in Part B, “Description of YM-BASIC/FA.”

• The number of devices that can be read in collective read-out is as follows.

512 maximum if the unit of read-out is 16 bits

256 maximum if the unit of read-out is 32 bits

1st Edition : Oct.29,1999-00

B6-18<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E

B6.1.2.2 OUTPUT Statement
Using an OUTPUT statement, you can write data to sequence devices in a ladder se-
quence program from a BASIC program. For details on the sequence devices to which
data can be written, see item B6.1.2.3 later in Part B, “Description of YM-BASIC/FA.”

An OUTPUT statement is in the following format.

OUTPUT [Slot number, Device name’s character-string expression [[NOFORMAT];
output variable

Slot number: Integer-type expression

Device name’s character-string expression:

Character-string expression

This expression represents the device address of a sequence device.

Output variable: Simple numeric variable or array numeric variable

This variable is of integer, long-integer or character-string type, with
which data is output to a sequence device.

CAUTION

Note the following when writing data to sequence devices using an OUTPUT statement.

• Do not use an OUTPUT statement to write data to the same sequence device as the
one to which data is output using an OUT command in a ladder sequence program.

• A BASIC program is slower in processing than a ladder sequence program. For this
reason data obtained by reading from a sequence device to which the data has been
written using an OUTPUT statement may not immediately reflect the original data
when the data is read into a ladder sequence program. If necessary, synchronize the
BASIC program with the ladder sequence program using such devices as internal
relays (see item B6.1.2.4 later in Part B, “Description of YM-BASIC/FA.”

• If reading/writing data using a 16-bit address (XmmmnnW), specify nn as 01, 17, 33 or
49 (the first of devices names given at intervals of 16 bits). If reading/writing data
using a 32-bit address (YmmmnnL), specify nn as 01 or 33 (the first of devices names
given at intervals of 32 bits).

• When writing data using an OUTPUT statement, the simultaneity of the data is guar-
anteed in units of:

• statements, if data is written to any single sequence device;

• statements also, if data is written to more than one sequence device; and

• 32 devices,

if data is collectively written to sequence devices that are consecutive from a specified
device. If data needs to be exchanged in units of any larger amounts, specify accordingly in
your application program.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-19

IM 34M6Q22-01E

The following examples are given to explain how to specify a device name’s character-
string expression and output variable in an OUPUT statement.

■ Writing Data to Any Single Sequence Device
(1) OUTPUT [1, “I0001” ; 1

This statement turns on the I0001 sequence device (internal relay) of the CPU in-
stalled in slot 1.

(2) OUTPUT [2, “D0001” ; D1

This statement writes the value of the variable D1 to the D0001 sequence device (data
register) of the CPU installed in slot 2.

■ Writing Data to More than One Sequence Device
OUTPUT [1, “I0001 [TP001 [D0001” ; I, J, K

This statement writes:

• the value of the variable I into I0001 (internal relay),

• the value of the variable J into TP001 (timer’s current value), and

• the value of the variable K into D0001 (data register),

among the sequence devices of the CPU installed in slot 1.

When specifying more than one sequence device at the same time, separate them with a
space character ([) or comma (,). Specify each sequence device using its device ad-
dress; you cannot use its signal name.

When writing to more than one sequence device, you can also specify them as an array, as
shown below. For variables in any single array, you can specify up to 32 sequence devices.

10 DEFINT A–Z

20 OPTION BASE 1

30 !

40 DIM DEVICE$8(4)

50 DIM I(4)

60 ASSIGN SP21=1

70 DEVICE$(1)=“I0001 [”
80 DEVICE$(2)=“TP001 [”
90 DEVICE$(3)=“D0001 [”
100 DEVICE$(4)=“Y00601 [”

:

:

500 OUTPUT 1,DEVICE$(*);I(*)

:

:

800 END

1st Edition : Oct.29,1999-00

B6-20<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

If data having two or more values are given to a sequence device using an OUTPUT
statement, only the value of the data’s least significant bit (LSB) is given; the values of other
bits are discarded.

Example: OUTPUT 1, “I0001”, $FF

$FF=1111111 1

This value is given.

FB060119.EPS

These values are discarded.

■ Collectively Writing Data to Sequence Devices That Are Consecutive
from a Specified Device

(1) OUTPUT [1, “D0001*512” [NOFORMAT ; I (*)

This statement collectively writes the values of the array I (*) into 512 sequence
devices that are consecutive from D0001 (data register), i.e., from D0001 to D0512
among the sequence devices of the CPU installed in slot 1.

TIP

• Collective writing must be carried out in units of 16 bits (one word) or 32 bits (two words). To do so,
add *111 (where, 111 is the number of devices to be collectively written) to the device name’s
character string with which values are written in units of 16 or 32 bits using an ENTER ...
NOFORMAT statement. For more details on the unit of written values and the device names’ charac-
ter strings, see item B6.1.2.3 later in Part B, “Description of YM-BASIC/FA.”

• The number of devices that can be written in collective writing is as follows.

512 maximum if the unit of writing is 16 bits

256 maximum if the unit of writing is 32 bits

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-21

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B6.1.2.3 Selectable Sequence Devices
Table B6.3 lists the sequence devices that can be specified in an ENTER or OUTPUT
statement. Set a device name in the format shown under “Device name’s Character-string
Expression” in Table B6.3 in each device name’s character-string expression (see B6.1.2.1
and B6.1.2.2 in Part B, “Description of YM-BASIC/FA) in an ENTER or OUTPUT statement.
Be careful because some sequence devices have names identical to their device ad-
dresses, while others have names different from their device addresses. A device name’s
character string may also be stated in the following manner.

● Alphabetic characters contained in a device name’s character string may
be either upper-case or lower-case.

Example: In the following list, both sides result in the same designation.

I0001 ÷ i0001

D0001 ÷ d0001

D0001L ÷ d0001l

D0001*512 ÷ d0001*512

TP001 ÷ tp0001

● Non-significant zero(es) in the numeric part of a device name’s character
string are omissible if the part is short of the given number of digits.

Example: In the following list, both sides result in the same designation.

I0001 ÷ I1

D0200 ÷ D200

TP0005 ÷ TP5

D0001*064 ÷ D0001*64

B6-22<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

Table B6.3 Sequence Devices That Can be Specified in an ENTER or OUTPUT Statement (1 of 3)

Sequence
Device

Availability

ENTER OUTPUT

Device Name’s
Character

String

Unit of
Reading/
Writing

Range of
(Numeric)

Data

Remarks

XmmmnnW*lll

XmmmnnL

XmmmnnL*lll

–32768 to
32767

–2147483648
 to
2147483647

mmm = Slot number
nn = Terminal number
lll = Number of collectively
accessed devices
● Xmmmnn, Ymmmnn
One bit from the specified relay
● XmmmnnW, YmmmnnW
One word (16 bits) from the
specified relay
● XmmmnnL, YmmmnnL
Two words (32 bits) from the
specified relay
The range of available relays
depends on how the installed
input module, output module, and
sequence CPU are configured.

16 bits

32 bits

s

s

—

s

s s

s s

s s

s

s

s

s

s

Input relay F3SP21/25/35
X00201 to
X71664

Ennnn

EnnnnW

EnnnnW*lll

EnnnnL

EnnnnL*lll

0:OFF, 1:ON

–32768 to
32767

–2147483648
 to
2147483647

nnnn = Shared relay’s number
lll = Device number up to which
collective access applies
The range of available devices
depends on how the sequence
CPU is configured.

1 bit

16 bits

32 bits

Shared
(extended
shared) relay

F3SP21
E0001 to
E2048

F3SP25/35
E0001 to
E4096

Innnn

InnnnW

InnnnW*lll

InnnnL

InnnnL*lll

0:OFF, 1:ON

–32768 to
32767

–2147483648
to
2147483647

nnnn = Internal relay’s number
lll = Device number up to which
collective access applies
The range of available devices
depends on how the sequence
CPU is configured.

1 bit

16 bits

32 bits

Internal relay F3SP21
I0001 to I4096

F3SP25
I0001 to I8192

F3SP35
I0001 to I16384

LnnnnW*lll

LnnnnL

LnnnnL*lll

–32768 to
32767

–2147483648
to
2147483647

nnnn = Link relay number
lll = Device number up to which
collective access applies
The range of available devices
depends on how the sequence
CPU is configured.

16 bits

32 bits

Link relay F3SP21
L00001 to
L11024
F3SP25/35
L00001 to
L71024

MnnnnW*lll

MnnnnL

MnnnnL*lll

–32768 to
32767

–2147483648
to
2147483647

nnnn = Special relay’s number
lll = Device number up to which
collective access applies
 The relays that can be used in an
OUTPUT statement are only the
special writable relays.

16 bits

32 bits

Special relay F3SP21
M0001 to
M2048
F3SP25/35
M0001 to
M9984

TUnnnn

TSnnnn*lll

TPnnnn

TPnnnn*lll

0:OFF, 1:ON

0 to 32767

nnnn = Timer number
lll = Device number up to which
collective access applies
● TUnnnn
Time-out relay for the specified
timer
● TSnnnn
Setpoint of the specified timer
● TPnnnn
Current value of the specified
timer
The range of available devices
depends on how the sequence
CPU is configured.

1 bit

16 bits

—

Timer
Continuous
timer

F3SP21
T001 to T512

F3SP25
T0001 to T2048

F3SP35
T0001 to T3072

YmmmnnW*lll

YmmmnnL

YmmmnnL*lll

–32768 to
32767

–2147483648
 to
2147483647

16 bits

32 bits

Output relay F3SP21/25/35
Y00201 to
Y71664

Device Name
(Address)

and Range

TB060102.EPS

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-23

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

Table B6.3 Sequence Devices That Can be Specified in an ENTER or OUTPUT Statement (2 of 3)

CUnnnn

CSnnnn*lll

CPnnnn

CPnnnn*lll

0:OFF, 1:ON

0 to 32767

nnnn = Counter number
lll = Device number up to which
collective access applies
● CUnnnn
Count-up relay for the specified
counter
● CSnnnn
Setpoint of the specified counter
● CPnnnn
Current value of the specified
counter
The range of available devices
depends on how the sequence
CPU is configured.

1 bit

16 bits

s —

Counter F3SP21
C001 to C512

F3SP25
C0001 to C2048

F3SP35
C0001 to C3072

nnnn = Data register number
lll = Device number up to which
collective access applies
● Dnnnn
One word (16 bits) from the
specified register
● DnnnnL
Two words (32 bits) from the
specified register
The range of available devices
depends on how the sequence
CPU is configured.

Dnnnn

Dnnnn*lll

DnnnnL

DnnnnL*lll

–32768 to
32767

–2147483648
 to
2147483647

16 bits

32 bits
s s

s

s

Data register F3SP21
D0001 to D5120

F3SP25/35
D0001 to D8192

nnnn = Link register number
lll = Device number up to which
collective access applies
● Wnnnn
One word (16 bits) from the
specified register
● WnnnnL
Two words (32 bits) from the
specified register
The range of available devices
depends on how the sequence
CPU is configured.

Wnnnn*lll

WnnnnL

WnnnnL*lll

–32768 to
32767

–2147483648
 to
2147483647

16 bits

 32 bits

s s

Link register

nnnn = Special register’s number
lll = Device number up to which
collective access applies
● Znnnn
One word (16 bits) from the
specified register
● ZnnnnL
Two words (32 bits) from the
specified register
The devices that can be used in
an OUTPUT statement are only
the writable special registers.

ZnnnnL

ZnnnnL*lll

–2147483648
 to
2147483647

32 bits

s s

Special
register

F3SP21/25/35
Z001 to Z512

nn = Index register number
lll = Device number up to which
collective access applies
● Vnn
One word (16 bits) from the
specified register
● VnnL
Two words (32 bits) from the
specified register

VnnL

VnnL*lll

–2147483648
 to
2147483647

32 bits

s s

Index register F3SP21/25/35
V01 to V32

F3SP21
W00001 to
W11024
F3SP25/35
W00001 to
W71024

TB060103.EPS

Sequence
Device

Availability

ENTER OUTPUT

Device Name’s
Character

String

Unit of
Reading/
Writing

Range of
(Numeric)

Data

Remarks
Device Name

(Address)
and Range

B6-24<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

Table B6.3 Sequence Devices That Can be Specified in an ENTER or OUTPUT Statement (3 of 3)

nnnn = File register number
lll = Device number up to which
collective access applies
● Bnnnnn
One word (16 bits) from the
specified register
● BnnnnnL
Two words (32 bits) from the
specified register

Bnnnnn

Bnnnnn*lll

BnnnnnL

BnnnnnL*lll

–32768 to
32767

–2147483648
 to
2147483647

16 bits

32 bits
s s

File register F3SP25/35
B00001 to
B32768

nnnn = Shared register’s number
lll = Device number up to which
collective access applies
● Rnnnn
One word (16 bits) from the
specified register
● RnnnnL
Two words (32 bits) from the
specified register
The range of available devices
depends on how the sequence
CPU is configured.

Rnnnn

Rnnnn*lll

RnnnnL

RnnnnL*lll

–32768 to
32767

–2147483648
 to
2147483647

16 bits

32 bits
s s

Shared
(extended
shared)
register

F3SP21
R0001 to R1024

F3SP25/35
R0001 to R4096

TB060104.EPS

Sequence
Device

Availability

ENTER OUTPUT

Device Name’s
Character

String

Unit of
Reading/
Writing

Range of
(Numeric)

Data

Remarks
Device Name

(Address)
and Range

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-25

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B6.1.2.4 Example of Data Exchange
This item shows an example of how data is exchanged between a BASIC program and a
ladder sequence program. In the following example, information on input relays acquired
by the ladder sequence program is computed (the square root is evaluated) by the BASIC
program. Then, the result is output externally from output relays by the ladder sequence
program.

● Hardware Configuration

321 4

Output module (F3YD32, for example)

Input module (F3XD32, for example)

Add-on sequence CPU (F3SP21)

Main CPU (F3BP20)

5 6 7

FB060120.EPS

Power
supply
module

● Programs

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

REM Exercise to Find a Square Root

DEFINT A-Z
ASSIGN SP21=2
ON SEQEVT "SWON" GOSUB 190
!
WAIT
GOTO 150
STOP
!
ENTER 2, "D0003W";RDATA1
WDATA1=INT(SQR(RDATA1))
OUTPUT 2, "D0001 W";WDATA1
OUTPUT 2, "I0001";1
RETURN
!
END

Main CPU in slot 1

↓
BASIC program

Add-on sequence CPU in slot 2

↓
Ladder sequence program

FB060121.EPS

(0002)

(0001)

(0003)

00001

(0004)

(0005)

(0006)

(0007)

00006

00011

Exercise to find a square root by a BASIC program

R0003X00501MOV

SIGNAL

5sT0001TIM

Y00601 0MOV

I00001 RST

Y00601D0001MOV

1SWON

D0003X00501MOV
X00517

I00001

T0001

0

B6-26<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B6.1.3 Synchronization between Programs

■ Synchronization Using Sequence Devices
Between CPUs in the same unit, you can gain read/write access to sequence devices from
a BASIC program using an ENTER or OUTPUT statement (see B6.1.2.1 and B6.1.2.2 in
Part B, “Description of YM-BASIC/FA”). By taking advantage of this function, you can
achieve synchronization between the BASIC program and a ladder sequence program.

When synchronizing one program with another, internal relays among the sequence
devices are normally used.

For example, consider a case where data is written to data registers using an OUTPUT
statement and data exchange is carried out between the BASIC program and ladder
sequence program. In that case, internal relays among the sequence devices are used to
notify the timing of data exchange with each other. The following examples show how the
internal relays are used.

Example 1:

D0101

10 DEFINT A-Z
20 !
30 A=2
40 OUTPUT 2, "D1";A
50 OUTPUT 2, "I1";1

.

.

.

BASIC program

Writing to relays

D0001MOVE

.

.

.

ladder sequence program

Y00601I0001

FB060122.EPS

In line 40 of the BASIC program, data is written to the data register D1 (D0001) by an
OUTPUT statement. Then, the internal relay I1 (I0001) is set to 1 (ON) by an OUTPUT
statement. From the fact that the internal relay I0001 has turned on, the ladder sequence
program learns that data has been passed to the data register D0001. Thus it runs the
processes that follow.

Example 2:

10 DEFINT A-Z
20 !
30 ENTER 2, "I1";IC
40 IF IC=1 THEN

.

.

.

BASIC program

Reading to relays

.

.

.

.

ladder sequence program

I0001

FB060123.EPS

In line 30, the data of the internal relay I0001 is read from the add-on sequence CPU
installed in slot 2 into the variable IC. In line 40 and subsequent lines, the program runs
processes according to the content of the variable IC.

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-27

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

■ Synchronization Using Interrupts from a Ladder Sequence Program
In the FA-M3 multi-controller, information on the occurrence of an event can be sent from a
ladder sequence program to a BASIC program to carry out interrupt handling. This enables
synchronization to be achieved between the ladder sequence program and BASIC pro-
gram. To be able to receive a message of the occurrence of an event from the ladder
sequence program, acceptance of interrupts must be declared in the BASIC program in
advance using an ON SEQEVT statement. An ON SEQEVT statement is in the following
format. For more details on the format, see “ON SEQEVT Statement” in Part C, “Syntax of
YM-BASIC/FA,” later in this manual.

ON SEQEVT Signal name [, Variable name][[

GOTO

GOSUB

Line number
Label

[

[

[

CALL Subprogram name
FB060124.EPS

With the previous execution of the above-mentioned statement, the BASIC program is
notified of an interrupt after the ladder sequence program has executed an instruction of
interrupt. Consequently, a branch takes place to a process appropriate to the specified
signal name. Note that the BASIC program can also receive integer-type values as data.

ON SEQEVT "SW01ON", DATA GOSUB A@

BASIC program

Occurrence of interrupt
from ladder sequence program A@

RETURN

…
… Interrupt-handling

program

FB060125.EPS

To interrupt the BASIC program from the ladder sequence program, use a SIGNAL com-
mand. For more details on the command, see the Sequence CPU -Commands instruction
manual (IM 34M6P12-03E).

B6-28<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E

B6.1.4 Precautions with Data Exchange

■ Measures When Data of Shared Registers Cannot Be Read Correctly
If the data of shared registers cannot be read correctly or is read with their values shifted,
check the following.

• Configuration of shared registers and relays

Information on the allocation of shared registers and relays is managed separately by
each individual CPU. For this reason every two CPUs that exchange data with each
other must share the same information on the allocation of shared registers and
relays. If the information differs between the two CPUs, data exchange may not be
carried out correctly. The shared relays should also be configured in compliance with
that of other CPUs.

• Declaration of common variables

When carrying out data exchange using common variables and shared registers, the
common variables must be declared in advance using a COM #S statement. The
common variables are allocated to the shared registers of a specified sequence CPU,
in the order in which they are stated in the BASIC program.

• Data types of common variables

Variables that can be declared by a COM #S statement are integer and long-integer
variables only. Using a variable of other types will result in an incorrect value.

• Starting number of suffix of array variables

Unless otherwise specified by an OPTION BASE statement, the suffixes of array
variables begin with 0.

■ Refreshing of Shared Registers
Shared devices in a sequence CPU are refreshed in asynchrony with scanning. For this
reason the simultaneity of data is not guaranteed. If necessary, refresh the shared devices
in your application program.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-29

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

■ Simultaneity of Data

● Data Exchange Using Common Variables and Shared Registers

Shared devices in a sequence CPU are refreshed in asynchrony with scanning in units of
one shared register (16 bits). For this reason the simultaneity of data exceeding the size of
one shared register (16 bits) is not guaranteed. Be especially careful when using a long-
integer variable (32 bits) or specifying the data using a whole array. If necessary, declare
common variables in your application program.

● Data Exchange Using an ENTER or OUTPUT Statement

When exchanging data using an ENTER or OUTPUT statement, the simultaneity of the
data is guaranteed in units of:

• statements, if data is passed to any single sequence device;

• statements also, if data is passed to more than one sequence device; and

• 32 devices,

if data is collectively passed to sequence devices that are consecutive from a specified
device. If data needs to be exchanged in units of larger amounts, specify accordingly in
your application program.

■ Passing Data of Single-precision Real Number Type
The floating-point data of single-precision real number type differs between the IEEE
representation of floating-point data used by a sequence CPU and the representation of
floating-point data internal to the YM-BASIC/FA. When exchanging data of single-precision
real number type, convert the IEEE representation to the YM-BASIC/FA internal represen-
tation or vice versa using an IFPCNV standard library.

The following program reads two of floating-point data items from a sequence CPU.

10 DEFINT I

20 DEFLNG S,B

30 OPTION BASE 1

40 COM #S1 SP(2)

50 COM BP(2)

60 RECOM

70 COM FPIN(2),FPOUT(2)

80 !

90 MOVE SP(*),BP(*)

100 ICMD =1

110 FORM$ = "2F4"

120 IFPCNV(ICMD,FPIN(*),FORM$,FPOUT(*),IERR)

130 IF IERR <> 0 THEN STOP

140 DP FPOUT(1),FPOUT(2)

150 !

160 END

B6-30<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E

B6.2 Starting/Stopping a Ladder Sequence Program
A ladder sequence program can be started or stopped from a BASIC program in two ways,
as explained below. To be able to use these functions, you must use an ASSIGN statement
to declare the use of a CPU module where the ladder sequence program is started or
stopped.

■ Starting/Stopping a Ladder Sequence Program
If a ladder sequence program is already loaded to the sequence CPU module, you can use
a CONTROL statement to start the whole program. You can also stop the whole program
by using a CONTROL statement.

■ Starting/Stopping a Ladder Sequence Program Block
If a ladder sequence program is already loaded to the sequence CPU module and the
program is active, you can use a SEQACTV statement to start the program on a block-by-
block basis. You can also stop the program on a block-by-block basis by using a CONTROL
statement.

This section explains the two types of statements discussed above.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-31

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B6.2.1 Starting/Stopping a Ladder Sequence Program
When starting or stopping a ladder sequence program in a sequence CPU module speci-
fied from a BASIC program with an ASSIGN statement, use a CONTROL statement. The
ladder sequence program to be started must have been loaded to the sequence CPU
before this statement is executed.

The CONTROL statement has the following format. For more details on this statement, see
“CONTROL Statement” in Part C, “Syntax of YM-BASIC/FA,” later in this manual.

CONTROL [Slot number, 1 ; Start/Stop setting

Select from the following values to specify “Start” or “Stop.”

1 = Stop

2 = Start

Slot number: Slot where the CPU module whose use is declared in advance using an
ASSIGN statement is installed

B6.2.2 Starting/Stopping a Ladder Sequence Program Block
When starting or stopping a ladder sequence program in a sequence CPU module on a
block-by-block basis from a BASIC program, use a SEQACTV statement.

The SEQACTV statement has the following format. For more details on this statement, see
“SEQACTV Statement” in Part C, “Syntax of YM-BASIC/FA,” later in this manual.

SEQACTV [Slot number, Block number ; Start/Stop setting

Specify either the Start or Stop setting by selecting a character from the following two
options.

E = Stop

S = Start

Slot number: Slot where the CPU module whose use is declared in advance using an
ASSIGN statement is installed

Block number: Integer-type expression

A program block refers to each individual ladder sequence program that is made using the
Ladder Diagram Support Program M3 before the program’s executable file is created.

B6-32<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E

B6.3 Reading the Operating Status of a Ladder
Sequence Program
If you want to know whether a ladder sequence program is running or at a stop or whether
there are any errors, read the operating status of the program using a STATUS statement.
Before any STATUS statement can be used, you must declare the use of the sequence
CPU in question using an ASSIGN statement. The sequence CPU for which a ladder
sequence program is checked is the CPU whose use has been declared by an ASSIGN
statement.

A STATUS statement has the following format. For more details on the STATUS statement,
see “STATUS Statement” in Part C, “Syntax of YM-BASIC/FA,” later in this manual.

STATUS [Slot number, 1 ; Variable

Variable: Either of the following values is returned to the variable as the RUN or STOP
status.

1: Stop

2: Run

Slot number: Slot where the sequence CPU module whose use has been declared by an
ASSIGN statement is installed

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program> B6-33

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B6.4 Error Codes
82-xx error codes that may appear during data exchange with a ladder sequence program
have the meanings summarized in the following table.

Error Code
(Hexadecimal)

Meaning Cause Corrective Actions

$9D

$E1

$E2

$E6

$F1

$F2

No sequence CPU module
installed yet

Device not ready

Device busy

Time-out error

Error in statement
execution check

Error in statement
execution result

No sequence CPU module is
recognized.

The sequence CPU module in
question is defective.

The sequence CPU module
cannot accept statements from
the BASIC program.

The accepted statement cannot
be coped with within the given
length of time (2 seconds).

The sequence CPU module is not
ready to execute statements.

The sequence CPU module is not
in the specified state even if a
statement is executed.

(1) Reset the CPU module.
(2) Turn on and off the power.

(1) Check the way the module is
mounted on the base unit.

(2) Check the ALM and ERR lamps.
Reset the CPU module.
Replace the CPU module.

(1) Reset the sequence CPU module.
(2) Turn on and off the power.

(1) Check the ALM and ERR lamps.
(2) Reset the CPU module. Turn on

and off the power.

(1) If the ladder sequence program is
not yet downloaded, download it.

(2) Place the sequence CPU in the
RUN mode.

(3) Reset the sequence CPU module.
Turn on and off the power.

(1) Check the ALM and ERR lamps.
(2) Reset the CPU module. Turn on

and off the power.
TB060401.EPS

B6-34<Toc> <Ind> <B6. Data Exchange with a Ladder Sequence Program>

IM 34M6Q22-01E

CAUTION

About Time-out Error

If the size a ladder sequence program in a sequence CPU module is relatively large, a
time-out error may occur when:

• the power is turned on;

• online editing with the sequence CPU module is completed; or

• the ladder sequence program is downloaded.

Consequently, the BASIC program may come to a stop if access is made from the BASIC
program to the sequence CPU.

A time-out error may be encountered during the handling of an ON ERROR statement
when access is made from the BASIC program to the sequence CPU module. In that case,
add a process that retries the statement in question. This strategy can prevent the BASIC
program from coming to a stop. (One method for avoiding any time-out error during a
power-on sequence is to use a WAIT statement in a BASIC program to have the program
wait for a specific time length.)

The following program is an example of how a time-out error is avoided when the power is
turned on.

10 DEFINT A-Z

20 SLOT=1

30 ASSIGN SP21=SLOT

40 ON ERROR GOTO SEQWAIT@

50 ENTER SLOT,"M131";I

60 !

70 GOTO SEQST@

80 SEQWAIT@

90 IF ERRC=82 AND ERRCE=$E6 THEN GOTO 50

100 OFF ERROR

110 GOTO 50

120 !

130 SEQST@

140 OFF ERROR

150 !The original starting point of the program

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B7. Methods of Access to I/O Modules
Input-output access to I/O modules installed in the FA-M3 versatile-range multi-controller
can be made using a ladder sequence program or a BASIC program.

Be careful since you can gain only one-way access to some I/O modules, though this
depends on the module type. The following table lists examples of such I/O modules. For
details on modules that are not listed here or modules other than contact I/O modules, refer
to the instruction manual of the respective modules.

Module Name
FA-M3 Multi-controller

BASIC Program*1 Ladder Sequence Program*2

Contact input module

Contact output module

Contact I/O module

Analog input module

Analog output module

Personal computer link module

RS-232-C communication module

RS-422 communication module

FA link module

High-speed counter module

Positioning module

Yes

Yes

Yes

Yes

Yes

—

Yes

Yes

— *4

Yes

Yes

Yes

Yes

Yes

Yes

Yes

— *3

—

—

Yes

Yes

Yes
TB070001.EPS

*1 “Yes” in this column indicates that the module can be accessed from a BASIC program.
*2 “Yes” in this column indicates that the module can be accessed from a ladder sequence program.
*3 Indicates that the module can access to a ladder sequence program.
*4 Access from a BASIC program can only be made to link relays and link registers among the ladder sequence devices.

With a BASIC program alone, you cannot have direct access to any FA link module.

This chapter explains how access can be made from a BASIC program to I/O modules.

B7-2<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E

B7.1 Means of Access to I/O Modules
You can have input-output access to I/O modules using the following statements.

Statement Action

ENTER Input

OUTPUT Output
TB070101.EPS

The following additional statements are available for some modules in order to make a
declaration of use or set parameters.

(1) ASSIGN

Use of I/O modules must first be declared with this statement and then their slots must
be defined.

(2) RESET

With this statement, the setup parameters of an I/O module are initialized.

(3) CONTROL

With this statement, parameters for such purposes as interrupt settings and behaviors
specific to the module in question are configured.

(4) ON INT and ENABLE INTR

When interrupt functions are used, acceptance of interrupts must be declared with an
ON INT statement.

For communication modules, an ENABLE INTR statement is also used to control
interrupts.

(5) ENTER and OUTPUT, and TRANSFER INTO and TRANSFER FROM

With ENTER and OUTPUT statements, data is input to or output from an I/O module.
For communications modules, TRANSFER INTO and TRANSFER FROM statements
are also used to enable input/output access.

(6) STATUS

With this statement, the status of an I/O module or parameters configured by a CON-
TROL statement are referenced.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-3

IM 34M6Q22-01E

B7.2 Slot Number and Terminal Number

■ Slot Number
When access is made to each I/O module, its slot number and device number (comprising
the port number, channel number, terminal number)* identify each interface.

* Each I/O module can deal with more than one signal. To discriminate between these multiple signals, the port, channel
and terminal numbers are used depending on the type of module, as shown below.
• Contact I/O modules: Terminal number
• Analog I/O modules: Channel number
• Serial communication modules: Port number

All these numbers are collectively referred to as a device number.

A slot number is a 3-digit integer and allocated as shown below.

001001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016Slot number→

0
(Main unit)

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

1
(Subunit 1)

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

Up to 7 subunits

7
(Subunit 7)

Slot numbers of FA-M3
FB070201.EPS

In the case of a BASIC program, any non-significant zeroes preceding the actual slot
number may be omitted.

1st Edition : Oct.29,1999-00

B7-4<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E

■ Terminal Number
A terminal number is given to each terminal of an I/O module, as shown below. For more
details on the terminal number, see the “FA-M3 Hardware Manual” (IM 34M6C11-01E).

Example: Terminal numbers of F3XD16-3N module

1
2
3
4
5
6
7
8

1

3

5

7

2

4

6

8

 9
10
11
12
13
14
15
16

11

13

15

17

12

14

16

18

9
10

+

–

–

+

+

–

–

+

Terminal numbers

FB070202.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-5

IM 34M6Q22-01E

B7.3 Declaring Use of I/O Modules
When using I/O modules in a BASIC program, you must first execute an ASSIGN state-
ment to state which module is installed in which slot. The ASSIGN statement has the
following format.

ASSIGN [Module ID1=n, Module ID2=n,

Module ID: Character string representative of the type of module

n: Slot number

Example: ASSIGN XD32=104, YD32-105

101102103104105106107

F3XD32

F3YD32
FB070301.EPS

The module ID and sequence ID are character strings that represent the type of module
and are used as part of the model number of each module. The following table lists some
examples of module and sequence IDs. A sequence ID denotes a CPU module where a
ladder sequence program can run, while a module ID identifies an I/O module.

F3SP21-0N

F3SP25-2N

F3SP35-5N

F3XD16-3N

F3YD32-1A

F3AD04-0N

F3XP02-0H

F3RS22-0N

Module’s Model Number

FA-M3 Multi-controller

SP21

SP25

SP35

XD16

YD32

AD04

XP02

RS22

Module ID or Sequence ID

TB070301.EPS

1st Edition : Oct.29,1999-00

B7-6<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E

For each module, the first four characters of a model number shown on the module identi-
fies the module ID or sequence ID.

Example: F3XD16-3N module

Module’s front view

Indication of model number → XD16-3N DC IN

FB070302.EPS

CAUTION

In the case of multiple-CPU system configuration, any single output module (and any
advanced module having Yuuuuu output relays) cannot be shared by two or more
CPUs. When using such an output module or advanced module with a BASIC program, set
the Used/Unused option to Unused in the Configuration menu of the unused sequence
CPU module.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-7

IM 34M6Q22-01E

B7.4 Access to Contact I/O Modules
This section details how to gain contact-I/O access in a BASIC program. For details on
access to analog I/O modules or special modules such as communication modules, refer to
the instruction manual of the respective modules.

B7.4.1 Contact Input Modules
A contact input module is used to input the ON/OFF status of contacts. Use an ENTER
statement to input the contact status. Input 1 for the ON status of an input terminal and 0
for the OFF status of an input terminal. The status of each input terminal can be input by 1)
selecting terminal numbers on a terminal-by-terminal basis, 2) making a batch selection of
terminal numbers, or 3) making a batch selection of terminals using a 16-bit integer or a 32-
bit long integer, as described below.

Selection of
terminal number

Unspecified format

NOFORMAT

BFORMAT

Input the statuses, terminal by terminal.

Input the statuses in 16-terminal increments
using a 16-bit integer.

Input the statuses in 32-terminal increments
using a 32-bit long integer.

Batch selection
of terminals as
an array

Unspecified format

NOFORMAT

BFORMAT

Input the statuses, terminal by terminal,
in a collective manner.

Input the statuses collectively in
16-terminal increments using a 16-bit integer.

Input the statuses collectively in
32-terminal increments using a 32-bit long
integer.

FB070401.EPS

1st Edition : Oct.29,1999-00

B7-8<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E

(a) Selection of Terminal Number
This method is suited for reading the status of a specified terminal. This method uses the
following formats.

● Terminal-by-terminal Input

The following statement reads the status of the specified terminal only.

ENTER [m, n;P

m: Slot number in numeric expression

n: Terminal number in numeric expression

P: Input variable (numeric)

Example: ENTER 305, 2;P

This statement inputs the status of terminal 2 of a module in slot 305 into the variable P.

● 16-terminal Collective Input

The following statement collectively inputs the statuses of 16 terminals, which are consecu-
tive from the specified terminal, into the input variable.

ENTER [m, n [NOFORMAT;I

m: Slot number in numeric expression

n: Terminal number in numeric expression, where n = 1, 17, 33 or 49

I: Input variable (integer)

Example: ENTER 305, NOFORMAT;I

This statement inputs the statuses of terminals from 17 to 32 of a module in slot 305
into the numeric integer variable I.

CAUTION

Use an integer variable for I; do not use a long-integer variable. The functionality of an
ENTER statement is not guaranteed if you use a long-integer variable.

The relationship between the variable that stores input data and the terminals is as follows.
Lower terminal numbers correspond to the lower-order bits of the variable. The status of
each terminal is represented as either “bit-ON” (1) for the ON state or “bit-OFF” (0) for the
OFF state.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

MSB (Terminal numbers) LSB

If n = 1:

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17If n = 17:

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33If n = 33:

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49If n = 49:

FB070402.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-9

IM 34M6Q22-01E

If you attempt to read the statuses of terminals from a contact input module having less
than 16 terminals, the values of bits whose terminal numbers are higher than the module’s
maximum terminal number become uncertain (either 0 or 1).

Example: F3XA08-uN module

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

MSB (Terminal numbers) LSB
(Input data)

Uncertain (either 0 or 1) Values appropriate for the terminals
of an 8-input module

FB070403.EPS

1st Edition : Oct.29,1999-00

B7-10<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E

● 32-terminal Collective Input

The following statement collectively inputs the statuses of 32 terminals, which are consecu-
tive from the specified terminal, into the input variable.

ENTER [m, n [BFORMAT;L

m: Slot number in numeric expression

n: Terminal number in numeric expression, where n = 1 or 33

L: Input variable (long-integer)

Example: ENTER 305, 33 BFORMAT;L

This statement inputs the statuses of terminals from 33 to 64 of a module in slot 305
into the long-integer variable L.

CAUTION

Use a long-integer variable for L; do not use an integer variable. The functionality of an
ENTER statement is not guaranteed if you use an integer variable.

The relationship between the variable that stores input data and the terminals is as follows.
Lower terminal numbers correspond to the lower-order bits of the variable. The status of
each terminal is represented as either “bit-ON” (1) for the ON state or “bit-OFF” (0) for the
OFF state.

32

MSB (Terminal numbers) LSB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

If n = 1:

If n = 33:

FB070404.EPS

If you select BFORMAT for the format field for a 16-input module, values are input as right-
justified, beginning with the LSB.

32

MSB (Terminal numbers) LSB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Uncertain (either 0 or 1) Values appropriate for the terminals
of a 16-input module

If n = 1:

FB070405.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-11

IM 34M6Q22-01E

(b) Batch Selection as an Array
This method is suited for reading the statuses of all input terminals. No terminal number
should be specified. The method includes collective input on a terminal-by-terminal basis
and collective input in 16-terminal increments using a 16-bit integer or in 32-terminal
increments using a 32-bit integer. This method uses the following formats.

● Terminal-by-terminal Collective Input

The method inputs the statuses of all terminals as a value of either 0 or 1 and has the
following format.

ENTER [m;P(*)

m: Slot number in numeric expression

P (*): Input variable list for collectively specifying numeric array variables

This list requires as many elements as the number of terminals whose statuses
are collectively input. If the number of elements in the array is smaller than the
number of terminals of a specified module, this statement inputs as many sta-
tuses as the number of elements, beginning with the lowest terminal number.

Example: ENTER 204;P(*)

This statement inputs the statuses of all input terminals of a module in slot 204 into the
numeric array variable P (*) (for an OPTION BASE 1 statement).

Terminal 1

Terminal 2

Terminal n

0

1

1

P (1)

P (2)

P (n)

0(Bit) 15

P (*)

Status of input: ON = 1
OFF = 0

FB070406.EPS

1st Edition : Oct.29,1999-00

B7-12<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E

● Collective Input in 16-terminal Increments Using a 16-bit Integer

This method inputs the statuses of all input terminals in 16-terminal increments into the
input variable. Use either of the following formats.

ENTER [m [NOFORMAT;I1[, I2, I3, I4]

ENTER [m [NOFORMAT;I(*)

m: Slot number in numeric expression

In: Input variable list for integer-type, simple variables

I (*): Input variable list for collectively specifying integer-type, array variables

CAUTION

Use integer-type simple variables and integer-type array variables for In and I (*), respec-
tively; do not use long-integer type simple variables and long-integer type array variables.
The functionality of an ENTER statement is not guaranteed if you use long-integer type
simple variables or long-integer type array variables.

The relationship between the variables that store input data and the terminals is as follows.
Lower terminal numbers correspond to the lower-order bits of each variable. The status of
each terminal is represented as either “bit-ON” (1) for the ON state or “bit-OFF” (0) for the
OFF state.

• Example of Integer-type Simple Variables

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

MSB (Terminal numbers) LSB

I1

(Input data)

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17I2

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33I3

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49I4

FB070407.EPS

I2 is only valid for a 32- or 64-input module, while I3 and I4 are only valid for a 64-input module.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-13

IM 34M6Q22-01E

• Example of Integer-type Array Variables (for an OPTION BASE 1 Statement)

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

MSB (Terminal numbers) LSB

I (1)

(Input data)

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17I (2)

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33I (3)

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49I (4)

FB070408.EPS

I (2) is only valid for a 32- or 64-input module, while I (3) and I (4) are only valid for a 64-input module.

If you attempt to read the statuses of terminals from a contact input module having less
than 16 terminals, the values of bits whose terminal numbers are higher than the module’s
maximum terminal number become uncertain (either 0 or 1).

Example: F3XA08-uN module

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

MSB (Terminal numbers) LSB
(Input data)

Uncertain (either 0 or 1) Values appropriate for
the terminals of an 8-input module

FB070409.EPS

1st Edition : Oct.29,1999-00

B7-14<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E

● Collective Input in 32-terminal Increments Using a 32-bit Long Integer

This method inputs the statuses of all input terminals in 32-terminal increments into the
input variable. Use either of the following formats.

ENTER [m [BFORMAT;L1[, L2]

ENTER [m [BFORMAT;L(*)

m: Slot number in numeric expression

Ln: Input variable list for long-integer type, simple variables

L (*):Input variable list for collectively specifying long-integer type, array variables

CAUTION

Use long-integer type simple variables and long-integer type array variables for Ln and L
(*), respectively; do not use integer-type simple variables and integer-type array variables.
The functionality of an ENTER statement is not guaranteed if you use integer-type simple
variables or integer-type array variables.

The relationship between the variables that store input data and the terminals is as follows.
Lower terminal numbers correspond to the lower-order bits of each variable. The status of
each terminal is represented as either “bit-ON” (1) for the ON state or “bit-OFF” (0) for the
OFF state.

• Example of Long-integer Type Simple Variables

32

MSB (Terminal numbers) LSB

(Input data)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

L1

L2

L2 is only valid for a 64-input module.
FB070410.EPS

• Example of Long-integer Type Array Variables (for an OPTION BASE 1 Statement)

32

MSB (Terminal numbers) LSB

(Input data)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

L(1)

L(2)

L (2) is only valid for a 64-input module.
FB070411.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-15

IM 34M6Q22-01E

If you select BFORMAT for the format field for a 16-input module, values are input as right-
justified, beginning with the LSB. This is true for both long-integer simple variables and
long-integer array variables.

32

(Terminal numbers)

(Input data)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Uncertain (either 0 or 1) Values appropriate for the terminals of a 16-input module
FB070412.EPS

MSB LSB

Example: ENTER 204 NOFORMAT;I1, I2, I3, I4
This statement inputs the statuses of all input terminals of a 64-input module in slot 204 into
the integer-type numeric variables I1, I2, I3 and I4.

16 1I1
32 17I2
48 33I3
64 49I4

Terminal numbers

(Bit)15 0

FB070413.EPS

ENTER 205 BFORMAT;L1, L2

This statement inputs the statuses of all input terminals of a 64-input module in slot 205 into
the long-integer type numeric variables L1, and L2.

32 1L1

64 33L2

Terminal numbers

(Bit)31 0

FB070414.EPS

1st Edition : Oct.29,1999-00

B7-16<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E

B7.4.2 Interrupt from a Contact Input Module
For interrupts to a BASIC program, you can use any type of contact input module, except
for a 64-point contact input module. An F3XH04-3N high-speed input module for the FA-
M3 multi-controller can also be used to interrupt a BASIC program if the module is set to
the Interrupt Function option. This subsection explains two cases of interrupt input, i.e.,
interrupt input from a standard contact input module and interrupt input from an F3XH04-
3N high-speed input module.

B7.4.2.1 Interrupt from a Contact Input Module
You can cope with irregular events in a real-time manner by accepting interrupt input.
However, a 64-point contact input module has no interrupt function. To be able to accept
interrupts, you must set interrupt conditions using a CONTROL statement and declare
acceptance of interrupts using an ON INT statement. Furthermore, use a STATUS state-
ment if you want to read the status of interrupt or the data of the interrupt conditions.

(a) Setting Interrupt Conditions
Specify the edge type and define the sampling interval for interrupts using a CONTROL
statement. Set these conditions for the terminals of each contact input module collectively
in 8-terminal increments. You cannot set the conditions on a terminal-by-terminal basis.
The ON/OFF state of each of these terminals is sampled at a fixed interval and retained in
input sampling registers as a value of 1 for the ON state and 0 for the OFF state.

Specifying the edge type means you determine whether an interrupt should occur when the
state of a terminal retained in a given input sampling register changes from 0 to 1 (rising
edge) or from 1 to 0 (falling edge). The sampling interval can be selected from the low
speed (16 ms) and high speed (1 ms). The CONTROL statement has the following format.

CONTROL [m, 1;I

m: Slot number in a numeric expression

I: Data value set as an integer or integer-type variable

Define the data of control registers in 8-terminal increments, as shown below. Upon system
startup, all of the control registers are set to 0.

Register 1 Register 2 Register 3 Register 4

15 12 8 4 0

Selection of edge type (0: Rising edge; 1: Falling edge)
Sampling interval (0: Low speed; 1: High speed)

(Bit)

MSB LSB

Denotes an unused bit (always 0).

Register 4: Terminals 25 to 32
Register 3: Terminals 17 to 24
Register 2: Terminals 9 to 16
Register 1: Terminals 1 to 8

FB070415.EPS

Note that the functionality of the CONTROL statement is not guaranteed if you set data
such that the unused bits (2, 3, 6, 7, 10, 11, 14 and 15) of control registers are set to the ON
state (1).

Example: CONTROL 1, 1;$3333

This statement sets the interrupt conditions of all terminals to the High Speed option
for the sampling interval and to the Falling Edge option for the edge type.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-17

IM 34M6Q22-01E

(b) Interrupt Declaration/Cancellation

● Interrupt Declaration

Using an ON INT statement, declare that a change (specified in a CONTROL statement) in
the state of input to terminal n is accepted as an interrupt. In this statement, you can also
specify the destination of a branch in your program so that the program flow is changed by
the occurrence of an interrupt. The ON INT statement has the following format.

ON INT m, n

GOTO

GOSUB

Label

Line number

Subprogram nameCALL]
]

]]]

FB070416.EPS

m: Slot number in a numeric expression

n: Terminal number in a numeric expression

Example: ON INT 205, 3 GOSUB 100

This statement causes a branch to a subroutine from line number 100 to handle an
interrupt that is input to terminal 3 of a module in slot 205.

In the case of contact input modules, once a declaration has been made, interrupts are
accepted until an interrupt declaration is cancelled.

● Interrupt Cancellation

Use an OFF INIT or RESET statement to cancel the interrupt declaration. The OFF INIT
statement has the following format.

OFF [INT [m, n

m: Slot number in a numeric expression

n: Terminal number in a numeric expression

For details on the RESET statement, see item (d).

1st Edition : Oct.29,1999-00

B7-18<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E

(c) Reading the Interrupt Status and Interrupt-conditions Data
Using a STATUS statement, you can read the interrupt status and interrupt-conditions data.
The interrupt status is indicated by the value of an interrupt-handling auxiliary flag register.
The auxiliary flag register changes from 0 to 1 as its corresponding input sampling register
makes a specified state transition, either from 0 to 1 (rising edge) or from 1 to 0 (falling
edge). This auxiliary flag register changes to 0 if read once and retains 0 until the value of
the input sampling register changes the next time.

In contrast, the interrupt-conditions data is indicated by the value of a control register. The
STATUS statement has the following format.

STATUS [m, n;In

m: Slot number in a numeric expression

n: Register number in a numeric expression

where

n = 1, if a control register is read; or

n = 101 for terminals 1 to 16

n = 102 for terminals 17 to 32

n = 103 for terminals 33 to 48, or

n = 104 for terminals 49 to 64, if the interrupt status is read.

In: Integer-type variable

The data of control registers (see item (a)) are input to the variable I
1
.

Example: STATUS 304, 1;I
1

This statement reads the interrupt-conditions data of all of the terminals of a module in
slot 304 into the variable I1.

DP HEX$ (I1) to 2222

The interrupt status, on the other hand, is read by inputting the values of auxiliary flag
registers as integers to the variables I1 to I4, in 16-terminal increments. After having been
read by a STATUS statement, the auxiliary flag registers are reset to 0. These behaviors
can be represented by a flowchart, as shown in Figure B7.1.

CAUTION

Any terminal for which acceptance of interrupts has been declared by an ON INT statement
causes its auxiliary flag register to reset to 0 immediately after the occurrence of an inter-
rupt. The register therefore always reads 0 whenever it is read using a STATUS statement.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-19

IM 34M6Q22-01E

Example: STATUS 304, I01;I
1

This statement reads the statuses of terminals 1 to 16 of a module in slot 304 into the
integer-type variable I1.

(Bit) 15
MSB

0
l1

(Data format)

LSB

Auxiliary flag register

Auxiliary flag register

Auxiliary flag register

Terminal 1

Terminal 2

Terminal 16

Status of input terminal

OFF ON

Auxiliary flag register

OFF ON

Execution of BASIC program

STATUS “1”

STATUS “0”

STATUS “1”

STATUS “0”

Data to be read

FB070417.EPS

Figure B7.1 Flowchart Showing How Status Is Input to the Variable

1st Edition : Oct.29,1999-00

B7-20<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E

(d) Initializing the Interrupt-conditions Data and Cancelling the Interrupt
Declaration

Use a RESET statement to initialize all interrupt-conditions data (into a value of 0) defined
by a CONTROL statement. Furthermore, use an ON INT statement to cancel all interrupt
declarations that have been made. The RESET statement has the following format.

RESET [m

m: Slot number in a numeric expression

Example: RESET 407

This statement cancels the interrupt declaration made for the module in slot 407 and
initializes all the interrupt-conditions data values to 0.

TIP

To cancel an interrupt declaration on a terminal-by-terminal basis, use an OFF INT statement. Note
however, that only interrupt declarations can be cancelled by an OFF INT statement. The statement
cannot initialize interrupt-condition data defined by a CONTROL statement.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-21

IM 34M6Q22-01E

B7.4.2.2 Interrupt Input from a High-speed Input Module
An F3XH04-3N high-speed input module (hereinafter simply referred to as a high-speed
input module) for the FA-M3 multi-controller can also be used to interrupt a BASIC program
if the module is set to the Interrupt Function option. For details on how to set the interrupt
function, see the “FA-M3 Hardware Manual” (IM 34M6C11-01E).

Table B7.1 BASIC Statements Available for a High-speed Input Module

Function Statement Format Description

Declaration of use of
modules

Read-out of interrupt
status of each terminal

Interrupt declaration

Interrupt cancellation

Module initialization

ASSIGN XH04=m
m: Slot number

STATUS m, 101: I
m: Slot number
I: Variable where the reading

is stored

ON INT m, n GOTO
ON INT m, n GOSUB
ON INT m, n CALL

m: Slot number
n: Input relay’s number (1 to 4)

OFF INT m, n
m: Slot number
n: Input relay’s number (1 to 4)

RESET m
m: Slot number

Defines the slot number where the
module in question is installed.

Reads the interrupt status of a high-
speed input module installed in slot
m and stores it in the variable I.

Declares that an OFF-to-ON
transition in the input relays
Xuuu01 to Xuuu04 of a high-
speed input module installed in slot
m is accepted as an interrupt.

Cancels interrupt declarations made
by an ON INT statement on a
terminal-by-terminal basis.

Cancels interrupt declarations made
by an ON INT statement on a
module-by-module basis.

TB070401.EPS

CAUTION

• The functionality of any of the statements listed in Table B7.1 above is not guaranteed
if you set the high-speed input module to the Pulse-capture Function option.

• The functionality of any statement other than those listed in Table B7.1 is not guaran-
teed if it is used with a high-speed input module.

(a) Declaration of Use of Modules
This statement declares the use of a high-speed input module. Use an ASSIGN statement
for this purpose. Be sure to execute this statement before you use any other statements for
the module. In this statement, define the number of the slot where the module is installed.
The ASSIGN statement has the following format.

ASSIGN [XH04=m

m: Slot number in a numeric expression

1st Edition : Oct.29,1999-00

B7-22<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

(b) Interrupt Declaration/Cancellation

● Interrupt Declaration

Using an ON INT statement, declare that a change in the state of input to terminal n is
accepted as an interrupt. In this statement, you can also specify the destination of a branch
in your program so that the program flow is changed by the occurrence of an interrupt. The
ON INT statement has the following format.

ON INT m, n

GOTO

GOSUB

Label

Line number

Subprogram nameCALL]
]

]]]

FB070418.EPS

m: Slot number in a numeric expression

n: Terminal number in a numeric expression

Example: ON INT 205, 3 GOSUB 100

This statement causes a branch to a subroutine from line number 100 to handle an
interrupt that is input to terminal 3 of a module in slot 205.

In the case of contact input modules, once a declaration has been made, interrupts are
accepted until an interrupt declaration is cancelled.

● Interrupt Cancellation

Use an OFF INIT or RESET statement to cancel the interrupt declaration. An OFF INT
statement cancels interrupt declarations on a terminal-by-terminal basis, while a RESET
statement cancels them on a module-by-module basis.

The OFF INIT statement has the following format.

OFF [INT [m, n

m: Slot number in a numeric expression

n: Terminal number in a numeric expression

Example: OFF INT 102, 2

This statement cancels the interrupt declaration made for terminal 2 of a high-speed
input module in slot 102.

The RESET statement has the following format.

RESET [m

m: Numeric expression

Example: RESET 4

This statement cancels all of the interrupt declarations made for the terminals of a
high-speed input module in slot 4.

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-23

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

(c) Reading the Interrupt Status
You can read the interrupt status with a STATUS statement. The interrupt status is indi-
cated by the value of an interrupt-handling auxiliary flag register. The auxiliary flag register
changes from 0 to 1 at a rising edge of input (OFF-to-ON transition). This auxiliary flag
register changes to 0 if read once by a STATUS statement and retains 0 until the next rising
edge of input occurs. Note however, that any terminal for which acceptance of interrupts
has been declared by an ON INT statement causes its auxiliary flag register to reset to 0
immediately after the occurrence of an interrupt. The register therefore always reads 0
whenever you read it using a STATUS statement.

The STATUS statement has the following format.

STATUS [m, 101;I

m: Slot number in a numeric expression

101: Register number in a numeric expression, which is always 101

I: Integer-type input variable

MSB
0

Input variable
(Data format)

LSB

Auxiliary flag register

Auxiliary flag register

Auxiliary flag register

Auxiliary flag register

Terminal 1

Terminal 2

Terminal 3

Terminal 4

Status of input terminal

OFF ON

Auxiliary flag register

OFF ON

Execution of BASIC program

STATUS “1”

STATUS “0”

STATUS “1”

STATUS “0”

Data to be read

Denotes an unused bit (always 0).

15

FB070419.EPS

Figure B7.2 Flowchart Showing How Status Is Input to the Variable

Example: STATUS 304, 101;I

This statement reads the interrupt status of a module in slot 304 into the integer-type
variable I.

B7-24<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B7.4.3 Contact Output Modules
A contact output module is used to output the ON/OFF status of contacts. Use an OUT-
PUT statement to output the contact status. Input 1 for the ON status of an output terminal
and 0 for the OFF status of an output terminal. The status of each output terminal can be
output by 1) selecting terminal numbers on a terminal-by-terminal basis, 2) making a batch
selection of terminal numbers, or 3) making a batch selection of terminals using a 16-bit
integer or a 32-bit long integer, as described below.

Selection of
terminal number

Unspecified format

NOFORMAT

BFORMAT

Input the statuses, terminal by terminal.

Input the statuses in 16-terminal increments
using a 16-bit integer*.

Input the statuses in 32-terminal increments
using a 32-bit long integer*.

Batch selection
of terminals as
an array

Unspecified format

NOFORMAT

BFORMAT

Input the statuses, terminal by terminal,
in a collective manner.

Input the statuses collectively in 16-terminal
increments using a 16-bit integer*.

Input the statuses collectively in 32-terminal
increments using a 32-bit long integer*.

FB070420.EPS

 * Applies only to those terminals that have been given permission by mask data for status output.

(a) Selection of Terminal Number
This method is only suitable for outputting data to a specified terminal. This method uses
the following formats.

● Terminal-by-terminal Output

The following statement outputs data to the specified terminal only.

OUTPUT [m, n;P

m: Slot number in a numeric expression

n: Terminal number in a numeric expression

P: Output data in a numeric expression

The variable P takes a value of either 1 or 0 to output either the ON or OFF state to output
terminal n.

Example: OUTPUT 308, 1;1

This statement sets terminal 1 of a module in slot 308 to the ON state.

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-25

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

● 16-terminal Collective Input

The following statement applies a masking process to the data of 16 terminals, which are
consecutive from the specified terminal, and outputs the data. It outputs the data only to
those terminals whose bits of mask data are 1. If you omit the mask data, the statement
outputs data to all of the terminals.

OUTPUT [m, n [NOFORMAT;I[, “%”, M]

m: Slot number in a numeric expression

n: Terminal number in a numeric expression, where n = 1, 17, 33 or 49

I: Output data (integer-type or numeric variable)

M: Mask data (integer-type or numeric variable)

CAUTION

Use an integer variable for I; do not use a long-integer variable. The functionality of an
OUTPUT statement is not guaranteed if you use a long-integer simple variable.

The relationship between the variable that stores output data and the terminals is as
follows. Lower terminal numbers correspond to the lower-order bits of the variable. The
status of each terminal is represented as either “bit-ON” (1) for the ON state or “bit-OFF” (0)
for the OFF state.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

MSB (Terminal numbers) LSB

If n = 1:

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17If n = 17:

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33If n = 33:

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49If n = 49:

FB070421.EPS

Example: OUTPUT 308, 17 NOFORMAT;$A4C1, “%”, $94A1

This statement outputs data, as shown below, to terminals 17, 22, 24, 25, 26, 29 and
32 of a module in slot 308.

O

N

O
F
F

O
F
F

O
F
F

O

N

O
F
F

O

N

1

1

0

0

1

0

0

1

0

0

1

0

0

1

0

1

1

1

1

0

0

1

0

0

0

0

0

0

0

0

1

1

Output data

Mask data

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17Terminal numbers
FB070422.EPS

B7-26<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

● 32-terminal Collective Input

The following statement applies a masking process to the data of 32 terminals, which are
consecutive from the specified terminal, and outputs data. It outputs the data only to those
terminals whose bits of mask data are 1. If you omit the mask data, the statement outputs
data to all of the terminals.

OUTPUT [m, n [BFORMAT;L[, “%”,LM]

m: Slot number in a numeric expression

n: Terminal number in a numeric expression, where n = 1 or 33

L: Output data (long-integer type or numeric variable)

LM: Mask data (long-integer type or numeric variable)

CAUTION

Use a long-integer variable for L and LM; do not use an integer variable. The functionality of
an OUTPUT statement is not guaranteed if you use an integer variable.

The relationship between the variable that stores input data and the terminals is as follows.
Lower terminal numbers correspond to the lower-order bits of the variable. The status of
each terminal is represented as either “bit-ON” (1) for the ON state or “bit-OFF” (0) for the
OFF state.

32

MSB (Terminal numbers) LSB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

If n = 1:

If n = 33:

FB070423.EPS

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-27

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

(b) Batch Selection as an Array
This method is suited for outputting data to all terminals collectively or outputting the data to
terminals excluding (by masking) a specific terminal or terminals. No terminal numbers
should be specified. This method uses the following formats.

● All-terminal Collective Output

This method outputs the values of data (1 or 0) to all of the terminals and uses the following
format.

OUTPUT [m;P(*)

m: Slot number in a numeric expression

P (*): Output data for collectively specifying numeric array variables

Example: OPTION BASE1

DIM P(6) Terminals for collective output

FOR I=1 TO 8

P(I*2-1)=1: P(I*2)=0

NEXT I

OUTPUT 305;P(*)

Terminal 1

Terminal 2

Terminal 3

Terminal 16

ON

OFF

ON

OFF

Status of terminal

1

0

1

0

Output data

FB070424.EPS

B7-28<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

● Collective Output in 16-terminal Increments Using a 16-bit Integer

This method applies a masking process to the output data of all output terminals, 16 bits of
the data at a time, in 16-terminal increments. It outputs the data only to those terminals
whose bits of mask data are 1. If you omit the mask data, the statement outputs data to all
of the terminals. Use either of the following formats.

OUTPUT [m [NOFORMAT;I
1
[, I

2
, I

3
, I

4
][, “%”, M

1
, M

2
, M

3
, M

4
]

OUTPUT [m [NOFORMAT;I(*)[, “%”, M(*)]

m: Slot number in a numeric expression

In: Output variable list for integer-type simple variables or numeric values

Mn: Mask data list for integer-type simple variables or numeric values

I (*): Output variable list for collectively specifying integer-type, array variables

M (*): Mask data for collectively specifying integer-type, array variables

CAUTION

Use integer-type simple variables and integer-type array variables for In, Mn, I (*) and M (*);
do not use long-integer type simple variables and long-integer type array variables. The
functionality of an OUTPUT statement is not guaranteed if you use long-integer type simple
variables or long-integer type array variables.

The relationship between the variables that store input data and the terminals is as follows.
Lower terminal numbers correspond to the lower-order bits of each variable. The status of
each terminal is represented as either “bit-ON” (1) for the ON state or “bit-OFF” (0) for the
OFF state.

• Example of Integer-type Simple Variables

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

MSB (Terminal numbers) LSB

I1

(Output data)

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17I2

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33I3

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49I4

M1

(Mask data)

M2

M3

M4

FB070425.EPS

I2 and M2 are only valid for a 32- or 64-input module, while I3, I4, M3 and M4 are only valid for a 64-input module.

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-29

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

• Example of Integer-type Array Variables (for an OPTION BASE 1 Statement)

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

MSB (Terminal numbers) LSB

I (1)

(Output data)

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17I (2)

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33I (3)

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49I (4)

M (1)

(Mask data)

M (2)

M (3)

M (4)

FB070426.EPS

I (2) and M (2) are only valid for a 32- or 64-input module, while I (3), I (4), M (3) and M (4) are only valid for a 64-input module.

● Collective Output in 32-terminal Increments Using a 32-bit Long Integer

The following statements apply a masking process to the output data of all output terminals,
32 bits of the data at a time, in 32-terminal increments. It outputs the data only to those
terminals whose bits of mask data are 1. If you omit the mask data, the statement outputs
data to all of the terminals. Use either of the following formats.

OUTPUT [m [BFORMAT;L1[, L2][, “%”, LM1, LM2]

OUTPUT [m [BFORMAT;L(*)[, “%”, LM(*)]

m: Slot number in a numeric expression

Ln: Output data list for long-integer type simple variables or numeric values

LMn: Mask data for long-integer type simple variables or numeric values

L (*): Output data list for collectively specifying long-integer type array variables

LM (*): Mask data for collectively specifying long-integer type array variables

CAUTION

Use long-integer type simple variables and long-integer type array variables for Ln, LMn,
and L (*) and LM (*); do not use integer-type simple variables and integer-type array vari-
ables. The functionality of an OUTPUT statement is not guaranteed if you use integer-type
simple variables or integer-type array variables.

B7-30<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

The relationship between the variables that store input data and the terminals is as follows.
Lower terminal numbers correspond to the lower-order bits of each variable. The status of
each terminal is represented as either “bit-ON” (1) for the ON state or “bit-OFF” (0) for the
OFF state.

• Example of Long-integer Type Simple Variables

32

MSB (Terminal numbers) LSB

(Output data)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

L1

L2

M1

M2

(Mask data)

FB070427.EPS

L2 and M2 are only valid for a 64-input module.

• Example of Long-integer Type Array Variables (for an OPTION BASE 1 Statement)

32

MSB (Terminal numbers) LSB

(Input data)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

L (1)

L (2)

(Mask data)

M (1)

M (2)

FB070428.EPS

L (2) and M (2) are only valid for a 64-input module.

Example: OUTPUT 207 NOFORMAT;$A4C1, “%”, $93A1

This statement outputs data, as shown below, to terminals 1, 6, 8, 9, 10, 13 and 16 of
a module in slot 207.

O

N

O
F
F

O
F
F

O
F
F

O

N

O
F
F

O

N

1

1

0

0

1

0

0

1

0

0

1

0

0

1

0

1

1

1

1

0

0

1

0

0

0

0

0

0

0

0

1

1

Output data

Mask data

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1Terminal numbers

Status of output terminal

FB070429.EPS

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-31

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B7.4.4 Defining the Operating Mode of a Contact Output Module
For contact output modules except for 64-point models, it is possible to define whether the
modules should retain their current states of outputs or reset their outputs in case of a
failure in the master CPU module. A failure in the master CPU module here refers to a
serious failure level (CPU failure, memory failure, power failure, etc.) in which the RDY
green LED indicator lamp turns off.

(a) Setting an Operating Mode against Master Module Failure
Using a CONTROL statement, define whether the contact output modules should retain
their current states of outputs or reset their outputs in case of a failure in the master CPU
module. Set the definition in the control registers of each contact output module in 8-
terminal increments. Terminal-by-terminal setting is not possible. The CONTROL state-
ment has the following format.

CONTROL [m, 1;I

m: Slot number in a numeric expression

I: Data (integer or integer-type variable)

The control registers are configured as shown below. Upon system startup, all of the
control registers are set to 0.

Register 1 Register 2 Register 3 Register 4

15 12 8 4 0

Definition of operating mode against

CPU module failure (0: Retain; 1: Reset)

MSB LSB

Denotes an unused bit (always 0).

Register 4: Terminals 25 to 32

Register 3: Terminals 17 to 24

Register 2: Terminals 9 to 16

Register 1: Terminals 1 to 8

FB070430.EPS

Example: CONTROL 206, 1;$0010

This statement causes the contact output module in slot 206 to reset its terminals 9 to
16 and retain all the remaining terminals at their current states in case of a failure in
the master CPU module.

B7-32<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

(b) Reference to Parameters
Using a STATUS statement, you can refer to parameters configured by a CONTROL
statement. The STATUS statement has the following format.

STATUS [m, 1;I

m: Slot number in a numeric expression

I: Input variable (integer-type)

Example: STATUS 204,1;I

This statement reads the data of control registers in a module in slot 204 into the
variable I.

(c) Initializing the Parameters
Use a RESET statement to initialize (to a value of 0) all data items set with a CONTROL
statement. The RESET statement has the following format.

RESET [m

m: Slot number in a numeric expression

Example: RESET 308

This statement initializes all the values of control registers in the module in slot 308 to
0.

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-33

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B7.4.5 Contact I/O Modules
Access to an F3WD64-uN contact I/O module that has both inputs and outputs is basically
the same as access to contact input modules in terms of input operation and access to
contact output modules in terms of output operation. In the case of contact I/O modules
however, it is not possible to use the interrupt function. Nor is it possible to define whether
the contact I/O modules should retain their current states of outputs or reset their outputs in
case of a failure in the master CPU module.

(a) Access to Input Block
Using an ENTER statement, input the states of contacts. Access to the input block is
basically the same as access to contact input modules. However, terminal numbers to be
specified differ from those of a contact input module. For details on the batch selection as
an array, among the input methods described below, refer to the explanation of 32-point
contact input modules.

● Terminal-by-terminal Input

This input method inputs the state of a specified terminal only.

ENTER [m, n;P

m: Slot number in a numeric expression

n: Terminal number in a numeric expression, where n = a value from 1 to 32

P: Input variable (numeric)

● 16-terminal Collective Input

This input method inputs the states of 16 terminals collectively into the variable, beginning
with the specified terminal.

ENTER [m, n [NOFORMAT;I

m: Slot number in a numeric expression

n: Terminal number in a numeric expression, where n = 1 or 17

I: Input variable (integer-type)

● 32-terminal Collective Input

This input method inputs the states of 32 terminals collectively into the variable, beginning
with the specified terminal.

ENTER [m, n [BFORMAT;L

m: Slot number in a numeric expression

n: Terminal number in a numeric expression, where n is always 1

L: Input variable (long-integer type)

B7-34<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

(b) Access to Output Block
Using an OUTPUT statement, output the states of contacts. Output 1 for the ON status of a
contact output and 0 for the OFF status of a contact output.

Access to the output block is basically the same as access to contact output modules.
Terminal numbers to be specified differ from those of a contact output module, however.
For details on the batch selection as an array, among the input methods described below,
refer to the explanation of 32-point contact output modules.

● Terminal-by-terminal Input

This input method outputs the status to a specified terminal only.

OUTPUT [m, n;P

m: Slot number in a numeric expression

n: Terminal number in a numeric expression, where n = a value from 33 to 64

P: Output data in a numeric expression

The variable P takes a value of either 1 or 0 to output either the ON or OFF state to output
terminal n.

● 16-terminal Collective Input

The following statement applies a masking process to the data of 16 terminals, which are
consecutive from the specified terminal, and then outputs the data. It outputs the data only
to those terminals whose bits of mask data are 1. If you omit the mask data, the statement
outputs data to all of the terminals.

OUTPUT [m, n [NOFORMAT;I[, “%”, M]

m: Slot number in a numeric expression

n: Terminal number in a numeric expression, where n = 33 or 49

I: Output data (integer-type variable or numeric value)

M: Mask data (integer-type variable or numeric value)

● 32-terminal Collective Input

The following statement applies a masking process to the data of 32 terminals, which are
consecutive from the specified terminal, and outputs data. It outputs the data only to those
terminals whose bits of mask data are 1. If you omit the mask data, the statement outputs
data to all of the terminals.

OUTPUT [m, n [BFORMAT;L[, “%”, M]

m: Slot number in a numeric expression

n: Terminal number in a numeric expression, where n is always 33

L: Output data (long-integer type variable or numeric value)

LM: Mask data (long-integer type variable or numeric value)

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-35

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B7.5
82-xx error codes that may appear during access to a contact I/O module have the mean-
ings summarized in the following table.

Error
Code

Detailed
Error Code

(Hexadecimal)
Meaning Possible Cause

082 $82

$91

$92

$94

$D1

$E1

Wrong selection of function

Parameter error

Setpoint data error

Wrong selection of module

Device error

Device not ready

• The module has executed an unsupported
statement (e.g., an OUTPUT statement
made to an input module).

• The slot number specified is one allocated
to a different contact I/O module.

• The device number is out of the specified
range.

• There is an error in the setpoint data (e.g.,
data type error).

• A value other than 0 and 1 has been
specified during output by specifying a
terminal number.

• The module name included in the ASSIGN
statement is wrong.

• No ASSIGN statement has been executed
yet.

• The module is faulty.

• The module is not installed yet.
• The slot number is wrong.
• The module is faulty.

TB070501.EPS

B7-36<Toc> <Ind> <B7. Methods of Access to I/O Modules>

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B7.6 Contact Input/Contact Output Modules-
Programming Exercise

B7.6.1 Contact Input Modules
100 ! Contact input modules-Programming exercise

110 DEFINT A-Z

120 OPTION BASE 1

130 DIM P(32)

140 SC=4

150 ! Declare use of modules

160 ASSIGN XD32=SC

170 ! Initialize parameters

180 RESET SC

190 ! Set interrupt conditions

200 CONTROL SC,1;$1111

210 ! Read interrupt conditions

220 STATUS SC,1;STUS

230 PRINT HEX$(STUS)

240 ! Declare acceptance of interrupts

250 ON INT SC,8 GOSUB MSG@

260 ! Input data by specifying a terminal number

270 ENTER SC,8;P(8)

280 PU "8A,DZ";"P(NO.8)=",P(8)

290 ! Input data by collectively specifying terminal numbers

300 ENTER SC;P(*)

310 FOR I=1 TO 32

320 PU "5A,DZ,2A,DZ";"P(NO.",I,")=",P(I)

330 NEXT I

340 ! Input data by collectively specifying terminal numbers in 16-terminal increments

350 ENTER SC NOFORMAT;A

360 FOR I=1 TO 16

370 PU "5A,DZ,2A,DZ";"P(NO.",I,")=",BIT(A,I-1)

380 NEXT I

390 ! Read the interrupt status (No. 16)

400 STATUS SC,101;ST

410 PRINT BIT (ST,15)

420 STOP

430 MSG@

440 PRINT “Interrupt from terminal 8”

450 RETURN

460 END

<Toc> <Ind> <B7. Methods of Access to I/O Modules> B7-37

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B7.6.2 Contact Output Modules
100 ! Contact output modules-Programming exercise

110 DEFINT A-Z

120 OPTION BASE 1

130 DIM PON(32),POF(32),PIN(2),MASK(2)

140 SC=3

150 ! Declare use of modules

160 ASSIGN YD32=SC

170 ! Initialize parameters

180 RESET SC

190 ! Define operating mode against master CPU failure

200 CONTROL SC,1;$1111

210 ! Read control registers

220 STATUS SC,1;STUS

230 PRINT HEX$(STUS)

240 ! Output data by specifying a terminal number

250 FOR I=1 TO 32

260 OUTPUT SC,I;1

270 PON(I)=1 :POF(I)=0

280 WAIT 100

290 NEXT I

300 ! Output data by collectively specifying terminal numbers

310 OUTPUT SC;POF(*)

320 ! Output data by collectively specifying terminal numbers in 16-terminal increments

330 FOR I=1 TO 2

340 MASK(I)=$FFFF

350 FOR J=1 TO 10

360 PIN(I)=RND($8000)

370 OUTPUT SC NOFORMAT;PIN(1),PIN(2),"%",MASK(1),MASK(2)

380 WAIT 500

390 NEXT J

400 PIN(1)=0

410 NEXT I

420 ! Output data by collectively specifying terminal numbers

430 OUTPUT SC;PON(*)

440 WAIT 1000

450 OUTPUT SC;POF(*)

460 END

Blank Page

<Toc> <Ind> <B8. Libraries> B8-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

B8. Libraries
This chapter provides general information on the libraries.

B8.1 What Is a Library?
A library is a package of software based on machine language supplied by Yokogawa
Electric Corporation. It is used to call subroutines (see Section B8.3, “Program Flow,” later
in this part, “Description of YM-BASIC/FA,” for more details). Libraries are supplied either
as a standard accessory for the FA-M3 multi-controller or as an optional software package.

B8.2 Incorporating Libraries into a User Program

■ Libraries Provided as an Optional Software Package
These libraries are supplied in the form of files (AS type). To be able to use them in a user
program, you must go through the given procedures, such as incorporating them into the
user program.

A library is built into (linked with) a user program when the program is being created. To link
the library with the program, use a LINKLIB command. Each library shares the same name
with its file and is supplied as one file. A library is executed in a user program area. Save a
program containing libraries on disk in an intermediate-language format. If you attempt to
save the program in a source-code format, part of the program consisting of the libraries
will be excluded from the saving.

■ Libraries That Come Standard with the FA-M3 Multi-controller
The FA-M3 multi-controller comes standard with the following libraries.

• INICOMM3

• IFPCNV

Both of these libraries come already built in the YM-BASIC/FA programming language. You
therefore do not have to incorporate them into your user program using a LINKLIB com-
mand. For more details on these libraries, see Section C3 in Part C, “Syntax of YM-BASIC/
FA,” later in this manual.

B8-2<Toc> <Ind> <B8. Libraries>

IM 34M6Q22-01E

B8.3 Program Flow

■ Calling Libraries
Use a CALLLIB statement to call libraries from a BASIC program. Pass parameters (argu-
ments) as necessary.

CALLLIB Program name
Library

BASIC program
FB080301.EPS

Since the character string “CALLLIB” can be omitted, you can write the statement just like a
BASIC statement or an arithmetic function.

■ Interrupts
Any interrupt branch that occurs during branching from a BASIC program to a library is
placed in a wait state until the CPU returns to the BASIC program.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C1. Syntax Usage> C1-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

C1. Syntax Usage

C1.1 Positioning the Part “Syntax”
This part is configured as shown below.

Chapter 1. PART II Syntax Usage

Positioning of the part “Syntax” and terms commonly used throughout this part are de-
scribed.

Chapter 2. YM-BASIC/FA Function Lists

Lists and functions of the following items that can be used as standard in YM-BASIC/FA are
briefly described :

Command and subcommand

Statement

Function

Library

Chapter 3. Syntax

The syntax of the following items that can be used as standard in YM-BASIC/FA are de-
scribed in detail.

Command and subcommand

Statement

Function

Library

The order of description of the syntax for these items in this manual is in alphabetic order
regardless of statements and functions.

For syntax of commands and subcommands, see manuals shown in “2. YM-BASIC/FA
Function Lists”.

Chapter 4. Error Codes

This chapter describes error codes and detailed error codes that can occur during execu-
tion of YM-BASIC/FA, and their meaning.

C1-2<Toc> <Ind> <C1. Syntax Usage>

IM 34M6Q22-01E

C1.2 Terms Used in This Part

■ Commands and Statements
BASIC instructions are divided into several types.

• Commands and Subcommands

These are instructions which are executed by direct specification to YM-BASIC/FA
from the keyboard and are entered without line number. At the end of a command or a
subcommand, enter the return key .

Commands can be used in a command entry panel (with prompt of “ : ”) and
subcommands, in editor startup (with prompt of “>”).

• Statements

Instructions which are executed by describing them in programs are called “state-
ments”. Most statements can be used as commands but if a variable is used, an
undefined variable error occurs.

• Functions

These are similar to statements but those that have each value (answer) are called
functions.

• Libraries

A library is a program described by machine language provided by YOKOGAWA.
Libraries realize the contents which cannot be processed by YM-BASIC/FA or that
require longer processing times.

CAUTION

In BASIC Programming Tool M3 for Windows, the commands, subcommands, and key
operations [ESC], [CTRL]+[S], [CTRL]+[P], [CTRL]+[C], and the like, are operated from the
menu bar, toolbar or edit window.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C1. Syntax Usage> C1-3

IM 34M6Q22-01E

■ Numeric Expressions and Character String Expressions
An expression is a representation in which constants and variables are connected with
operators.

A + 4

Constant

Operator

Variable
FC010201.EPS

As an expression result is a numeric value or a character string, a simple character or
numeric value or a variable only is also considered as an expression. Numeric expressions
and character string expressions include the following:

Expression Numeric
expression

Numeric constant
Numeric variable
Arithmetic computation
Relational computation
Logical operation
Function

Character string constant
Character string variable
Character string computation
(character string linkage)
Relational computation
(string comparison)
(result is a numeric value)
Function

(Example)
1.56
A
A+B
A<B
A AND B
SIN (X)

“A”
A$
A$+”A”

A$ AND “A”

VOL$ (n)

Character
string expression

FC010202.EPS

Use parentheses for changing the operation execution order.

Computation in parentheses is first executed. Multiple parentheses can be nested.

For variables, constants, and computation, see PART I “REFERENCE”.

1st Edition : Oct.29,1999-00

Blank Page

<Toc> <Ind> <C2. List of YM-BASIC/FA Functions> C2-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

C2. List of YM-BASIC/FA Functions

C2.1 Commands and Subcommands
Commands and subcommands that YM-BASIC/FA supports are listed below. Use com-
mands or subcommands when creating (entering) YM-BASIC/FA programs. YM-BASIC/FA
programs can be created (entered) in a personal computer or a YEWMAC line computer.

Since commands and subcommands usable in YM-BASIC/FA slightly differ in a personal
computer and a YEWMAC line computer, lists for both types of computer are given sepa-
rately.

CAUTION

In BASIC Programming Tool M3 for Windows, the commands, subcommands, and key
operations [ESC], [CTRL]+[S], [CTRL]+[P], [CTRL]+[C], and the like, are operated from the
menu bar, toolbar or edit window.

C2-2<Toc> <Ind> <C2. List of YM-BASIC/FA Functions>

IM 34M6Q22-01E

■ Commands and Subcommands for Personal Computer
The stand-alone personal computer can use commands and subcommands other than
those marked n.

● Commands and Subcommands

Command Function
Manual to be

referred to

General commands

FREE

RENUM

DEL

SAVE

LOAD

MERGE

APPEND

LINKLIB

LIST

ERLIST

BYE

CONT

RUN

NEW

PROG

AUTO

STEP

EDIT

LCOPY

SETMD RUN

SETMD RES

TRACE

SCRATCH

TRACEP

SCRATCHP

TRACEV

SCRATCHV

C3-30

C3-68

C3-19

C3-72

C3-50

C3-52

C3-4

C3-48

C3-49

C3-27

C3-9

C3-14

C3-71

C3-53

C3-66

C3-6

C3-80

C3-22

C3-46

C3-77

C3-76

C3-84

C3-74

C3-85

C3-74

C3-86

C3-74

Display of free area size in the program area (user area except for
common area) (for both FA500 and personal computer)

Line number replacement

Deletion of subprogram or library

Saving a program in the user area in an auxiliary memory

Loading a program stored in an auxiliary memory to the user area

Merging a program stored in an auxiliary memory into a program in
the user area

Adding a program stored in an auxiliary memory to the current
program block in the user area

Loading a library to the user area and incorporating the library in a
program in the user area

Outputting a program in the user area to a specified output device
(CRT or printer)

Outputting a program list (to CRT or printer) in a line where an
error is occurring

Terminating the debug mode

Restarting a program whose execution has once been suspended

Executing a program in the user area

Initializing (erasing) a program in the user area

Specifying a program block which becomes an object of command
processing

Automatically generating the line number

Executing a line of program

Starting the line editor

Copying on a line basis

Designation/release of BYE & RUN mode

ON/OFF of designating residence in a program

Tracing branch-generated locations

Resetting trace of branch-generated locations

Pause during execution

Resetting pause during execution

Tracing variabl

Resetting trace of variables
TC020101.EPS

n

n

n

n

n

n

n

n

n

n

n : If the FA500 is not connected, this command cannot be executed.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C2. List of YM-BASIC/FA Functions> C2-3

IM 34M6Q22-01E

Command Function
Manual to be

referred to

Subcommands (used in EDIT)

QUIT (Q)

FIND (F)

CHG (C)

APPEND (A)

DEL

RENUM

LCOPY

LIST (L)

EDIT

ERLIST

C3-66

C3-28

C3-11

C3-4

C3-19

C3-68

C3-46

C3-49

C3-22

C3-27

Termination of the editor

Searching a character string

Replacing character strings

Linking a specified line

Deleting a specified line

Renumbering a line

Copying on a line basis

Displaying a program list

Displaying a specified line

Displaying an error statement and error details
TC020102.EPS

● MS-DOS Commands

Command Function
Manual to be

referred to

MS-DOS* Commands

! CHDIR

! CLS

! COPY

! DATE

! DEL

! DIR

! MKDIR

! PATH

! REN

! RMDIR

! TIME

! TYPE

! VOL

Changing directory and displaying the current directory

Clearing the display panel

Copying a specified file

Date display and setting (clock in a personal computer)

Deleting a specified file

Displaying directory information

Creating a directory

Displaying a path for searching the command

Changing a file name

Deleting a directory

Date displaying and setting (clock in a personal computer)

Displaying the contents of a specified file

Displaying a volume label
TC020103.EPS

Manual
attached to
a personal
computer

For commands with !, MS-DOS* command is executed as part of these commands.
* : MS-DOS is a trademark of Microsoft Corp.

CAUTION

MS-DOS commands other than those listed above cannot be used in YM-BASIC/FA.
Furthermore, while some commands have abbreviations in MS-DOS (e.g., CHDIR → CD),
YM-BASIC/FA does not support them.

CAUTION

In BASIC Programming Tool M3 for Windows, the commands, subcommands, and key
operations [ESC], [CTRL]+[S], [CTRL]+[P], [CTRL]+[C], and the like, are operated from the
menu bar, toolbar, or edit window.

1st Edition : Oct.29,1999-00

C2-4<Toc> <Ind> <C2. List of YM-BASIC/FA Functions>

IM 34M6Q22-01E

C2.2 Statements
A list of statements supported by YM-BASIC/FA is shown below.

Statement Function
Page on which
the statement
is explained

General Statements

REM

DEFINT

DEFLNG

DEFSNG

DEFDBL

OPTION BASE

DIM

ALLOCATE

DEF FN

LET

MOVE

SWAP

READ

DATA

RESTORE

GOTO

GOSUB

RETURN

ON GOTO

ON GOSUB

IF … THEN …
ELSE … ENDIF

WHILE
… END WHILE

FOR … NEXT

STOP

PAUSE

END

C3-67

C3-18

C3-18

C3-18

C3-18

C3-61

C3-20

C3-3

C3-17

C3-47

C3-53

C3-82

C3-67

C3-16

C3-69

C3-31

C3-31

C3-69

C3-61

C3-61

C3-34

C3-90

C3-29

C3-80

C3-63

C3-24

Annotation of program

Integer type declaration

Long integer type declaration

Single-precision type declaration

Double-precision type declaration

Specifying array subscript starting number (lower limit)

Specifying an array

Specifying an array whose size is variable

Specifying user functions

Assigning to a variable

Moving the array data

Data exchange

Data reading

Data setting

Setting a pointer for reading data

Unconditional branching

Branch to a subroutine

Return from a subroutine

Branching based on a calculated result

Branching to a subroutine based on a calculated result

Execution of statement by the conditions

Iterative execution during the time when conditions are met

Iterative execution

Program stopping

Temporary stopping of a program

Program termination
TC020201.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C2. List of YM-BASIC/FA Functions> C2-5

IM 34M6Q22-01E

Statement Function
Page on which
the statement
is explained

General Statements

RANDOMIZE

CALLLIB

CALL

COM

SUBCOM

RECOM

INIT COM

SUB

SUBEXIT

SUBEXIT RETRY

SUBEND

PRINT

PRINT USING

IMAGE

DISP

DISP USING

WAIT

ON TIME

OFF TIME

ON TIMER

OFF TIMER

DISABLE

ENABLE

C3-66

C3-11

C3-10

C3-13

C3-81

C3-67

C3-42

C3-81

C3-82

C3-82

C3-82

C3-64

C3-65

C3-37

C3-21

C3-21

C3-89

C3-58

C3-58

C3-60

C3-60

C3-21

C3-24

Random number generation

Branching to a library

Branching to a subprogram

Common variable declaration

Specifying the starting position of the common area

Specifying a common variable position

Initializing the common area

Declaring the beginning of a subprogram

Return from a subprogram

Return from a subprogram

Declaring subprogram termination

Print output

Print output with format

Specifying a format

Output to CRT

Output to CRT with a format

Waiting for program execution

Branching at a timing

Canceling branching at a timing

Starting a timer

Stopping a timer

Disabling interrupt

Enables interrupt from the disabling state
TC020202.EPS

h

h

h

h

h

Fundamental I/O Statements

Real-time Statements

Subprogram Statements

u : Can be used in debugging.

1st Edition : Oct.29,1999-00

C2-6<Toc> <Ind> <C2. List of YM-BASIC/FA Functions>

IM 34M6Q22-01E

Statement Function
Page on which
the statement
is explained

I/O Module Support Statements

ASSIGN

ENTER

OUTPUT

TRANSFER

ON EOT

OFF EOT

ENABLE INTR

ON INT

OFF INT

SET TIMEOUT

ON TIMEOUT

OFF TIMEOUT

RESET

STATUS

CONTROL

HALT

SET STATUS

RESET STATUS

COM #S ~

ON SEQEVT

OFF SEQEVT

SEQACTV

DEFAULT ON

DEFAULT OFF

ON ERROR

OFF ERROR

RETURN RETRY

TRACE

SCRATCH

TRACEP

SCRATCHP

TRACEV

SCRATCHV

C3-5

C3-26

C3-62

C3-87

C3-54

C3-54

C3-24

C3-56

C3-56

C3-76

C3-59

C3-59

C3-68

C3-79

C3-15

C3-31

C3-75

C3-69

C3-13

C3-57

C3-57

C3-75

C3-18

C3-18

C3-55

C3-55

C3-69

C3-84

C3-74

C3-85

C3-74

C3-86

C3-74

I/O module configuration definition

Entry from I/O instruments

Output to I/O instruments

Starting I/O using an I/O buffer

Branching at the end of transfer

Resetting branching at the end of transfer

Masking the cause of I/O interrupt

Branching by I/O interrupt

Resetting branching by I/O interrupt

Branching at the time-out for I/O operation

Branching at the I/O time-out

Resetting branching at the I/O time-out

Resetting I/O module

Reading a status register

Writing to a control register

Canceling the transfer action

Specifying an I/O status information variable

Resetting an I/O status information variable

Declaration of sequence element (common register)
common variable

Declaration accepting interrupt from a sequence

Resetting declaration accepting interrupt from a
sequence

Start/stop of a sequence program

Declaration of implicit processing when the computed
result is abnormal

Resetting of implicit processing when the computed
result is abnormal

Branching when BASIC error occurs

Canceling branching when BASIC error occurs

Return from a subroutine and re-execution

Tracing the branch-generated location

Resetting tracing of the branch-generated location

Temporary stop during execution

Resetting temporary stop during execution

Variable tracing

Resetting variable tracing
TC020203.EPS

h

h

h

h

h

h

Statements Exclusively Used for Sequences

Exception Processing and Debugging Statements

u : Can be used in debugging.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C2. List of YM-BASIC/FA Functions> C2-7

IM 34M6Q22-01E

C2.3 Functions
A list of functions supported by YM-BASIC/FA is indicated.

Function Function
Page on which
the statement
is explained

Arithmetic Functions

SIN (x)

COS (x)

TAN (x)

ATN (x)

EXP (x)

LOG (x)

SQR (x)

ABS (x)

SGN (x)

INT (x)

RND (x)

DIV (A, B)

MOD (A, B)

BINAND (m, n)

LBINAND (m, n)

BINOR (m, n)

LBINOR (m, n)

BINXOR (m, n)

LBINXOR (m, n)

BINNOT (m)

LBINNOT (m)

SHIFT (m, n)

LSHIFT (m, n)

ROTATE (m, n)

LROTATE (m, n)

LASTBIT

BIT (m, n)

LBIT (m, n)

C3-78

C3-15

C3-83

C3-6

C3-83

C3-50

C3-78

C3-3

C3-77

C3-42

C3-70

C3-22

C3-52

C3-7

C3-44

C3-7

C3-44

C3-8

C3-45

C3-7

C3-44

C3-78

C3-51

C3-71

C3-51

C3-43

C3-8

C3-45

Returns the sine of x.

Returns the cosine of x.

Returns the tangent of x.

Returns the arc tangent of x.

Returns the value of the exponential function for natural
number x.

Returns the natural logarithm of x.

Returns the square root of x.

Returns the absolute value of x.

Returns the sign of x.

Returns the maximum integer not exceeding x.

Returns random numbers in the range of 0 < RND (x) < x.

Determines the quotient of A divided by B.

Determines the remainder of A divided by B.

Returns the AND operation of m and n bit by bit.

Returns the AND operation of long integers m and n bit by bit.

Returns the OR operation of m and n bit by bit.

Returns the OR operation of long integers m and n bit by bit.

Returns the exclusive OR operation of m and n bit by bit.

Returns the exclusive OR operation of long integers m and n bit
by bit.

Returns the one’s complement of m.

Returns the one’s complement of long integer m.

Shifts m by n bits.

Shifts a long integer m by n bits.

Rotates (shifts) m by n bits.

Rotates (shifts) a long integer m by n bits.

Returns the LASTBIT value.

Returns the bit value of m at the location designated by n.

Returns the bit value of a long integer m at the location
designated by n.

TC020301.EPS

Bit Handling Functions

1st Edition : Oct.29,1999-00

C2-8<Toc> <Ind> <C2. List of YM-BASIC/FA Functions>

IM 34M6Q22-01E

Function Function
Page on which
the statement
is explained

Character Handling Functions

MID $ (c, m)

MID $ (c, m, n)

LEFT $ (c, m)

RIGHT $ (c, m)

CHR $ (n)

STR $ (x)

VAL (c)

ASC (c)

LEN (c)

HLEN (c)

BLEN (c)

INSTR (c, m)

HMID $ (c, m, n)

HLEFT $ (c, n)

HRIGHT $ (c, m)

HINSTR (c, m)

PI

ERRL

ERRC

ERRCE

TIMEMS

RNPAR

SPC (x)

IOSIZE

HEX $ (x)

LHEX$(x)

BCD (x)

LBCD(x)

TIME $

DATE $

NAM (c)

ARNAM (c, m)

FREE

C3-52

C3-52

C3-46

C3-70

C3-12

C3-81

C3-88

C3-5

C3-46

C3-33

C3-8

C3-42

C3-33

C3-32

C3-33

C3-32

C3-63

C3-27

C3-27

C3-27

C3-83

C3-70

C3-78

C3-43

C3-32

C3-47

C3-6

C3-43

C3-83

C3-16

C3-53

C3-5

C3-30

Returns a character string from the m-th character from the left
end of a character string c.

Returns a character string composed of n characters extracted
from the m-th character from the left end of a character string c.

Returns a character string composed of m characters extracted
from the left end of a character string c.

Returns a character string composed of m characters extracted
from the right end of a character string c.

Creates a character corresponding to a code value n.

Converts a numeric value x to a character string.

Converts a character string c to a numeric value.

Returns the code value of the first character of a character string c.

Returns the number of characters in a character string c.

Returns the number of standard characters in a character string c.

Returns the number of characters in bytes in a character string c.

Searches for the character string represented by m in a
character string c and determines its starting position.

MID$ function on the standard character basis.

LEFT$ function on the standard character basis

RIGHT$ function on the standard character basis

INSTR function on the standard character basis

Returns the circular constant.

Returns the latest error line number.

Returns the error code of the latest error.

Returns a detail error code in I/O access error.

Returns an elapsed time starting at 00:00 in ms.

Returns startup parameters when a program is activated.

Returns x spaces.

Returns the number of transferred bytes in the latest I/O operation.

Returns the hexadecimal notation of x.

Returns the hexadecimal notation of x in the range of long integer.

Returns the binary coded decimal notation of x.

Returns the binary coded decimal notation of x in the range of
long integer.

Obtains the time of the day.

Obtains the date.

Obtains the value of a simple variable represented by c.

Obtains the value of m elements of a array represented by c.

Returns the size of free program area.
TC020302.EPS

Other Functions

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C2. List of YM-BASIC/FA Functions> C2-9

IM 34M6Q22-01E

C2.4 Libraries
A list of libraries supported by YM-BASIC/FA is as follows:

● Standard libraries for FA-M3

Library Function
Reference page

in this text

INCOMM3

IFPCNV

C3-42

C3-35

Initializes (0 clear) the shared register area in the CPU.

Converts IEEE floating-point format and YM-BASIC/FA internal
representation.

TC020401.EPS

1st Edition : Oct.29,1999-00

Blank Page

<Toc> <Ind> <C3. Syntax > C3-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

C3. Syntax
This chapter describes the details of syntax for statements and functions supported by YM-
BASIC/FA.

■ Commands and subcommands
These are instructions executed by direct specification to YM-BASIC/FA from the keyboard
and are entered without line number. At the end of a command or a subcommand, press
the Enter/Return key. Commands can be used in a command entry panel (with prompt
of“BSC:” or “bsc”) in debug mode and subcommands in editor startup (with prompt “>”).

■ Statements
Statements and functions are normally used by being described in programs.

Most statements can also be used as commands as immediately executable statements.

However, statements processed using more than one line such as FOR-NEXT, WHILE-
END WHILE, or GOSUB-RETURN, and the branching statements such as ON-cannot be
used as commands. In addition, using a variable in a command causes an error regarding it
as an undefined variable.

Most statements and all functions can be executed either in real mode or in debug mode of
execution mode. Some statements have meanings only in debug mode. Such statements
have no meaning but cause no error even if they are executed in real mode.

■ Functions
Functions are always used to on the right side of the assignment expression to perform
calculations on given numeric values and return the result of the calculation. However,
functions — ARNAM and NAM — can be used on the left side. Numeric expressions and
character string expressions can be used as function arguments. YM-BASIC/FA built-in
functions and user-defined functions are used. For user-defined functions, consult the DEF
FN statement.

■ Libraries
Libraries are groups of machine-language subprograms offered by YOKOGAWA. Libraries
are used to perform operations which in YM-BASIC/FA would require excessive processing
time, or not be possible at all.

For the use of libraries, refer to item C8 of YM-BASIC/FA “REFERENCE.”

CAUTION

In BASIC Programming Tool M3 for Windows, the commands, subcommands, and key
operations [ESC], [CTRL]+[S], [CTRL]+[P], [CTRL]+[C], and the like, are operated from the
menu bar, toolbar or edit window.

C3-2<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

Symbols used in this manual:

Instructions given herein show commands, subcommands, statements, functions, and
libraries.

: Shows that instructions can be used in F3BP20, F3BP30.

Instructions can be used when either the controller is connected to or disconnected
from a personal computer.

: Shows that instructions can be used in either F3BP20.

Instructions can be used only when the controller is connected to a personal com-
puter.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-3

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

Function: The functions of commands, subcommands, statements, functions, or libraries are briefly
described.

Format: How to enter commands, subcommands, statements, functions, or libraries are described.

1. Enter items represented by upper-case alphabetical letters, #, $, and parentheses ()
as they are. Lower-case alphabetical letters cannot be used.

2. For [, enter a space. This must not be omitted.

3. (For Functions)

Enter a numeric expression or a character string expression for lower-case alphabeti-
cal letters. Numeric expressions include numeric constants and numeric variables.
Character string expressions include character string constants and character string
variables. For details of numeric and character string expres sions, see PART I REF-
ERENCE “2.8 Expression and Computation”.

If a character string is to be entered, the character string to be entered must be en-
closed with quotation marks (“ ”). The range and contents that can be described differ
depending on the function.

(For commands, subcommands, statements, or libraries)

For items indicated with lower-case alphabeti cal letters or Sc, enter numeric con-
stants or numeric variables or character string constants or character string variables.

If a character string is to be entered, the character string to be entered must be en-
closed with quotation marks (“ ”). The range and contents that can be described differ
depending on the function.

4. Items enclosed with brackets [], since they are the optional items, can be omitted.

Brackets “[”, “]” are not necessary for actual entry.

Example : AUTO [[starting line number [, increment]]

[1] The starting line number and the increment can be omitted at the same time.

[2] Even if the starting line number is specified, the increment can be omitted.

[3] If the starting line number is omitted, the increment cannot be specified.

5. For items enclosed with braces { }, select any one of the items.

Explanation: Detailed instruction functions and precautions for commands, subcommands, statements,
functions and libraries are described.

C3-4<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

ABS
● Function

Function: Returns the absolute value of x.

Format: ABS(x)

x : Numeric expression.

Explanation: Returns the absolute value of x.

 ALLOCATE
● Statement

Function: Declares an array of variable size and allocates an array area in memory by determining
the size and elements of the array.

Format: (1) ALLOCATE [variable-name

(2) ALLOCATE [variable-name (size)

(3) ALLOCATE [variable-name $ number-of-characters

(4) ALLOCATE [variable-name $ number-of-characters (size)

Size: Specify the upper bound to subscripts as a numeric value or variable. Positive
integer.

An array may be one or two dimensional.

Number-of-characters :

Up to 512 ASCII characters. The default value is 18. Positive integer.

Explanation: Formats (1) through (4) above are declaration statements for numeric variables, array
numeric variables, character-string variables, and array element string variables respec-
tively.

The ALLOCATE statement functions in the same way as the DIM statement, except that :
(See DIM statement)

• A variable can be specified as the array size. Hence, the array size can be adjusted to
the conditions of program execution by varying this variable value.

• In main program, the ALLOCATE statement is the same as the DIM statement except
that a variable can be specified as the array size.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-5

IM 34M6Q22-01E

APPEND (A) ● Command
● Subcommand

Function: In debug mode, this command appends a program stored in the auxiliary memory to the
current program block in the user area. In subcommand mode, a program with two or more
lines is converted to one line and is added to the specified line. At that time, “:” that means
multiple statement is not appended.

If the one line has 253 bytes or more, an error occurs.

Format: (1) When APPEND (A) is used as a command:

APPEND [program-name [, start-line-number]

Program-name (character string): [device-specification:] [path \] file-name [.extension]
When [device-specification] is omitted, the current device is specified.

Extension cannot be omitted as far as it is used.

(2) When APPEND (A) is used as a subcommand:

APPEND [destination-line-number, source-start-line-number [- source-end-line-
number]

Explanation: When APPEND (A) is used as a command, it operates differently from when it is used as a
subcommand.

(1) When APPEND (A) is used as a subcommand:

The designated program is appended to the current program block in the user area,
with its lines renumbered beginning with start-line-number. In a program, even if start-
line-number is designated, line number is unaffected (no error occurs).

When start-line-number is omitted, the lines in the appended program are renum-
bered, beginning with the maximum line number in the program block + 10.

The program block in the user area to which a new program is to be appended must
have been designated as the current program block by a PROG command.

When the designated program is a subprogram, the subprogram is inserted between
the current program block and the next program block.

The program to be appended must be in source format or subprogram. (Programs in
intermediate language cannot be appended.)

CAUTION

When specifying the start-line-number, it and each line number after appending specified
program should not coincide with the line numbers in the user program block, or lines in the
appended program may overlay existing lines in the user program block.

(2) When the APPEND (A) is used as a subcommand:

Lines starting from the source start-line-number to source-end-line-number are edited
in a line and added to the destination line number.

At this time, a colon (:) is not inserted.

1st Edition : Oct.29,1999-00

C3-6<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

ARNAM
● Function

Function: Returns the value of an array variable element.

Format: ARNAM(c , m [, n])

c: Array variable name (character string expression).

m , n: Specify the position of an array (numeric expression).

Explanation: This function returns the value of an array variable element represented by character string
c. Array elements can be designated indirectly.

For a one-dimensional array, specify only m (omit n). For a two-dimensional array, specify
both m and n.

When a simple variable is indirectly designated, use NAM function.

ASC
● Function

Function: Returns a character code value.

Format: ASC(c)

c: Character string expression.

Explanation: The code value of the first character of a character string or character string variable c is
provided. For correspondence of characters and code values, see “Appendix 1 LOCAL
CODE LIST”.

ASSIGN
● Statement

Function: Declares the use of modules.

Format: ASSIGN
Module-ID
Sequence-ID =Slot-number]

FC030101.EPS

Module-ID: Four characters (character string) from the beginning of a module model

Sequence-ID: Four characters (character string) from the beginning of a module model

Slot-number: Numeric expression

Explanation: This statement declares the use of I/O module or CPU module of the specified slot number.
This statement must be executed before accessing the module.

Declaration for the sequence CPU module is required only when a program is to be started
or read status for a sequence CPU module using CONTROL statement, SEQACTV state-
ment or STATUS statement.

Use this statement within the main program. If it is used in a subprogram, an error of “AS-
SIGN statement not executed” may occur in I/O access.

(Example)

Module-ID=YD32, XD32, YC16, RS22, … etc.

Sequence-ID=MP30, MP20, AP10

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-7

IM 34M6Q22-01E

ATN
● Function

Function: Returns the arc tangent of an argument.

Format: ATN(x)

x: Numeric expression.

Explanation: This function returns the arc tangent of x in radians. The range of the result is –π/2 thru +π/2
radians.

AUTO
● Command

Function Assigns line numbers automatically.

Format AUTO [[start-line-number [, increment]]

Increment: Positive integer. The default value is 10.

Explanation Entry of an AUTO command displays a line number, which is incremented automatically
each time a statement is subsequently entered. Pressing only the ENTER key without
entering a statement terminates the command and displays the prompt (BSC: or bsc:).

Format Description

AUTO

AUTO start-line-number

AUTO start-line-number, increment

Displays line numbers from the maximum line number
plus 10 with the increment of 10. In the initial status, the
line number starts at 10.

Displays line numbers with the increment of 10, beginning
with the start-line-number.

Displays line numbers with given increment, beginning
with the start-line-number.

[
[

TC030101.EPS

When a statement with the current line number has already been entered, the line number
is displayed with “*” in the first column.

Main programs and subcommands can be entered with the AUTO command.

The maximum line number is 65535. If a line number exceeding the maximum is entered,
an error occurs.

BCD
● Function

Function: Returns a BCD integer converting decimal number.

Format: BCD(x)

x: Numeric expression.

Explanation: This function converts a numeric value or variable represented by “x” into a BCD integer
and returns it. “x” must be an integer with a maximum of four digits. When a numeric expres-
sion contains digits after the decimal point, the numeric value — with any digits after the
decimal point rounded off — is converted into a BCD number.

1st Edition : Oct.29,1999-00

C3-8<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

BINAND
● Function

Function: Returns the result of ANDing in an n bit by bit.

Format: BINAND(m , n)

m , n: Numeric expression.

Explanation: This function deals with bits (numeric values or variables represented by m and n are
ANDed bit by bit).

Example : A=BINAND($FF00 , $FFFF)

The value of A is $FF00.

Only 16-bit integers are returned by this function.

BINNOT
● Function

Function: Returns one’s complement of m.

Format: BINNOT(m)

m: Numeric expression.

Explanation: This function deals with bits (one’s complement of the numeric value or variable repre-
sented by m).

Example : A=BINNOT($00FF)

The value of A is $FF00.

Only 16-bit integers are returned by this function.

BINOR
● Function

Function: Returns m and n ORed bit by bit.

Format: BINOR(m , n)

m , n: Numeric expression.

Explanation: This function deals with bits (numeric values or variables represented by m and n are ORed
bit by bit — see example below).

Example : A=BINOR($FF00 , $0000)

The value of A is $FF00.

Only 16-bit integers are returned by this function.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-9

IM 34M6Q22-01E

BINXOR
● Function

Function: Returns m and n exclusively ORed bit by bit.

Format: BINXOR(m , n)

m , n : Numeric expression.

Explanation: This function deals with bits (numeric values or variables represented by m and n are
exclusively ORed).

Example : A=BINXOR($FF00 , $FFFF)

The value of A is $00FF.

Only 16-bit integers are returned by this function.

BIT
● Function

Function: Returns the bit of the specified bit position.

Format: BIT(m , n)

m: Numeric expression. m is provided only for 16-bit integer.

n: (1) Numeric expression.

(2) Character string or character string variable representing binary pattern.

Explanation: This function deals with bits.

When n=integer type expression (1) above.

Returns a bit value of the n-th digit (starting with the least significant digit 0) for binary
expressions for m (numeric value or variable).

Example : A=BIT($0010 , 4)

Bit value for A is 1 in this example.

When n=character string or character string variable representing binary pattern (2) above.

When a pattern of binary expression for m (numeric value or variable) coincides with n
(character string expression) representing binary pattern, 1 is returned; otherwise, 0 is
returned.

For a bit which is not to be compared, set a capital X in the bit position corresponding to the
character string (or character string variable) — see example below.

Example : A=BIT($0010 , “0XXXX00000010000”)

In this example, the value of A is 1.

BLEN
● Function

Function: Returns the number of bytes in a character string.

Format: BLEN(c)

c: Character string expression.

Explanation: BLEN is used to provide the number of bytes for c (character string or character string
variable).

If the number of characters is required on the standard character basis, use HLEN function
and if the above is required by counting a large character as one character, use LEN
function.

1st Edition : Oct.29,1999-00

C3-10<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

BYE
● Command

Function: Exits BASIC debug mode.

Format: BYE

Explanation: Ends the BASIC processing and exits the debug mode.

When there is a specified resident program (see SETMD RES command) and the
BYE&RUN mode (see SETMD RUN command) is already specified, the resident program
can be executed in REAL mode.

CAUTION
In non-resident mode, the program in the current user program area on display is erased.
Before executing the BYE command, if the current version of the program has not been
saved, save it using the SAVE command (refer to SAVE command).

Even though a BYE command is executed, the common area cannot be initialized (for
details, refer to COM and INIT COM statements).

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-11

IM 34M6Q22-01E

CALL
● Statement

Function: This statement is used to branch to a subprogram.

Format: (1) CALL [subprogram-name

(2) CALL [subprogram-name(actual-argument , actual-argument ,)

Explanation: Format (1) above is used to branch to a subprogram requiring no actual arguments.

Format (2) above is used to branch to a subprogram requiring actual arguments.

However, when the CALL statement is used in the ON statement, arguments cannot be
described.

The number and data types of actual arguments specified in format (2) must be matched
with those of formal arguments defined in the SUB statement.

For actual arguments, the following variables can be used:

(a) Numeric variables and character string variables.

Example :

CALL SI(A , B$, C(*) , D$(*))

:

SUB SI(V , W$, X(*) , Y$(*))

(b) Numeric variables and character string variables (reference only).

Example :

CALL SA([A] , [B$(*)])

:

SUB SA(C , D$(*))

If such variables used as arguments in a subprogram are changed in the subprogram,
an error may occur.

(c) Numeric and character string constants.

Example :

CALL TS(3 , “ABC”)

:

SUB TS(A , C$)

(d) Numeric expressions and character string expressions (reference only).

Example :

CALL MA(10*2+3 , A$+“EF”)

:

SUB MA(I , J$)

(e) Common variable

Common variables are declared with a COM statement. Common variables can be
used in the same format as in (a) or (b).

1st Edition : Oct.29,1999-00

C3-12<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

CALLLIB
● Statement

Function: Branches to a library program.

Format: [CALLLIB [] program-name [(parameter-1 [, parameter-2 ...])]

Program-name: Library name.

Explanation: This statement is used to branch to a library program in the same user area. Variables,
numeric expressions, and array variables can be used as parameters. For more detailed
instructions, see the Instruction Manual for Library Programs. The CALLLIB statement
cannot be used to designate the destination to which a program is branched by ON...
statement.

CALLLIB can be omitted.

CHG(C)
● Subcommand

Function: Converts the character pattern (character string).

Format: C [HG] [delm character-pattern-1 delm character-pattern-2 delm

C [HG] [delm character-pattern-1 delm character-pattern-2 delm [[starting-line-number
– ending-line-number]

delm (delimiter) : This is a one-character symbol inserted to show the character pat-
tern boundary. It must be a symbol that is not used in the character
pattern.

Character-pattern 1: Pattern to be changed (up to 24 bytes).

Character-pattern 2: New pattern (up to 24 bytes).

The length of character-pattern-1 need not be the same as that of
character-pattern-2.

Starting-line number: Line number to start conversion

Ending-line number: Line number to end conversion

Explanation: This subcommand is used only when activating the editor (refer to EDIT command).

The CHG (C) converts a character pattern (character string) including labels, variables,
expressions, and statements to another character pattern.

Converted character patterns are displayed on the editor screen.

Any of the following characters and symbols can be used as the delimiter (delm), but they
cannot be used in the character patterns (see below).

Characters and symbols used as delimiters for CHG (C) command

Lower-case alphabetical characters (a to z)
Symbols (! “ # $ % & ‘ () – ^ – ¥ | @ ` [] { } + ; * , < > . / ? _)

TC030102.EPS

All character patterns (character-pattern-1) in the specified line number are converted.
When the line number is not specified, the character pattern in the line where the cursor
was positioned before executing the CHG (C) command, is converted to character-pattern-
2. If the character pattern (character-pattern-1) does not exist in the specified range of the
line numbers, an error will occur.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-13

IM 34M6Q22-01E

CAUTION

If character-pattern-1 or character-pattern-2 includes “=”, the abbreviation (C) cannot be
used for CHG.

Lower-case alphabetical characters are handled as follows:

(1) when specifying a symbol other than ! as delimiter

Upper-case alphabetical characters are not discriminated from lower-case alphabeti-
cal characters. All are handled as upper-case alphabetical characters.

Example 1 10PRINT “ABC”

>C /BC/de/

10PRINT “ADE”

Example 2 10PRINT “abc”

>C /bc/de/

If Example 1 above is executed, an error “T1-E 121 specified character-
string not found” will occur. This is because “bc” specified as character-
pattern 1 was internally handled as “BC”.

For Example 2 above, this conversion will be executed by changing
delimiter to “!” (refer to Example 5 below).

If a character-string starting with “!” is specified as a character pattern,
upper-case alphabetical characters are discriminated from lower-case
alphabetical characters.

Example 3 10DEFINT A-Z

>C /def/!def/

10!defINT A-Z

(2) When specifying symbol ! as delimiter

In the case of specifying statements, labels, or variable names in lower-case alpha-
betical characters, all are handled as upper-case alphabetical characters.

Example 4 10Z=X+Y

>C !Z!sum!

10SUM=X+Y

In other cases, upper- and lower case alphabetical characters are discriminated.

Example 5 10PRINT “Abc”

>C !bc!de!

10PRINT “Ade”

CHR$
● Function

Function: Returns a character corresponding to the code value specified.

Format: CHR$(n)

n: Numeric expression.

Explanation: This function returns a pattern or character corresponding to code value n (numeric value
or variable).

1st Edition : Oct.29,1999-00

C3-14<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

COM
● Statement

Function: Declares data transfers between multiple programs (including subprograms).

Format: (1) COM [common-variable-name [, common-variable-name , ...]

(2) COM [#Sn [common-variable-name [, common-variable-name , ...]

n (slot-number): Numeric value. Number of the slot in which the CPU card is mounted
(01 to 04)

Explanation: Both programs for sending and receiving data require COM statements. Two formats for
COM statement are provided according to applications.

Format (1) reserves the data area referred to by other programs in its own user area.

Using format (2) data reserved by the programs in other areas is referenced.

Format

(1)

(2)

Purpose Description Applicable area

reservation

reference/
reservation

F3BP20
F3BP30

F3BP20
F3BP30

TC030103.EPS

• Declare the data area referred to by other programs in its
own user area.

• Specify common data for use by subprograms in the
same user area.

• Permit access to COM data stored in another FA500
(BASIC) or YEWMAC line controller program.

• However, data reserved by a YEWMAC line computer
cannot be accessed by a FA500 (BASIC).

• Common variables are assigned to common registers of
the specified sequence CPU in the order described in the
program.

As many common variables as will fit in a line can be specified in a COM statement by
delimiting them with commas “,” . Any given common variable name cannot appear more
than once in COM statement(s) in a program. Care is required not to assign local variables
(variables to be accessible in one program block only) the same names as common vari-
ables. If COM statement is described by dividing it into multiple pages, the area subsequent
to areas defined for the previous COM statement, is used.

A

B

C

D

E

F

Common Area

COM A, B, C
COM D, E, F

FC030102.EPS

All references to a given set of COM data must declare the correct number of data, and
variables with the same data types must be in the same positions in the list. The variable
names used to reference the data may be the same or different in different programs.
Variables declared in a COM statement do not need to be declared by DIM or ALLOCATE
statements. Variables used as internal parameters in such specific statements as FOR–
NEXT cannot be used in COM statements.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-15

IM 34M6Q22-01E

Notice for programming

• For character string variables, use an even number of bytes for the size of a common
variable. If an odd number of bytes is used, an error may occur in a library, or transfer
rate may be reduced.

• The common variable size is set by high limit of the subscript. However, a positive
integer must be used for this set value.

• If common variables specified with COM #Sn are used in a program, data is ex-
changed via the ML-BUS as frequently as the common variables are used.

Thus, it is recommended that programs be written so as to reduce references to
common variables by transferring common variables into local variables (variables
used in a program or subprogram only) in order to increase the speed of program
execution.

• To transfer an common array variable to a local variable, it is convenient to use a
MOVE statement.

CONT
● Command

Function: Restarts a program suspended by a PAUSE statement or pressing [ESC] key.

Format: CONT

Explanation: This command is used in debug mode. The FA-M3 requires to be connected with a per-
sonal computer to execute this command.

When the execution of a program has been suspended by entering a PAUSE statement or
pressing [ESC] key, after checking the variable values by executing an immediately execut-
able statement, the program can be restarted by the CONT command.

An error message is displayed if the CONT command is entered when program execution
is not suspended.

Additionally, the CONT command is invalid and cannot restart the program when:

• a program source is modified (including EDIT),

• a program block is changed (using PROG command).

When the execution of a program is suspended by a STOP or END statement, it cannot be
restarted by the CONT command.

1st Edition : Oct.29,1999-00

C3-16<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

CONTROL
● Statement

Function: Defines module specifications by setting parameters in modules.

Also sets special operations specific to a module.

In addition, performs a ladder sequence program start/stop.

Format: (1) CONTROL [slot-number [[, instrument-number [, port-number]], function-number
...] ; data

(2) CONTROL [slot-number , 1 ; start-stop-parameter

Slot-numbe: Numeric expression (integer type).

Instrument-number: Numeric expression.(Specifying possibility varies with the I/O
card.)

Port-number: Numeric expression. Can be omitted for modules having the
port number.

Function-number: Numeric expression. Register No. is 1 to 99. Numbers other
than registers are 101 to 164.

Data: Numeric expression (integer type). Multiple data can be speci-
fied. Collective specification of array possible (However, not
possible if a register is omitted.)

Start-stop-parameter: Numeric value.

1: Stop

2: Start (reset and start)

3: Start (holding and start)

Explanation: In formats (1), set the operation parameters to the module control registers.

Format (2) is used when the FA500 BASIC program starts/stops the FA500 ladder se-
quence programs.

For details of format (1), see instruction manuals for modules.

COS
● Function

Function: Returns the cosine of x.

Format: COS(x)

x: Numeric expression.

Explanation: This function returns the cosine of the numeric value or variable represented by x (in
radians).

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-17

IM 34M6Q22-01E

DATA
● Statement

Function: Sets data to be assigned to variables specified in a READ statement.

Format: DATA [constant , constant ,

Constant: Numeric or character string constant.

Explanation: DATA statements may appear anywhere within a program, and several DATA statements
can be used within a single program. If a quotation mark (”) is to be used in a character
string, a pair of quotation marks (“ ”) must be entered for it to be treated as a character
string constant. It is optional for character string data to be enclosed in quotation marks
when it does not include commas (,) or spaces. A DATA statement cannot be used in a
multiple statement line; that is, a DATA statement cannot be entered after a colon (:). A
space can be specified as a constant when it is to be assigned to a character string variable
specified in a READ statement. But a space, if specified for a numeric variable, is ignored. A
DATA statement to be read by a READ statement can be specified line by line by a RE-
STORE statement. Multiple statements cannot be used after a DATA statement (including
comments with REM statement).

DATE$
● Function

Function: Returns the date.

Format: DATE$

Explanation: The current date is always entered into DATE$ and can be determined as a character string
of a definite format. DATE$ allows the date to be returned in the character string yy/mm/dd.

The “year” is expressed in the lower two digits of Christian era.

1st Edition : Oct.29,1999-00

C3-18<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

DEF FN
● Statement

Function: Defines a user function (arbitrary expression).

Format: DEF [function-name(formal-argument-list)=expression

Function-name: A string of eight or less characters (alphanumeric) headed by FN.

Formal-argument-list: A list of formal arguments used in the expression. May be omitted.
(character string)

Expression: Numeric value or variable, or character string or character string
variable.

Explanation: A function, once defined in the DEF statement, can be referenced and the result of the
function can be obtained during a program. When a function-name has been specified as a
simple numeric variable name, the function is defined as a numeric-type user-defined
function, for which the right side expression must be a numeric expression. Likewise, when
a function-name has been defined as the name of a simple character variable, the function
is defined as a character-type user-defined function, and the right side expression must be
a character string expression.

Note: The following instructions should be observed when defining a user function:

• A user function must be defined in a program before it is referenced in the same
program.

• A function cannot be defined in two or more places in a program.

• If formal arguments have been specified in the definition of a user function, the user
function must always be referenced with actual arguments when it is to be used within
a program. If the formal argument is of numeric type, a numeric expression must be
used as an actual argument; if the formal argument is of character string type, a
character string expression must be used as an actual argument.

• The formal arguments used in defining a function have an effect only on the right side
expression but have no bearing on any simple variable having the same name in
another statement.

• Multiple formal arguments can be used by separating them with a comma (,). See the
example below.

Example : DEF FNKANSU(X , Y)=100+10*X+Y

• For the variable which is not formal argument in the right side expression, the value is
assigned when the function is referenced. This variable must have been defined
before the function is referenced.

• The defining expression must not contain the function to be defined. (No recursive
expressions)

• The character string expression defined by a character string type function can link a
character string (up to 512 characters long).

• The function defined by a DEF FN statement is valid in the program block defined.

• In the format above, “function-name (formal-argument-list) = expression” cannot be
changed to a character string expression.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-19

IM 34M6Q22-01E

DEFAULT
● Statement

Function: Declares implicit processing on computer errors.

Format: (1) DEFAULT [ON

(2) DEFAULT [OFF

Explanation: In DEFAULT ON status, when overflow occurs as a result of computation, the computation
is completed by using a default value for out-of-range result and then error “Computational
overflow” occurs. In DEFAULT OFF status, the computation is aborted immediately when
overflow occurs as a result of computation and an error occurs. As data is not processed to
store it, the storing variable (left side) holds the previous value. The initial status is DE-
FAULT ON status.

In DEFAULT ON status, if computation results in overflow, the default values are as follows :

Integer

Long integer

Single-precision number

Double-precision number

32767

2147483647

9.223372×1018

9.223372036854776×1018

–32768

–2147483648

–9.223372×1018

–9.22337203685576×1018

Overflow of positive number Overflow of negative number

TC030104.EPS

DEFINT/DEFLNG/DEFSNG/DEFDBL
● Statement

Function: Declares variable types.

Format: (1) DEFINT [Initial-of-variable-name [, initial-of-variable-name]

(2) DEFLNG [Initial-of-variable-name [, initial-of-variable-name]

(3) DEFSNG [Initial-of-variable-name [, initial-of-variable-name]

(4) DEFDBL [Initial-of-variable-name [, initial-of-variable-name]

Explanation: The variable types must be declared. All variables initiated from a character specified by
“initial-of-variable-name” are the specified types.

In DEFINT, an integer type variable is declared.

In DEFLNG, a long integer type variable is declared.

In DEFSNG, a single-precision real type variable is declared.

In DEFDBL, a double-precision real type variable is declared.

A character to be specified by the initial of a variable is one upper-case alphabetical charac-
ter.

When several initials are to be specified in alphabetical order, use a hyphen to join alpha-
betical characters.

In any of four formats (1) to (4), declaration must be made before the description of variable
names in the program block. Description of multiple statements is not permitted. If the
variable type declaration using these statements is omitted, a single-precision type is used.

Even when a variable - passed in a subprogram as an argument - is declared as some
variable type in the subprogram, this declaration is ignored and the variable type on the
calling side is followed.

1st Edition : Oct.29,1999-00

C3-20<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

DEL ● Command
● Subcommand

Function: Deletes a specified lines or the whole of a specified subprogram or specified library pro-
gram in user program area.

Format:
start-line-number [, end-line-numer](can be used as an EDIT subcommand)
subprogram-name (cannot be used as an EDIT subcommand)
 library-name (cannot be used as an EDIT subcommand)

DEL [
FC030103.EPS

Explanation: The current program block (refer to PROG command) will be activated when line numbers
are specified.

Format Description

DEL start-line-number

DEL start-line-number, end-line-number

Deletes only the line with start-line-number.

Deletes all lines from start-line-number to end-line-
number.

[
[

TC030105.EPS

If a specified line number does not exist, an error will occur.

When a subprogram-name is specified, the named subprogram is deleted as a whole.

When a library-name is specified, the whole of the named library program in the user
program area is deleted.

SUB statements cannot be deleted. (An error message is displayed if deletion of a line
containing a SUB statement is attempted.)

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-21

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

DIM
● Statement

Function: Declares an array and allocates an array area in memory corresponding to the declared
size (number of elements) in the array.

Format: (1) DIM [variable-name

(2) DIM [variable-name (size)

(3) DIM [variable-name $ number-of-characters

(4) DIM [variable-name $ number-of-characters (size)

Size: Specifies the upper bound to subscripts as a numeric constant
(positive integer). An array may be one or two dimensional.

Number-of-characters: Up to 512 characters in ASCII code. The default value is 18.
Positive integer.

Explanation: Formats (1) through (4) are used for the declarations of a numeric variable, an array nu-
meric variable, a character string variable, and an array character string variable respec-
tively. The maximum number of subscripts is 32,767 in one or two dimensional array. A
variable name already used as a simple variable cannot be declared as an array name in
the DIM statement. An array name, once declared, cannot be declared in another DIM
statement.

When an array is declared, all elements of the array are set to 0 if the array is of numeric
type, or to null character strings if the array is of character string type.

The lower bound to array subscripts in each dimension is specified in an OPTION BASE
statement (see OPTION BASE). If a value of 513 or more is specified as number-of-charac-
ters, an error occurs.

The array must always be declared in a DIM, ALLOCATE, or COM statement (implicit
declaration of arrays is not possible.)

However, specification for whole array passed by the subprogram argument need not be
declared in the subprogram.

When several variable names are declared in a DIM statement, separate them with com-
mas “,”.

CAUTION

• The DIM statement cannot use variables to declare array size. Use an ALLOCATE
statement when variables are to be used to declare the size of an array.

• The DIM statement cannot be used in multiple-statement lines.

C3-22<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

DISABLE
● Statement

Function: Disables the branch declaration temporarily by ON statement.

Format: DISABLE [[C]

Explanation: The DISABLE statement disables the interrupting branch declaration (ON) temporarily
(except for ON ERROR statement).

The DISABLE C statement disables the branch declaration (ON ...) which has been made
in the same program block before execution except for ON ERROR statement. The branch
declaration after DISABLE C statement execution or in the other program blocks is not
disabled. This temporary inhibition of branch declaration set by DISABLE/DISABLE C
statement is reset by ENABLE/ENABLE C statement.

The DISABLE/ENABLE statement is valid even in other program blocks.

The DISABLE C/ENABLE C statement is valid only in the same program block. However,
the disabled state continues in other program blocks. Further, if the DISABLE statement is
used in a program branched by an ON...GOSUB or ON...CALL statement, the status is
valid when the level returns to low. Also, while branching is disabled by DISABLE state-
ment, the status is automatically reset if WAIT statement is executed. However, the branch-
ing disabled by DISABLE C is not reset.

DISP (DP)
● Statement

Function: Outputs a display list to CRT screen in a personal computer or a YEWMAC line computer.

Format: DISP [display-list

Display-list : Variable names, array variable names, numeric values, or character string
expressions, separated by a comma (,) or semicolon (;).

DISP may be abbreviated as DP.

Explanation: Details, such as output items and delimiters, are the same as those for PRINT statement
(see PRINT statement) except that this statement is for output to CRT screen only.

DISP USING (DU)
● Statement

Function: Outputs a formatted display list on the CRT screen.

Format: image-specification
label
line-number

; display-listDISP [USING [

FC030104.EPS

Image-specification: Format designation(see IMAGE statement provided later)

Line-number: IMAGE statement line number. Numeric value.

Label: IMAGE statement label.

Display-list: Variable names, array variables, numeric values, character string
expressions, separated by a comma (,).

DISP [USING can be abbreviated as DU.

Explanation: Details, such as output items and delimiters, are the same as those for PRINT USING
statement. For more information, see PRINT USING and IMAGE statements.

This statement is valid only in debug mode and ignored in real mode.

<Toc> <Ind> <C3. Syntax > C3-23

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

DIV
● Function

Function: Returns a result of integer division.

Format: DIV(x , y)

x , y: Numeric expression.

Explanation: INT(x)/INT(y) is calculated and the digits after the decimal point are rounded off. Integers,
long integers, single-precision real numbers or double-precision real numbers are used for
x and y. For INT(x), see the INT function.

EDIT ● Command
● Subcommand

Function: Activates a line editor in debug mode.

Format: Subprogram-name
EDIT_ start-line-number
*

EDIT [

FC030105.EPS

Explanation: The EDIT command is usually used for editing or debugging the program.

This command can also be used in subcommand mode.

When the EDIT command is executed, one line of the program is displayed and the next
line is started with the prompt “>”, which is waiting for a subcommand to be entered.
Subcommands can be entered in this condition. Furthermore, this program line comes with
a template, enabling you to edit using a special edit function of MS-DOS.

When the subprogram name is omitted, the program block last specified by the PROG
command is accessed.

If the specified subprogram name does not exist, the main program is accessed.

When entering EDIT command, if an error “command error, command disabled state”
occurs, specify the main program block by PROG command, and again enter the com-
mand.

Format Description

EDIT

EDIT start-line-number

EDIT subprogram-name

EDIT *

Displays the program from the beginning of the program
block.

Displays the program from the start-line-number onward.

Displays subprogram from the head of the specified
program.

• When the EDIT command has already been used in the
same program block:
The display returns to the last EDIT display.

• In other cases, the program listing is displayed starting
with the head of the program block.

[
[

[

TC030106.EPS

C3-24<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

Editor

In Editor screen, it is possible to insert/delete lines line by line.

Enter QUIT or Q to end the editor and to return to command entry screen.

The commands that can be used to activate the editor are called subcommands.

Subcommands are as follows. For details, refer to the descriptions of the subcommands in
this manual.

Subcommand Subcommand
(abbreviations)

Function summary

FIND F Searches for character strings.

QUIT Q Changes from editor screen to command entry screen.

CHG C Interchanges character strings.

LCOPY Copies lines.

EDIT Displays a specified program from its head or from the specified line
number.

DEL Deletes program lines.

RENUM Resets program line numbers.

APPEND A Changes multiple program lines to a single program line.

LIST L Displays program listing.

ERLIST Displays erroneous program lines as a program list.
TC030107.EPS

List of special edit functions

Key Edit function

TC030108.EPS

[F1]
[→]

[F2]

[F3]

[F4]

[F5]

[↓]

[Ins]

[Del]

COPY 1

COPY UP

COPY ALL

SKIP UP

NEW LINE

VOID

INSERT MODE

SKIP 1

Copies one character from template to command line.

Copies characters before the specified character from template to
command line.

Copies all characters remaining in template to command line.

Skips to characters just before the specified characters (do not copy)

Copies the contents of command line to template (create a new template
without pressing Enter key).

Deletes the current command entry and goes to a new line, though
contents of template are not changed.

Will activate Insert Mode.

Skips one character in template (do not copy).

ELSE
● Statement

Function: Indicates the start of ELSE block added to a structured IF THEN block.

Format: ELSE

Explanation: The ELSE statement is optionally added to a structured IF THEN block. When the ELSE
statement is used, the ELSE statement is described separately in one line and conditional
statements are described in the following line and thereafter. For further details, see IF
statement.

<Toc> <Ind> <C3. Syntax > C3-25

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

ENABLE
● Statement

Function: Releases branch declarations disabled by the DISABLE statement.

Format: ENABLE [[C]

Explanation: All branch declarations which were disabled before the ENABLE statement was executed
are released. Only the branch declaration disabled by the last DISABLE C statement is
released by the ENABLE C statement.

The DISABLE statement can be released by any program block. However, the DISABLE C
statement can be released, only by a statement in the same program block.

ENABLE INTR
● Statement

Function: Sets a factor of hardware interruption to an I/O module.

Format: ENABLE [INTR [slot-number [, instrument-number] ; mask

Slot-number: Numeric expression (integer type).

Instrument-number: Numeric expression. The default possibility varies with I/O modules.

Mask: Character string or character string variable.

Explanation: This statement sets a factor of hardware interrupt to an I/O module to enable a program to
be branched.

Since the format is set to an interrupt disabled status if interruption is once generated, it
must be declared again in the interrupt subroutine. In this case, if the statement is used
before the ENTER statement, the program branches twice causing an error. Always declare
this statement after the ENTER statement. The mask pattern is a character string that
indicates the following contents.

“X1, X2, X3”

X1: Receiving completion interrupt

X2: Error interrupt

X
3
: No-data interrupt

In any case, status 1 shows that the interrupt is possible. For more information, see instruc-
tion manuals for each I/O module.

END
● Statement

Function: Terminates a main program.

Format: END

Explanation: The END statement also designates the end of main program block. Thus the END state-
ment must appear as the last program line, and cannot be omitted.

For a program with no STOP statement, this statement functions to terminate program
execution.

C3-26<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

END WHILE
● Statement

Function: Terminates a structured WHILE block.

Format: END [WHILE

Explanation: See WHILE statement.

ENDIF
● Statement

Function: Terminates a structured IF THEN block

Format: ENDIF

Explanation: The structured IF THEN block is terminated with an ENDIF statement. Multiple state-
ments on the same line separated by colons cannot be used (see IF statement).

Always use this statement latest to end the structured IF ... THEN statement.

<Toc> <Ind> <C3. Syntax > C3-27

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

ENTER
● Statement

Function: Enters the data from an I/O module, an I/O buffer or a sequence device.

Format: (1) ENTER [slot-number [, instrument-number]

FUSING
USING
FORMAT
NOFORMAT
BFORMAT

[

image-specification
line-number[

; Input-variable

FC030106.EPS

(2) ENTER [slot-number [, instrument-number [, terminal-number]]

(3) ENTER [input-buffer-name ; input-variable

(4) ENTER [slot-number , device-name string expression NOFORMAT
BFORMAT

[

FC030107.EPS

; input-variable

Slot-number: Numeric expression (integer type).

Instrument-number: Numeric expression. Possibility for omission varies with the I/O
modules.

Terminal-number: Numeric expression (integer type).

Input-buffer-name: Simple variable or array variable (numeric variable or character
string variable), though common variables cannot be used.

Line-number: Line-number of IMAGE statement. Numeric value.

Image-specification: Character string (see IMAGE statement).

Input-variable: Simple variable or array variable (Numeric variable or charac-
ter string variable).

Device-name character string expression :

Character string expression representing a sequence device
name.

Explanation: Format (1) enters the data in complete-return type from I/O modules other than multiple
transmission modules and format (2) enters the data in complete-return type from multiple
transmission modules.

For asynchronous inputs from serial communication I/O modules, use ON INT statement
for receiving asynchronous signals and enter them using ENTER statements. If ENTER is
directly used to receive asynchronous signals without ON INT interruption, the user pro-
gram being executed cannot proceed to the next step until the current input processing is
completed.

Format (3) enters the data of I/O buffers entered with TRANSFER statement. Necessity of
format specification such as NOFORMAT depends on I/O cards. For details, see PART I of
this manual, “7.4 Access To Contact I/O Module” and instruction manuals for each I/O
module.

Format (4) is used for entering the sequence device data.

If an error occurs in ENTER statement when the status information variable is specified in
SET STATUS statement, store the error code to the status information variable. In this case,
no system error occurs.

C3-28<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

ERLIST
● Command

Function : Outputs a list of only program lines containing errors.

Format: ERLIST

Explanation: For the current program block (see PROG command), the ERLIST command outputs a list
of only program lines in which the syntax check functions have found errors.

The output destination is a personal computer display. When this command is executed
after pressing [CTRL] key and [P] key together, the output will be printed out to a printer
connected to the personal computer.

CAUTION

In YM-BASIC/FA, to allow a CALLLIB statement to be omitted, even if an incorrect word (for
example, PRIN for PRINT) other than reserved words are entered, it appears to be a library
name and the ERLIST does not detect any error. When the program is executed, an error
occurs.

ERRC
● Function

Function: Returns an error code.

Format: ERRC

Explanation: Returns the error code (numeric value 1 to 255) for the latest error (see “4. ERROR CODE
LIST”). A detail error code for I/O access error, etc. is provided by the ERRCE function. The
line number in which the error occurs is provided by the ERRL function.

ERRCE
● Function

Function: Returns a detail error code.

Format: ERRCE

Explanation: Returns a detail error code (numeric value) for the most recent error occurred when I/O is
accessed. An error code (returned by the ERRCE function) is used together with an error
code (returned by the ERRC function). (See “4. ERROR CODE LIST”). The error code
returned by the ERRCE function is displayed in hexadecimal format. For ERRCE display,
correspondence with error code is easier in hexadecimal display converted by the HEX$
function. The ERRL function returns a line number in which the error occurs. ERRCE is 16
bit integer value.

ERRL
● Function

Function: Returns the line number in which the most recent error occurred.

Format: ERRL

Explanation: Returns the line number (numeric value) in which the most recent error occurred.

The numeric value given by the ERRL function is a single-precision real number.

The error code is given by the ERRC function.

<Toc> <Ind> <C3. Syntax > C3-29

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

EXP
● Function

Function: Returns the value of the x-th power of e, the base of natural logarithm.

Format: EXP(x)

x: Numeric expression.

Explanation: This function returns the value of x-th power of e, the base of natural logarithm (transcen-
dental number) (x is numeric value or variable). If the value of x is greater than
4366827237527656, an error occurs as computational overflow (x is double precision real
number).

FIND (F)
● Subcommand

Function: Searches for a specified character string.

Format: FIND [[delm] character-string [delm] or F [[delm] character-string [delm]

Delm (delimiter): This is a one-character symbol inserted to show the character pattern
boundary. The delimiter symbol must be a symbol that is not used in the
character pattern.

Character-string: Arbitrary character string (up to 24 bytes) to be searched for. A space is
also regarded as one character.

Explanation: FIND(F) is used only as a subcommand.

Searches for a specified character string backward from the line next to that of the current
cursor position in the display screen (in ascending order of line numbers) and positions the
cursor at the first character of the character string found.

Searching forward cannot be executed. So move the cursor to the head of the character
string before executing another search (the cursor moves to the head by entering EDIT
then pressing Enter key).

Characters and symbols, which are not being used in a character pattern, can be used for
delimiters (delm) (see below).

Characters and symbols used as delimiters for FIND (F) command

Symbols (!” = $ % & ‘ () – ^ – ¥ | @ ` [] { } + ; * , < > . / ? _)
TC030109.EPS

The delimiter may be omitted; however, In this case the only types of character string that
can be specified are a statement name, variable name, label, or branched line number of a
program. Such words must be written completely (not abbreviated). For example, for the
variable name BASIC, the character string BAS is not permitted (however, when delimiters
are used, BAS can be specified).

After the FIND command is executed, the status is subcommand-wait status.

CAUTION

If the character string contains “=”, or “=” is used as the delimiter, the abbreviation (F)
cannot be used.

C3-30<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

FOR–NEXT
● Statement

Function: Executes a specified sequence of statements a specified number of times in a FOR-NEXT
loop.

Format: FOR [variable = initial-value [TO [final-value [[STEP [increment]

NEXT [variable

Variable: Simple numeric variable (a common variable and argument in a subprogram
are not allowed); used for counting. The same variable must be specified for
FOR and NEXT.

Initial-value, final-value, increment: Numeric value or variable.

When STEP is omitted, the increment is assumed to be one (+1) by default.

Explanation: The FOR NEXT statements are always used in a pair and are executed in the following
way.

(1) The initial- and final-values and the increment are computed.

(2) The initial-value is assigned to the variable. A common variable cannot be used.

(3) The statements between FOR and the corresponding NEXT statement are executed.
To exit from the FOR loop (part of the program enclosed between the FOR and NEXT
statements), execute a GOTO or GOSUB statement during the loop period.

(4) When control reaches the NEXT statement corresponding to FOR, the variable is
incremented by the step value when an increment is positive or decremented when
the increment is negative.

(5) The resultant value of the variable is compared with the final-value. The program is
executed depending on the sign of the increment as shown below.

When the increment is positive:

Control returns to (3) if variable % final-value. The statement next to the NEXT
statement is executed if variable > final-value.

When the step is negative:

Control returns to (3) if variable ̂final-value. The statement next to the NEXT
statement is executed if variable < final-value.

Since the computation of the final-value and the increment is completed when control
encounters a FOR statement, the final-value and the increment are unaffected if the
values of the variables used in these numeric expressions are varied during execution
of the FOR-NEXT loop.

The variable values are not changed when control exits from the FOR-NEXT loop on
execution of a GOTO statement, etc.

The variable values are also not changed when control exits from the FOR-NEXT loop in
operation (5). Note that, when the value of the variable specified in the FOR statement is
altered before execution of the corresponding NEXT statement or when the increment is
set to 0 (which results in an infinite loop), operations (2) and (3) are executed based on
these values.

If the increment is non-interger decimal step value, the final-value may not be executed
owing to the error of real operation.

<Toc> <Ind> <C3. Syntax > C3-31

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

Notice for programming

• When a pair of FOR and NEXT statements is nested in another pair of FOR and
NEXT statements, the inner pair of FOR and NEXT statements must be completely
inside the outer pair of FOR and NEXT statements. Also, both the order of line num-
bers and the order of execution must be properly arranged.

• A FOR statement having the same variable name cannot be written within the range
up to NEXT.

• A FOR statement having the same variable name cannot be written in a subroutine
called up within the range up to NEXT.

• During execution of a FOR statement, another FOR statement having the same
variable name cannot be written in a subroutine branched by an interrupt caused by
an ON GOSUB statement.

FREE
● Command

Function: Displays the free program area in bytes.

Format: FREE

Explanation: This command displays the free user program area in bytes (hexadecimal).

Common areas are not included. Using DISP or PRINT with the FREE function displays
free program area as a decimal expression.

Free PC area = personal computer free user program area

Free FA area = FA-M3 free user program area

For the FA-M3 free user program area, part of operation area will be reserved when execut-
ing a program, so the free area is less than just after the program is loaded.

FREE
● Function

Function: Returns free (user area) program area size in the user area in bytes.

Format: FREE

Explanation: When the numeric value obtained by the FREE function is assigned to a variable, if the
numeric value is an integer, overflow may occur. Use a single-precision real number for the
variable.

C3-32<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

GOSUB–RETURN
● Statement

Function: A program branches to a subroutine or returns from the subroutine.

Format: label
line-number

GOSUB

RETURN [RETRY]]
]

FC030108.EPS

Explanation: This statement passes control to the subroutine that begins at a specified line number; the
RETURN statement terminates the subroutine execution and passes control to the state-
ment following the GOSUB statement. A label can be used as a line number. The GOSUB
statement enables the same procedure (subroutine) to be used repeatedly within a pro-
gram.

One subroutine can contain another subroutine. The nesting level depends on the available
working area.

An error occurs if the specified line number does not exist in the program or if a RETURN
statement is executed without previously executing a corresponding GOSUB statement.

For the RETURN RETRY, see RETURN RETRY statement.

GOTO
● Statement

Function: Branches to a specified line unconditionally.

Format: label
destination-line-numberGOTO

FC030109.EPS

]
Explanation: If the specified destination-line-number or label is not used in the program, an error occurs.

Notice for programming

An infinite loop using the GOTO statement to test if an event has occurred, such as “100
GOTO 100”, should be avoided (it simply wastes CPU time). Use a WAIT statement with an
ON (interrupt) request instead — to put the program to sleep until the event (e.g., key entry)
occurs.

HALT
● Statement

Function: Halts I/O operations of I/O module.

Format: HALT [slot-number [, instrument-number]

Slot-number: Numeric expression (integer type).

Instrument-number: Numeric expression (integer type).

Explanation: This statement unconditionally halts (cancels) the specified I/O operations of the I/O whose
I/O has been started by TRANSFER statement.

For details, see instruction manuals for each I/O module.

If an error occurs in the HALT statement when the status information variable is specified in
SET STATUS statement, store the error code to the status information variable. In this case,
no system error occurs.

<Toc> <Ind> <C3. Syntax > C3-33

IM 34M6Q22-01E

HEX$
● Function

Function: Converts a decimal number to a hexadecimal number and returns its character string.

Format: HEX$(x)

x: Numeric expression (–32768 to 32767).

Explanation: Returns a character string consisting of a hexadecimal number (converted from a numeric
value or variable represented by x). Digits after the decimal point included in the value of x
are rounded off. If the hexadecimal number is over four digits (value of x is outside the
range –32768 to 32767), an error occurs.

HINSTR
● Function

Function: Searches for an arbitrary character string in a character string, and returns the position at
which the character string begins.

Format: HINSTR(c1 , c2 [, n])

c1: Character string expression.

c2: Character string expression.

n: Numeric expression.

Explanation: This function searches for the character string represented by c2, starting from the n-th
position from the head of the character string represented by c1 and returns a numeric
value corresponding to the position of the beginning of the character string c2. If n is omit-
ted, the character string c2 is searched for from the beginning of the character string c1.

As the position, a numeric value counted from the head of c1 which is assumed as 1 is
returned. When the character string c2 is not found, the function returns the numeric value
0.

If a large character is used as one character, use the INSTR function.

HLEFT$
● Function

Function: Takes out a character string of arbitrary length starting from the leftmost position of another
character string and returns it.

Format: HLEFT$(c , m)

c: Character string expression.

m: Numeric expression.

Explanation: This function takes out a character string of m characters starting from the leftmost position
of a character string represented by c and returns the character string of m characters.

If m exceeds the total number of characters in character string c, the whole character string
c is returned. If a large character is used as one character, use the LEFT$ function.

1st Edition : Oct.29,1999-00

C3-34<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

HLEN
● Function

Function: Returns the total number of characters of a character string.

Format: HLEN(c)

c: Character string expression.

Explanation: This function returns the total number of characters of a character string represented by c. It
also counts spaces. This allows the length of the character string in printing or display to be
determined.

When a large character is used as one character, use the LEN function.

HMID$
● Function

Function: Returns a character string of specified length from another character string.

Format: HMID$(c , m [, n])

c: Character string expression.

m , n: Numeric expressions.

Explanation: This function returns a character string of n characters, starting from the m-th character
from the leftmost character of a character string represented by c.

If n is omitted, a character string of all the characters to the right beginning with the m-th
character is returned.

When a large character is used as one character, use the MID$ function.

HRIGHT$
● Function

Function: Returns a character string of specified length to the left from the rightmost character of
another character string.

Format: HRIGHT$(c , m)

c: Character string expression.

m: Numeric expression.

Explanation: This function returns a character string of m characters counted to the left from the
rightmost character of another character string represented by c.

If m is equal to or larger than the total number of characters of the character string repre-
sented by c, a character string equal to the character string represented by c is returned.

When a large character is used as one character, use the RIGHT$ function.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-35

IM 34M6Q22-01E

IF … THEN
● Statement

Function: Branches depending on the result of a relational expression or a specified condition.

Format:

ELSE

ENDIF

label
line-number[[[ENDIF]THEN(1) IF

(2) IF

(3) IF

[expression

[[[[THEN[expression statement [ELSE statement] [ENDIF]

THEN[

[
[

[expression
~

~

Line-number and label are also allowed.

FC030110.EPS

Statement: Multiple statements can be used, but any statement that is not allowed in a
multiple statement structure is excluded. Nesting of IF statements is
allowed.

Explanation: A statement next to THEN is executed when the condition is true (other than 0); a statement
next to ELSE is executed when the condition is false (0). Relational expressions such as
(A>0) or the like are used. Other expressions may be used if the result of an expression is
numeric.

Format (1) above.

When the condition is true (≠0), a program branches to the specified line number or
label.

Format (2) above.

When the condition is true (≠0), the statement next to THEN is executed; when the
condition is false (=0), the statement next to ELSE is executed. This format must be
described in one line. GOTO and GOSUB statements can also be described. How-
ever, for these statements, using Format (3) above allows easier programs to be
generated. In Format (2), statements following ELSE may be omitted.

Format (3) above.

When the condition is true (≠0), multiple statements from THEN to ELSE or ENDIF are
executed. When the condition is false (=0), multiple statements (over multiple lines)
from ELSE to ENDIF are executed. Statements following ELSE may be omitted.
Execution of statements is ended by ENDIF. This format allows a program to be
branched regardless of line numbers (labels). This format can also be used for multiple
IF statements.

1st Edition : Oct.29,1999-00

C3-36<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

IFPCNV
● Library

Function: Converts numeric data from IEEE floating-point format to YM-BASIC/FA internal represen-
tation, and vice versa.

Format: [CALLIB [] IFPCNV (icmnd, input, form$, output, ierr)

Explanation: This library is used to convert numeric data from IEEE floating-point format to YM-BASIC/
FA, and vice versa.

Each parameter of this library is described as follows:

icmnd: Specifies the conversion method using integer-type, simple numeric variables.

0: Conversion from YM-BASIC/FA internal representation to IEEE floating-point
format

1: Conversion from IEEE floating-point format to YM-BASIC/FA internal represen-
tation

input: Specifies input variable data (numeric variable or character-string variable).

Either of simple variable or array variable can be used. For numeric variables, use
either single-precision real number or double-precision real type. Conversion will
be executed from the beginning of numeric variables or character-string variables
given to this parameter.

form$: Specifies image specification for conversion. Simple character-string variables
are used. If a meaningless space is included, an error will occur.

Image item

,

Image item

,

)(

Repetition
cycles

Positive integer values
(up to 32767)

Image item
F4

No. of simple-
precision real

numbers
F8

No. of double-
precision real

numbers
U

Bytes for data
not converted

Example: FORM$=”4F4,8,(2F8,6U)”
FORM$=”3(10U,F8,F4)”

FC030111.EPS

<Toc> <Ind> <C3. Syntax > C3-37

IM 34M6Q22-01E

output: Output-data-assigned variable (numeric variable or character-string variable).
Either simple variables or array variables can be used. When numeric variable is
used, either single-precision real number or double-precision real type can be
used.

Output parameters must have the same variable size as that given to input pa-
rameters. Converted data will be assigned at the beginning of this parameter.

ierr: Integer type, simple-numeric variable. If an error occurs during execution of this library,
the error codes below will be assigned. When there is no error, 0 (zero) will be
assigned.

If a parameter error occurs, a BASIC error (88-uu) will be given.

At this time, parameter values are not guaranteed.

Error codes

$81 form$ image specification error

$82 Insufficient input data

$83 Insufficient output data areas

$84 Detected data out of range

● BASIC error codes

A list of BASIC error codes for the library IFPCNV is shown below.

Error code

Error code Detailed error code
Explanation

TC030110.EPS

88 $71

$72

$73

$74

$75

icmnd parameter error

Input parameter error Or parameter following input is not
described (insufficient number of parameters).

form$ parameter error Or parameter following form $ is not
described (insufficient number of parameters).

Output parameter error Or parameter following output is not
described (insufficient number of parameters).

ierr parameter error Or parameter following ierr is not described
(insufficient number of parameters).

Notice for programming

• If error code 88 (numeric value assigned to the ERRC function) in library IFPCNV
occurs, all error messages are related to the library. If an error code 88 occurs, judge
error details by checking detailed error codes (numeric values assigned to ERRC
function, expressed in hexadecimal) and the table above.

• In library IFPCNV, though no BASIC errors occur, other errors may have occurred. In
this case, error codes are returned to ierr parameter of this library. Therefore, it is
necessary to program so that the value of parameter ierr is referred to just after this
library is executed.

1st Edition : Oct.29,1999-00

C3-38<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

IMAGE
● Statement

Function: Defines formats for representing I/O.

Format: IMAGE [image-specification

Image-specification: Format caracter string; need not be enclosed in quotation marks.

Explanation: I/O statements listed below can define I/O formats.

PRINT USING, DISP USING, OUTPUT...USING, ENTER...USING

For these I/O statements, format may be specified in each statement.

When I/O format specifications are complex, or when the same format is used repeatedly,
the IMAGE statement allows you to define I/O formats. Format specification image param-
eters – output and input image specfications – are explained below. (In addition, not so far
as any remark is described, when image specifications are defined in each I/O statement,
image parameters are used in the same way for each output or input image specification.
However, in this ease, quotation marks (”) are necessary before and after image specifica-
tion.) Multiple statements on the same line separated by colons cannot be used (comments
using an REM statement cannot be described with an IMAGE statement either.)

In addition, negative numbers are not permitted for repeated designation of [n]. Also, 0’s
(zero) are all regarded as 1.

(1) Output image specification

Image item

,

Image item

,

)(

Repetition
cycles

(Integer constants)
Can be nested up to eight levels.

(Termination)

IMAGE

,#

%

FC030112.EPS

• Termination

Specify terminator presence/absence if an output is given to the YEWMAC line com-
puter charater panel or the printer connected to the YEWMAC line computer.

If an output is given to a personal computer, CR and LF are always added. Specifying
or % is ignored.

A terminator for output from a serial communication module is set using CONTROL
statement. For details, see instruction manuals for each module.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-39

IM 34M6Q22-01E

• Output statement image items

A
Number of

output
characters

X

Number of
blanks

/

Number of
CR-LFs

@

F

T

B

W

Number of
TOFs

Character
string

constant

D

Number of
characters

Z

Number of
characters

*

Number of
characters

C

S

M
Number of
characters

*

Number of
characters

D

Number of
characters

Z.

E

Character string
output

(numeric data)

Character string data output

Blanks

CR and LF

TOP of FORM

Character string output of numeric data (standard format)

Character string data output (standard format)

Byte data output

Word data output

Character string output

Note: Numeric value representation is allowed up to 64 digits.

Example:

Normal Error

64D
62D.D
D.62D
30D.33D

nD
nD.D
D.nD
nD.nD

65D
63D.D
D.63D
31D.33D

FC030113.EPS

1st Edition : Oct.29,1999-00

C3-40<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

• Character string output (numeric data)

(Example)

S 5 D . 3 D

Sign designation

Number of integer digits

Numerical specification in integer field

Numerical specification in decimal places

Number of decimal places

Delimiter (decimal point)
FC030114.EPS

Sign designation

S: Sign output designation in upper-case alphabetic character; “+” for positive values, “–”
for negative values

M: Sign output designation in upper-case alphabetic character; blank for positive values,
“–” for negative values

Numeric specification

[n] D: Sets the position of n digits; when the number of digits is less than the number of
specified digits, the output is right-justified with zero suppression and leading
zeros replaced with blanks in the integer part. Use the upper-case alphabetic
character for D.

Therefore, nothing is displayed for 0. Equals to Z specification in the decimal part.

[n] Z: Sets the position of n digits; When the number of digits is less than the number of
specified digits, the output is right-justified in the integer part and leading zeros
are output as they are. Use the upper-case alphabetic character for Z.

[n] *: Sets the position of n digits; When the number of digits is less than the number of
specified digits, the output is right-justified in the integer part and leading zeros
are replaced by *.

E: The numeric field containing this symbol is output in a floating point format. An
exponent sign (+ or –) and a three-digit exponent are output for the E specifica-
tion. (The E symbol must be preceded by at least one symbol (D, Z or *) repre-
senting a numeric value.) Use the upper-case alphabetic character for E.

Delimiter

.: A period (.) is output at this position as a delimiter (decimal point).

C: A comma (,) is output at this position as a delimiter of integer part. Use the upper-case
alphabetic character for C.

However, if the numeric value is less than the number of integer part digits, the comma
is omitted.

(Example)

Image specification Output formatNumeric data

S5D
M5D
S5Z
S5*
S5DE
S5D.3D
S5Z.3Z

S3DC2D.3D
S2DC3D.3D
S3DC2D.3DE

 +123
 123
+00123
+**123
+12345E-002
 +123.450
+00123.450
 +1,23.450
 +123.450
+123,45.000E-002

123.45
123.45
123.45
123.45
123.45
123.45
123.45
123.45
123.45
123.45

[[
[[[

[[
[[[

[[

TC030111.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-41

IM 34M6Q22-01E

• Character string data, character strings, blanks are output.

[n] A: n character are output from the corresponding output character string (a large
character corresponds to 2A. Thus, if the n-th character is a large character, that
character is not output but a space is output).

If the corresponding output character is shorter than the specified one, spaces
are added. Use the upper-case alphabetic character for A.

[n] X: n blanks are output.

Character string constant

Can be inserted enclosing another field specification with a double quotation
mark (”) to output a character string unaltered. (A character string constant can be
used only within an IMAGE statement.)

• CR and LF, Top of Form

[n]/: n CR-LFs are output.

[n] @: n Top of Forms are output.

• Numeric data and character string data are output in a standard format

F (numeric data) and T (character string data):

Corresponding data items are output in a free-field format, in which numeric items are
output in a standard format, leading and trailing zeros are suppressed, and the entire
character string is output without blanks before and after character string items.

• Byte data and word data output

B: One-byte binary data output, 0 to 255 (any other value becomes 256 MOD); can be
used only for numeric constants and numeric variables.

W: Two-byte binary data output, –32,768 to 32,767 (–32,768 or 32,767 is output for any
other value); can be used only for numeric constants and numeric variables.

[Remarks]

(i) Repeated symbols (n in the above explanation).

For the described above, integers 1 to 127 can be set.

(ii) Reusing formatted character strings.

If a formatted character string ends before the print list is completed, the formatted
character string is reused from the beginning.

(iii) Field overflow

When a numeric item overflows the range of a specifier, ?????? is output at the
position corresponding to the data.

(2) Input image specification

Image item

,

Image item

,

)(

Repeat
count

IMAGE

FC030115.EPS

1st Edition : Oct.29,1999-00

C3-42<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

• Termination

Entry of CR and LF terminates reading (default). The termination designation can be
changed with an EOL (end of line) statement.

• Input statement image items

N
Number of

input
characters

A
Number of

input
characters

X
Number of
characters

skipped
/

F

T

B

W

Number of lines
skipped

Character string data input

Character string numeric data input

Character string numeric data input
(assumed to be free format data)

Character string data input
(until character string variable full or input data not found)

Byte data input

Word data input

FC030116.EPS

[n] N: All the digits including sign and delimiter in one numeric data item is set to [n]. A
period is assumed to be the delimiter between the integer and the fraction parts.

[n] A: n characters are input to a character string variable.

[n] X: n characters are skipped.

[n] /: All characters are skipped until the n-th CR-LF is encountered.

F: Numeric data is input in a free field format using a decimal point as a delimiter
between the integer and the fraction part. Leading spaces are ignored and non-
numeric characters after numeric data items are handled as delimiters. Numeric
data characters include +, –, E, decimal point, and digits 0 to 9.

T: Character string data are input in a free-field format. Input to a character string
variable is completed when a number of characters equivalent to the defined
length of the variable is input (this limit does not apply when the input data is
finished).

B: 1-byte binary input. n [B] is not possible. Can be used only for numeric variables.

W: 1-word binary input. n [W] is not possible. Can be used only for numeric vari-
ables.

Use each upper-case alphabetic character for N, A, X, F, T, B, and W.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-43

IM 34M6Q22-01E

INICOMM3
● Library

Function: Initializes (0-clear) the shared register area in its own CPU

Format: [CALLLIB [] INICOMM3

Explanation: Initializes the shared register area in its own CPU.

This library initializes (0-clear) the shared register area in its own CPU defined by the
configuration. When the shared register area is not configured, the initialization is not
performed.

INIT COM
● Statement

Function: The INIT COM statement initializes the common variable area in the relevant program area.

Format: INIT [COM

Explanation: Numeric variables are initialized to 0 and character variables are initialized to null.

Common areas cannot be initialized with command NEW used for program area initializa-
tion.

INSTR
● Function

Function: Searches for an arbitrary character string in a character string, and returns the position at
which the character string begins.

Format: INSTR(c1 , c2 [, n])

c1: Character string expression.

c2: Character string expression.

n: Numeric expression.

Explanation: This function searches for the character string represented by c2, starting from the n-th
position from the head of the character string represented by c1 and returns a numeric
value corresponding to the position of the beginning of the character string c2. If n is omit-
ted, the character string c2 is searched for from the beginning of the character string c1.

As the position, a numeric value counted from the head of c1 which is assumed as 1 is
returned. When the character string c2 is not found, the function returns the numeric value
0.

Both a standard and a large character are handled as one character. If a character string is
to be handled on the standard character basis, use HINSTR function.

INT
● Function

Function: Returns an integer part of x.

Format: INT(x)

x: Numeric expression.

Explanation: This function returns the largest integer less than or equal to x (i.e., by rounding off decimal
places).

1st Edition : Oct.29,1999-00

C3-44<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

IOSIZE
● Function

Function: Returns the number of bytes transferred by executing the latest I/O statement.

Format: IOSIZE

Explanation: Statements set are ENTER, OUTPUT.

ENTER and OUTPUT statements used with TRANSFER statement cannot be included.

Differences between IOSIZE and BLEN statements

A BLEN handles data in bytes and ends counting of data when the null code is found. So
when a binary I/O pattern maches the null code, real number of bytes may not be returned.
The IOSIZE can return real number of bytes even if the binary I/O pattern matches the null
code (see below).

Example: When the following data is transferred:

A B $00

Binary pattern

$01 C D CR LF

FC030117.EPS

BLEN returns two bytes.

IOSIZE returns eight bytes.

LASTBIT
● Function

Function: Returns the last bit removed from a word as a result of a shift or rotation.

Format: LASTBIT

Explanation: This function deals with bits. This function returns the bit value of 0 or 1, the last bit removed
from a word by the SHIFT, LSHIFT or ROTATE, LROTATE functions.

LBCD
● Function

Function: Returns a BCD double-length integer.

Format: LBCD(x)

x: Numeric expression.

Explanation: This function converts a numeric value or variable (decimal number) represented by “x” in
the long integer type into a BCD integer and returns it.

“x” must be an integer with a maximum of eight digits. When a numeric value or variable
contains digits after the decimal point, the numeric value – with any digits after the decimal
point rounded off – is converted into a BCD number.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-45

IM 34M6Q22-01E

LBINAND
● Function

Function: Returns the result of ANDing bit by bit.

Format: LBINAND(m , n)

m , n: Numeric expression.

Explanation: This function deals with bits in the long integer type.

Numeric values and variables represented by m and n are ANDed bit by bit.

Example : A=LBINAND($FF000000 , $FFFFFFFF)

The value of A is FF000000.

The object is long integers only.

LBINNOT
● Function

Function: Returns one’s complement of m.

Format: LBINNOT(m)

m: Numeric expression.

Explanation: This function deals with bits in a long integer type

OneÅfs complement of the numeric value or variable represented by m.

Example : A=LBINNOT($0F0000FF)

The vlaue of A is $F0FFFF00.

The object is long integers only.

LBINOR
● Function

Function: Returns m and n ORed bit by bit.

Format: LBINOR(m , n)

m , n: Numeric expression.

Explanation: This function deals with bits in a long integer type.

Numeric values or variables represented by m and n are ORed bit by bit – see example
below.

Example : A=LBINOR($FF0000F0 , $00000000)

The value of A is $FF0000F0.

The object is long integers only.

1st Edition : Oct.29,1999-00

C3-46<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

LBINXOR
● Function

Function: Returns m and n exclusively ORed bit by bit.

Format: LBINXOR(m , n)

m , n: Numeric expression.

Explanation: This function deals with bits in a long integer type.

Numeric values or variables represented by m and n are exclusively ORed.

Example : A=LBINXOR($FF0000F0 , $FFFFFFFF)

The value of A is $00FFFF0F.

The object is long integers only.

LBIT
● Function

Function: Returns the bit of a specified bit position.

Format: LBIT(m , n)

m: Numeric expression.

n: (1) Integer type expression.

(2) Character string or character string variable representing binary pattern.

Explanation: This function deals with bits in the long integer type and the long integers only.

When n=integer type expression (1) above :

Returns a bit value of the n-th digit (starting with the least significant digit 0) for binary
expressions for m (numeric value or variable).

Example : A=LBIT($01000010,4)

Bit value for A is 1 in this example.

When n=chracter string or character string variable representing binary pattern (2) above:

When a pattern of binary expression for m (numeric expression) coincides with n
(character string expression) representing binary pattern, 1 is returned; otherwise, 0 is
returned.

For a bit which is not to be compared, set a capital X in the bit position corresponding
to the character string (or character string variable) – see example below.

Example : A=LBIT($01000010 , “00000001000000000XXXX00000010000)

In this example, the value of A is 1.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-47

IM 34M6Q22-01E

LCOPY ● Command
● Subcommand

Function: Copies a statement in a user area line-by-line.

Format: (1) LCOPY [source-line-number, destination-line-number

(2) LCOPY [source-line-number-1 – source-line-number-2, destination-line-number

Explanation: The LCOPY command is used as a command (in command entry mode) or as a
subcommand (used in an editor).

(1) When this command is used in format (1) above:

A source line specified by a source-line-number is copied t a destination-line-number.
The statement with the source-line-number remains unchanged. If the destination-
line-number already exists, the original statement is erased and only the copied
statement remains.

(2) When LCOPY is used in format (2) above:

Line spaces remain in each line of the source line numbers to create a copy of each
line of the source-line-number-1 to source-line-number-2 after the destination line
numbers. If the source-line-number-1 is not equal or smaller than the source-line-
number-2, an error occurs.

If the destination line numbers of some or all copied lines coincide with the line num-
bers of existing lines, these copied lines will replace the existing lines.

LEFT$
● Function

Function: Returns a substring of specified length, starting from the leftmost character.

Format: LEFT$(c , m)

c: Character string expression.

m: Numeric expression.

Explanation: This function is used to isolate a specific number (m) of string characters starting from the
leftmost character in the string.

Both standard and large characters are handled as each one character.

When “m” is greater than the number of all characters in the character string, the entire
character string (c) is returned.

If character strings are handled on the standard character basis, use HLEFT$ function.

LEN
● Function

Function: Returns the number of characters in a character string c.

Format: LEN(c)

c: Character string expression.

Explanation: A space is counted as one character. When characters are counted in byte units, use the
BLEN function. When characters are counted on the standard character basis, use HLEN
function.

Both standard and large characters are handled as each one character.

1st Edition : Oct.29,1999-00

C3-48<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

LET
● Statement

Function: Assigns the result of computation of the expression on the right side to the variable on the
left side.

Format: (1) LET [variable name=expression

(2) Variable name=expression

Variable: Name of a numeric variable or character string variable.

Expression: Numeric expression or character string expression.

LET can be omitted.

Explanation: When the right side contains a numeric expression, the left side must be a numeric vari-
able; when the right side contains a character string expression, the left side must be a
character string variable.

When the size of a character string variable is defined by a DIM statement, the number of
characters is limited only by the number of characters defined by this DIM statement. Only
the plus sign (+) can be used in character string expression. It denotes a concatenation of
character strings.

When an integer-type numeric variable is assigned, the result of computation of an expres-
sion on the right side is rounded off to an integer value for assignment.

LHEX$
● Function

Function: Converts a decimal number to a hexadecimal number and returns the character sring.

Format: LHEX$(x)

x: Numeric expression (–2147483648 to 2147483647)

Explanation: Returns a character string consisting of a hexadecimal number (converted from a numeric
expression represented by x in a long integer type). Digits after the decimal point included
in the value of x are rounded off. If the hexadecimal number is over eight digits (the value of
x is outside the range –2147483648 to 2147483647), an error occurs.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-49

IM 34M6Q22-01E

LINKLIB
● Command

Function: Loads a library file into user area.

Format: LINKLIB [program name

Program-name (character string): [device-specification:] [path \] file-name [.extension]

When [device-specification] is omitted, the current
volume is specified.

Extension cannot be omitted as far as it is used.

Explanation: Loads a library file into the user area. Programs in the user area are not affected by the
LINKLIB command.

If the identical library name or subprogram already exists in the user area, an error occurs.
When a library is replaced with another library having the same name, delete the existing
library with a DEL command and load the new library file into the user area with LINKLIB
command.

User intermediate language format to save user programs together with libraries. If user
programs are saved in source form, they are saved without libraries. For intermediate
format, refer to the SAVE command.

When a library is in the user area, this is shown by the LIST PROG command (see the LIST
command). Some libraries do not require the LINKLIB command to load them. For such
libraries, if the LINKLIB command is executed, an error occurs. For more information, see
YM-BASIC/FA REFERENCE.

1st Edition : Oct.29,1999-00

C3-50<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

LIST (L)
● Command

Function: Outputs a specified range of program lines in user area to the display of a personal com-
puter or to a printer. Press and hold [CTRL] key and then press [P] key. This action will
output to both the display of a personal computer and to a printer.

An error message is also generated and output if any syntax errors are detected in the
program.

Format:
LIST [

Start-line-number [, end-line-number]
All
PROG

FC030118.EPS

LIST may be abbreviated as L.

Explanation: The ranges of program listing associated with the line number specifications are as follows:

Format Description

LIST

LIST start-line-number

LIST start-line-number,
End-line-number

LIST ALL

LIST PROG

Outputs all lines of the program block specified in the
PROG Command.

Outputs only the line with the start-line-number of the
program block specified in the PROG command.

Outputs the lines from start-line-number to the end-line-
number of the program block that is specified in the PROG
command.

Outputs all program lines in program blocks in the user
area.

Outputs program names, subprogram names and library
names in the use area.

[
[

[
[

TC030112.EPS

To pause or abort listing:

• Press [CTRL] key and [S] character key together

Suspends program listing. Pressing any key e.g., space key restarts the output of
listing.

• [ESC] key

Aborts program listing.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-51

IM 34M6Q22-01E

LOAD
● Command

Function: Loads a program stored in auxiliary memory into the current user area.

Format: LOAD [progra-name

Program-name (character string): [device-specification:] [path \] file-name [.extension]

When [device-specification] is omitted, the current drive
is specified. Extension cannot be omitted as far as it is
used.

Explanation: In non-resident mode, LOAD command deletes all programs in the user area that is now
open, then loads the program specified by the program name stored in auxiliary memory to
the user area.

When there are any resident programs, an error will occur. To delete the resident program
then load a new program, change the resident program to non-resident (refer to
SETMDRES command and NEW command.).

For the program name, refer to the SAVE statement.

CAUTION

Program LOAD time is depended on the program size.

When the user program size is 120K bytes, it takes more than three minutes in 9600bps.

During the execution, “Downloading now” message appears.

LOG
● Function

Function: Returns the natural logarithm.

Format: LOG(x)

x: Numeric expression (x is greater than 0).

Explanation: This function returns the natural logarithm, whose base is natural number e, represented by
x (numeric value or variable).

x must be a positive number.

1st Edition : Oct.29,1999-00

C3-52<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

LROTATE
● Function

Function: Rotates (shifts) bits.

Format: LROTATE(m , n)

m , n: Numeric expression (integer).

Explanation: This function deals with bits in long integer type. This function is used to rotate (shift) bits
represented by m (numeric value or variable) by n bits. When n is positive, the bits are
rotated right. When n is negative, the bits are rotated left.

Last bit removed from a bit string is assigned to the LASTBIT function. When n is 0, rotation
is not performed and the value of the LASTBIT function is 0.

Example: For LROTATE($9010A0C0 , –3)

00000011000001010000100000001001$9010A0C0

0 0

LASTBIT

0100000011000001010000100000001$80850604

FC030119.EPS

LSHIFT
● Function

Function: Shifts bits.

Format: LSHIFT(m , n)

m , n: Numeric expression (integer type).

Explanation: This function deals with bits in long integer type. This function is used to shift bits repre-
sented by m (numeric value or variable) by n bits. When n is positive, the bits are shifted
right. When n is negative, the bits are shifted left. Last bit removed from a bit string is as-
signed to the LASTBIT function.

When n is 0, the shift is not performed and the value of the LASTBIT function is 0.

Example: For LSHIFT($AB12CD49 , 2)

10010010101100110100100011010101$AB12CD49

0 0

LASTBIT

1001010110011010010001101010100$2AC4B352

FC030120.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-53

IM 34M6Q22-01E

MERGE
● Command

Function: Merges a program stored in auxiliary storage with the user program area.

Format: MERGE [progra-name

Program-name (character string): [device-specification:] [path \] file-name [.extension]

When [device-specification] is omitted, the current drive
is specified. Extension cannot be omitted as far as it is
used.

Explanation: Merges a program in auxiliary storage with the current program block (refer to the PROG
command).

The MERGE command performs substitution or insertion of line numbers by checking them
against the line numbers of the program in main memory.

Accordingly, if a statement with the same line number as that of an existing statement in the
program area is entered, the statement in the program area is replaced with the new
statement. To preserve the program in the program area intact, therefore, it is necessary to
eliminate duplicated line numbers by using a RENUM command, or the like. The program to
be merged must be in source file format. Programs in intermediate language cannot be
merged.

For the source file format and intermediate language file format, see the SAVE command.

CAUTION

If programs in the auxiliary storage contain a SUB statement, MERGE may not work
correctly. Use an APPEND command in this case.

MID$
● Function

Function: Returns a character string extracted from character string c.

Format: MID$(c , m [, n])

c: Character string expression.

m , n: Numeric expression.

Explanation: This function returns a character string composed of n characters extracted from the m-th
character at the left side of character string c. When n is omitted, the character string from
the m-th character to the end of character string c is extracted.

MOD
● Function

Function: Returns the remainder after integer division.

Format: MOD(x , y)

x , y: Numeric expression.

Explanation: Calculates INT(x)/INT(y) and returns a remainder.

Integers, long integers, single-precision real numbers, and double-precision real numbers
can be used. For INT(x), see INT function.

1st Edition : Oct.29,1999-00

C3-54<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

MOVE
● Statement

Function: Moves all the data in an array to another array.

Format: MOVE [array-name-1(*) , array-name-2(*)

Explanation: All the data in the array identified by array-name-1 is moved to the array identified by array-
name-2. The two arays must have the same variable type (numeric or character string).

The arrays may not necessarily have the same array size. If the arrays do not have the
same array size, move data on the basis of the array having the smaller array size.

The data in the array identified by array-name-1(*) is unaffected.

The array data size which MOVE statement can copy is 64KB or less.

CAUTION

This statement cannot be executed if a different array name is declared in the same com-
mon area by RECOM statement.

NAM
● Function

Function: Returns the value of the variable name in character string c.

Format: NAM(c)

c: Character string expression.

Explanation: A quotation mark (”) is not necessary. Numeric variable name and charac-ter string variable
name can be assigned to character string c.

This function enables a simple variable to be designated indirectly. In the case of array
variable, use the ARNAM function.

Either numeric variables or character string variables can be used as variables.

NEW
● Command

Function: Initializes a user program area.

Format: NEW

Explanation: Initializes user program area and prepares it to store new programs. Resident programs
are also initialized. However, common area is not initialized (see the INIT COM statement).

NEXT
● Statement

Function: Defines the end of a program range with FOR statement.

Format: NEXT [simple-numeric-variable

Explanation: See FOR – NEXT statement.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-55

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

ON EOT/OFF EOT
● Statement

Function: The ON EOT statement declares branching to the specified processing when data trans-
mission by the TRANSFER statement is completed. The OFF EOT statement resets the
declaration of the ON EOT statement.

Format:
label
line-number

[

[GOSUB

[GOTO

[CALL subprogram-name[slot-number [, port-number](1) ON

(2) OFF

[EOT

[EOT[slot-number [, port-number]

label
line-number

FC030121.EPS

Slot-number: Numeric expression (integer type).

Port-number: Numeric expression (integer type).

Explanation: The ON EOT statement declares branching to the specified processing when the data
transfer to I/O modules (specifically to communication card) by TRANSFER statement is
completed.

ON EOT … CALL … can be used to branch to a subprogram but no argument can be
passed to the subprogram.

The OFF EOT statement cancels the declaration of the ON EOT statement.

For more information, see instruction manuals for each I/O module.

CAUTION

ON EOT…CALL… can be used to branch to a subprogram, but no argument can be
passed to the subprogram.

C3-56<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

ON ERROR/OFF ERROR
● Statement

Function: The ON ERROR statement is used to prevent some recoverable program execution errors
from halting execution by causing branching when an error occurs and suppressing the
normal error process. The OFF ERROR statement resets the declaration of the ON ER-
ROR statement.

Format: label
line-number[GOSUB

label
line-number[GOTO

[CALL subprogram-name[(1) ON

(2) OFF

[ERROR

ERROR[

FC030122.EPS

Explanation: When an error occurs and the ON ERROR condition has been established, execution is
transferred to the specified line. Then the built-in functions ERRL, ERRC and ERRCE can
be tested, and error recovery procedures can be executed. These built-in functions return
information related to the last error trapped with ON ERROR. ERRL returns the line-num-
ber in which the most recent program execution error occurred. ERRC returns the error
code of the most recent program execution error.

ERRCE returns the detailed error information for a hardware error.

When a control transfer has been caused by GOSUB or CALL, processing resumes on the
line following the line in which the error occurred upon execution of a RETURN or SUBEXIT
(or SUBEND) statement after error processing.

RETURN RETRY or SUBEXIT RETRY can be used to return from error processing to retry
executing the line affected by an error (hardware error). To transfer control with a GOSUB or
CALL, the program execution level is raised to an interrupt level, regardless of the previous
execution level and restored on execution of RETURN or SUBEXIT (or SUBEND). For a
control transfer with GOTO, the program execution level remains unchanged regardless of
the previous execution level. An interrupt is generated immediately when an error occurs in
a multiple statement line, and all the remaining statements on the line are ignored.

Without an ON ERROR declaration, program execution is terminated when an error
occurs. An error message is output together with the program execution in the debug mode.

An ON ERROR statement declared in a subprogram is cancelled when a SUBEXIT (or
SUBEND) statement is executed. The ON ERROR statement is valid only for one program
block. When program execution is transferred to other program blocks, the ON ERROR
statement should be declared again. If the error-recovery routine branched with ON ER-
ROR GUSUB (or CALL) itself contains an error, program execution is terminated with an
error message. When the status information variable has been set by a SET STATUS
statement, control transfer does not occur with an ON ERROR statement even if the execu-
tion of a “file access statement” or an input/output statement (see SET STATUS statement)
causes an error. An ON ERROR CALL... can be used to branch to a subprogram, but no
arguments can be passed to the subprogram. An OFF ERROR statement cancels the
declaration of the ON ERROR statement.

CAUTION

• The ON ERROR statement is valid only in one program block. When control is moved
to the other block, the ON ERROR statement must be declared again.

• ON ERROR CALL … can branch to a subprogram, but no argument can be passed to
the subprogram.

<Toc> <Ind> <C3. Syntax > C3-57

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

ON INT/OFF INT
● Statement

Function: Declares/cancels interruptions by keying in character string.

When interruptions are declared, specify the branch destination for the interrupt.

Format:
label
line-number[GOSUB

label
line-number[GOTO

[CALL subprogram-name[[slot-number [, instrument-number](1) ON

(2) OFF

[INT

[INT[slot-number [, instrument-number]
FC030123.EPS

Slot-number: Numeric expression (integer type).

Instrument-number: Numeric expression (integer type).

Explanation: ON INT statement branches the program control to the specified line number or subpro-
gram when an interrupt request from an I/O module is received.

ON INT statement is valid until an OFF INT statement is executed. ON INT … CALL … can
be used to branch to a subprogram, but no argument can be passed to the program.

An OFF INT statement is used to cancel the declaration of ON INT statement.

For more information, see instruction manual for each I/O module.

CAUTION

ON INT…CALL… can be used to branch to a subprogram, but no argument can be passed
to the subprogram.

C3-58<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

ON SEQEVT/OFF SEQEVT
● Statement

Function: These statements declare/cancel interruption acceptance owing to event generation in a
ladder program.

When interruptions are declared, specify the branch destination for the interrupt.

Format:
label
line-number

[

[GOSUB

label
line-number[GOTO

[CALL subprogram-name[signal-name [, variable-name](1) ON

(2) OFF

[SEQEVT

[SEQEVT[signal-name
FC030124.EPS

Signal-name: Character string or character string variable of up to 8 bytes repre-
senting an event.

Variable name: Variable (integer type).

Explanation: The ON SEQEVT statement declares branching to the specified BASIC program process-
ing corresponding to a signal name when the signal is received from the ladder sequence
program (generated by interrupt only application command to BASIC).

Interrupt to BASIC program from the ladder sequence program is informed after execution
of ladder sequence program command.

Specify a variable name to receive data from the ladder program.

Only integer type values are valid.

The OFF SEQEVT statement cancels the ON SEQEVT declaration.

10 DEFINT D
100 ON SEQEVT "SW01ON",DATA GOSUB A@

BASIC program

Ladder program

Destination of notifying interrupt
Data
Signal name

Signal transmission

SW01

SIGNAL SW01ON 1 2

FC030125.EPS

CAUTION

ON SEQEVT…CALL… can be used to branch to a subprogram, but no argument can be
passed to the subprogram.

<Toc> <Ind> <C3. Syntax > C3-59

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

ON TIME/OFF TIME
● Statement

Function: The ON TIME statement declares interrupts at each interval at the designated period at or
following the specified time and designates the branching destination.

The OFF TIME statement resets the branch at a specified time.

Format:
label
line-number[GOSUB

label
line-number

[GOTO

[CALL subprogram-name[#time-number , time [, time-interval](1) ON

(2) OFF

[TIME

[TIME[#time-number

[

FC030126.EPS

Timer-number: Specify any of 1 to 8. A numeric value or variable (integer) is set.

Time: Specifies time as a character string expression in the format
“hh:mm:ss” (24-hour system).

Time-interval: Specifies the interval (in seconds) when a control transfer occurs
after the time specified as above. Numeric value or variable. (omis-
sible)

Explanation: When the specified time is reached, control passes to a specified line number, to the
subroutine starting at a specified line number, or to the specified subprogram if the control
transfer is caused by GOTO, GOSUB, or CALL respectively.

After a control transfer caused by GOSUB or CALL, control returns to the original execution
flow on completion of RETURN or SUBEXIT respectively.

If a control transfer is caused by GOSUB or CALL, the program execution level is raised to
an interrupt level; if the control transfer is caused by GOTO, the program execution level is
unaffected and only the execution flow is altered.

A branch caused by the ON TIME statement is valid only once. For example, if a branch is
required every day at a specific time, first branch and then execute an ON TIME statement
or set the time-interval to 86400 seconds (24 hours). The timer numbers can be used
independent of those in ON TIMER statement. Therefore, it is not necessary to consider
duplication of timer numbers in ON TIME and ON TIMER statements. ON TIME … CALL …
can be used to branch to a subprogram, but no arguments can be passed to the subpro-
gram.

CAUTION

ON TIME…CALL… can be used to branch to a subprogram, but no argument can be
passed to the subprogram.

C3-60<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

ON TIMEOUT/OFF TIMEOUT
● Statement

Function: Declares and releases interrupt when an I/O operation is not terminated within the speci-
fied time.

Specifies the branch destination when an interrupt occurs.

Format:
label
line-number

[

[GOSUB

label
line-number[GOTO

[CALL subprogram-name[slot-number [, instrument-number](1) ON

(2) OFF

[TIMEOUT

[TIMEOUT[slot-number [, instrument-number]
FC030127.EPS

Slot-number: Numeric expression (integer type).

Instrument-number: Numeric expression (integer type).

Explanation: The ON TIMEOUT statement declares interrupt when an I/O operation specified by SET
TIMEOUT statement is not terminated within the specified time. An ON TIMEOUT state-
ment is valid until OFF TIMEOUT statement is executed. ON TIMEOUT ... CALL ... can be
used to branch to a subprogram, but no arguments can be passed to the subprogram. An
OFF TIMEOUT statement is used to cancel the declaration of the ON TIMEOUT statement.

For details, see instruction manuals for each I/O module.

CAUTION

ON TIMEOUT…CALL… can be used to branch to a subprogram, but no argument can be
passed to the subprogram.

<Toc> <Ind> <C3. Syntax > C3-61

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

ON TIMER/OFF TIMER
● Statement

Function: Declares or releases interrupt after a specified time interval elapses.

When interruptions are declared, specify the branch destination for the interrupt.

Format:
label
line-number

[

[GOSUB

label
line-number[GOTO

[CALL subprogram-name[#timer-number, time-interval(1) ON

(2) OFF

[TIMER

[TIMER[#timer-number FC030128.EPS

Timer-number: Specify any of 1 to 8. A numeric expression.

Time-interval: The time interval (in ms) to the time when control transfers to the
specified line. 1 to 268435455. A numeric expression.

Explanation: The ON TIMER statement declares interrupt and branch destination after a specified time
interval elapses.

Once a timer is activated by an ON TIMER statement, a control transfer occurs at the
specified time interval until the timer is deactivated by an OFF TIMER statement. The time
interval can be set in ms (1/1000 sec). Its range is 1 to 604800000 (7 days).

If a branch is caused by GOSUB or CALL statement, control is returned to the original
program execution flow by RETURN statement or SUBEXIT (or SUBEND) statement
respectively. If a branch is generated by GOSUB or CALL statement, the program execu-
tion level is raised to an interrupt level; but for a branch by GOTO statement, the program
execution level is unaffected and only the execution flow is altered.

The timer numbers can be used independent of those in ON TIME statement. Therefore, it
is not necessary to consider duplication of timer numbers in ON TIME and ON TIMER
statements.

ON TIMER … CALL … can be used to branch to a subprogram, but no argument can be
passed to the subprogram. An OFF TIMER statement is used to reset the ON TIMER
statement declaration.

CAUTION

ON TIMER…CALL… can be used to branch to a subprogram, but no argument can be
passed to the subprogram.

C3-62<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

ON … GOSUB
● Statement

Function: Passes control to one of many subroutines based on the results of the computation of a
numeric expression.

Format: label
line-number-1GOSUB ,

label
line-number-m …[ON [numeric-variable [

FC030129.EPS

Explanation: The value of a numeric-variable is rounded off to an integer following JIS standard. Control
passes to the subroutine starting at line-number-1 if the integer is 1, or to the subroutine
with line-number-m if the integer is m.

After RETURN statement is executed, the statement next to ON GOSUB statement is
executed.

The numeric variable rounded to an integer is less than 1 or greater than the last line
number, the statement next to ON GOSUB statement is also executed.

ON … GOTO
● Statement

Function: The ON GOTO statement passes control to a line number or label based on the results of
the computation of a numeric expression.

Format: label
line-number-1GOTO ,

label
line-number-m …[ON [numeric-variable [

FC030130.EPS

Explanation: The value of a numeric variable is rounded off to an integer following JIS standard. Control
passes to the line with line-number-1 if the integer is 1, or to the line with line-number-m if
the integer is m.

The statement next to the ON GOTO statement is executed when the value of the numeric
variable rounded off to an integer is less than 1 or greater than m which corresponds to the
last specified line number.

OPTION BASE
● Statement

Function: Specifies the starting number (lower bound) of array subscripts.

Format: OPTION [BASE [subscript-start-number

Subscript-start-number: Specify either 0 or 1.

Explanation: Subscripts start with 0 unless otherwise specified by an OPTION BASE statement. The
OPTION BASE statement must be specified at only one position in the program before any
array variables are used.

After the execution of the OPTION BASE 1 statement, if 0 is used for the element of array
variable, an error occurs.

<Toc> <Ind> <C3. Syntax > C3-63

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

OUTPUT
● Statement

Function: Outputs data to an I/O module, an I/O buffer or a sequence device.

Format:

output-buffer-name; output-variable
slot-number, device-name-character-string-expression [NOFORMAT]

FC030131.EPS

slot-number, terminal-number
NOFORMAT
BFORMAT ; output-variable

image-specification
line-number

[

[

[

USING

; output-variable

; output-variable

BFORMAT
NOFORMAT

[
[

[
[

slot-number [, instrument-number](1) OUTPUT

(2) OUTPUT
(3) OUTPUT

(4) OUTPUT

Slot-number: Numeric expression (integer type).

Instrument-number: Numeric expression. Omitting possibility depends on the I/O
modules.

Terminal-number: Numeric expression (integer type)

Line-number: IMAGE statement line-number. Numeric value.

Image-specification: Character string (see IMAGE statement).

Output-variable: Variable-name [
,
; variable-name …] (numeric value or

variable or character string or character string variable)

Areas in which the numeric values or character strings are to
be displayed are predetermined so that each line is divided
into 8 characters and the next value or character string is
output, from the beginning of the next area when a comma is
used as a delimiter, and subsequent to the preceding output
when a semicolon is used as a delimiter.

Output-buffer-name: Simple variable of array variable (numeric variable or character
string variable). However, common variables cannot be used.

Device-name-character-string-expression : Character string expression representing a
sequence device name.

Explanation: Format (1) or (2) outputs data in the complete-return type to an I/O module other than the
multiple transmission module or the multiple transmission module respectively.

Format (3) is used in pair with TRANSFER statement.

If the communication rate (baud rate) is low mainly in serial communication channels (RS-
232-C, etc.), the time to OUTPUT execution completion may be long. In such a case, use
format (3) associated with TRANSFER statement in a pair.

If an output is to be given to a communication channel I/O module using a character string
expression, that string, to immediately before the null code, is identified as an effective
string. The null code cannot be output.

Presence of format specification such as NOFORMAT and operation in that condition vary
depending on the I/O module. For details, see instruction manual for each I/O module.

Format (4) is used for outputting data to the sequence device.

If a status information variable is specified by a SET STATUS statement, and the execution
of the OUTPUT statement causes an error, the corresponding error code is stored in the
status information variable. In this case, no system error occurs.

C3-64<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

PAUSE
● Statement

Function: Suspends the execution of a program temporarily.

Format: PAUSE

Explanation: The PAUSE statement is used anywhere in a program to suspend program execution
temporarily. However, this statement is valid only in debug mode. PAUSE statement is
invalid in real mode. Execution of a PAUSE statement in the debug mode suspends pro-
gram execution temporarily, displays the following message:

Line = XXXXX

Line number of the line next to the PAUSE statement

Program block name

PAUSE XXXXXXXX

FC030132.EPS

Program block names that are displayed are as follows:

For Programs Input from Keyboard
For Programs Input

from Auxiliary Memory

Main program ******** Program Name

Subprogram Subprogram Name Subprogram Name
TC030113.EPS

When the program execution is suspended, a variable value can be output, the suspended
program execution can be resumed with a CONT command after resetting variable values,
or the next one line can be executed with a STEP command. However, program execution
suspended by the PAUSE statement cannot be resumed with the CONT command, and
execution of the next line with a STEP command is disabled, when:

• a program list is changed (including EDIT),

• a program block is changed (using PROG command), or

• program execution is stopped with a STOP statement.

Program execution can also be suspended by the following key operation or TRACEP
statement (however, key operation cannot suspend a program at its specified line).

For personal computer: Press [ESC] key.

PI
● Function

Function: Returns the circular constant pi (π).

Format: PI

Explanation: 3.141592653589793 is returned.

<Toc> <Ind> <C3. Syntax > C3-65

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

PRINT (PR)
● Statement

Function: Outputs a print list to a personal computer display.

Format: PRINT [print-list

Print-list: Variable names, array variable names, numeric values, or character string, can be
specified. Each item should be delimited with comma (,) or semicolon (;). Each
item length should be up to 1024 bytes.

PRINT may be abbreviated as PR.

Explanation: PRINT statement is valid in the following cases.

In debug mode In real mode

Personal computer Valid Invalid
(PRINT statement is ignared.)

TC030114.EPS

(1) Output items

(a) Numeric expression

The value of a numeric expression is output in decimal. The numeric value range and
representation is given below. When the output data is positive, a blank is indicated
instead of a plus “+” sign.

ExampleRepresentation Range

TC030115.EPS

Indication without a decimal point

Decimal point indication

When none of the above representation
methods apply (exponential indication)

Up to 16 characters, including sign

Up to 16 characters, including sign and
decimal point

Up to 16 characters, including a sign, a
decimal point, and an exponent part (5
characters)

100
–5798

1.2345
–1234.567

–1.23E–010

(b) Character string expression

The character string generated by a character string expression is output.

(c) Limitation

Variables up to 232 bytes can be displayed. For variables of more than 232 bytes, an
error occurs.

(2) Delimiter

Carriage return and line feed occurs when the PRINT statement is not terminated by a
delimiter.

C3-66<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

PRINT USING (PU)
● Statement

Function: Outputs a print list in a specified format.

Format:
image-specification
label
line-number

PRINT [USING ; print-list[

FC030133.EPS

Image-specification: Format character string constant or character string variable. Put
double-quotation marks (”) before and after an image-specification.

Label: Label for IMAGE statement.

Line-number: Line number of the IMAGE statement

Print-list: Variable names, arrays, variable names, numeric expressions, or
character string expressions, can be specified separated by a
comma (,) or a semicolon (;).

PRINT [USING can be abbreviated to PU.

Explanation: If an FA-M3 is connected to a personal computer, this statement outputs the list to the
personal computer display.

After PRINT USING, specify image-specification or line number (or label) of the IMAGE
statement defining image-specification. For designation of image-specification, see IMAGE
statement.

Up to 232 bytes can be effective when output from the line controller.

An IMAGE statement must be used to include a literal (text enclosed within quotation
marks) in the format character string.

<Toc> <Ind> <C3. Syntax > C3-67

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

PROG
● Command

Function: Specifies the program block whose commands are to be executed.

Format: PROG [[subprogram-name]

Explanation: The main program is assumed when subprogram-name is omitted.

Subsequently executed commands apply to the program block specified by the PROG
command (called the current program block).

Subprogram-name can be specified only when the named subprogram has already been
written. When subprogram name is specified by EDIT command, the current program block
is switched automatically.

PROG
Main program

 100

1400 END

 40 SUB S1

700 SUBEND

100 SUB S2

800 SUBEND

PROG S1
Subprogram S1

PROG S2
Subprogram S2

Program area

FC030134.EPS

When subprograms are not used, this command is not needed.

QUIT (Q)
● Subcommand

Function: Quits editor and shifts to the command entry screen.

Format: QUIT or Q

Explanation: Can be used only in editor.

Shifts from the editor panel to the command entry screen.

RANDOMIZE
● Statement

Function: Initializes the random number seed.

Format: RANDOMIZE

Explanation: Initializes the random number sequence generated by a RND function. If a RND function is
used to generate random numbers without executing a RANDOMIZE statement, the same
random number sequence is generated each time the program is run. The occurrence of
the same random number sequence can be prevented by executing a RANDOMIZE state-
ment before generating a random number.

C3-68<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

READ
● Statement

Function: Assigns data set by a DATA statement to variables.

Format: READ [variable-name [, variable-name ,]

Variable-name: Numeric type or character string type.

Explanation: The READ statement is used together with the DATA statement. This statement allows data
set by the DATA statement to be assigned to variables on a one-to-one basis. The type of
variable in the READ statement must match the type of data in the DATA statement. An
error occurs when there is no data to be assigned to the variable specified in the READ
statement.

Use RESTORE statement to read repeatedly the data set in the same DATA statement and
to specify the DATA statement to be read.

RECOM
● Statement

Function: Specifies the start position of a common variable declared in a COM statement.

Format: (1) RECOM [[common-variable-name]

(2) RECOM [#Sn [[common-variable-name]

n (slot-number) : Numeric value. n=1 to 4.

Explanation: The RECOM statement specifies the start position of a common variable declared in a
COM statement that appears later. Common-variable-names specifies as parameters must
be defined in a COM statement prior to this statement.

When a common-variable-name is not specified, the start position of the common variable
area is assumed.

See COM statement for formats (1) and (2) above.

REM
● Statement

Function: The REM statement is used to enter a comment. It has no effect on program execution.

Format: REM [character-string

! [character-string

Explanation: The REM statement is used for program remarks and ignored on the execution of program.

The character-string for REM statement can be any combination of alphanumeric charac-
ters and symbols.

For multiple statements, use the REM statement at the last part of a line. If it is used at the
beginning or middle part of a line, the following part including colon “:” indicating multiple
statement is regarded as a part of character string of the REM statement.

<Toc> <Ind> <C3. Syntax > C3-69

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

RENUM ● Command
● Subcommand

Function: Renumbers all lines in a program block. Line numbers in statements are also updated
automatically.

Format: RENUM [[old-line-number [, new-line-number [, increment]]]

Increment: Positive integer. The default value is 10.

Explanation:

Format Description

RENUM

RENUM old-line-number

RENUM old-line-number,
new-line-number

RENUM old-line-number,
new-line-number, increment

Renumbers each line, starting with the currently used
smallest line number and incrementing by 10.

Renumbers each line, starting with old-line-number and
incrementing by 10.

Renumbers each line, starting with old-line-number and
replacing it with new-line-number and incrementing by 10.

Renumbers each line by specified increment, starting with
old-line-number and replacing it with new-line-number.

[
[

[

TC030116.EPS

An error message is displayed if old-line-number is greater than new-line-number and a
statement exists on a line number smaller than old-line-number.

When FA-M3 is connected, the same error message will be displayed twice for an error of
incorrect line number specifications.

Line numbers in statements are updated automatically, but line numbers in TRACE and
TRACEP debugging statements are not updated.

Note that the line number in REM statement is not modified either.

RESET
● Statement

Function: Resets the specified I/O module to an initialized status.

 Format: RESET [slot-number [, port-number [, function-number]]

Slot-number: Numeric expression (integer type).

Port-number: Numeric expression (integer type). Omitted if I/O module is reset.

Function-number: Numeric expression. Register numbers.

Explanation: The statement initializes parameters, set in I/O modules I/O buffers, module states, inter-
rupt declaration, etc.

For module reset, all are reset to the state same as start-up state.

The port number is omitted for module reset.

Specify the function number when performing buffer reset, parameter reset, releasing
interrupt declaration, etc.

For I/O modules and their contents which can be initialized by RESET statement, see
instruction manuals for each I/O module.

C3-70<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

RESET STATUS
● Statement

Function: Releases SET STATUS functions.

Format: RESET [STATUS

Explanation: The RESET STATUS statement releases functions set by the SET STATUS statement.
When the execution of a file access statement and an I/O statement causes an error, the
SET STATUS statement stores the corresponding error code into the status information
variable. Thus, no system error occurs. For more information, see SET STATUS statement.

RESTORE
● Statement

Function: Sets the pointer to the data set in a DATA statement which is to be read by the next READ
statement.

Format: label
line-number

[RESTORE

FC030135.EPS

Explanation: When a line-number or label is omitted, the pointer is set to the first DATA statement in the
program block. When a label or line-number is specified, the pointer is set to the first DATA
statement appearing after that label or line specified in the program block.

RETURN
● Statement

Function: Declares the end of a subroutine branched to by the GOSUB statement.

Format: RETURN

Explanation: Declares the end of a subroutine branched to by the GOSUB statement and passes control
back to the line following the GOSUB statement. If a RETURN statement is executed,
before a GOSUB statement is executed, an error will occur (see GOSUB statement).

RETURN RETRY
● Statement

Function: Declares the end of a subroutine branched by a GOSUB statement and returns control to
the line that was being executed when control passed to the subroutine.

Format: RETURN [RETRY

Explanation: This statement can be used as necessary on return from the subroutine called by ON
ERROR GOSUB.

The statement declares the end of a subroutine branched by the GOSUB statement and
returns control to the line that was being executed when control passed to the subroutine.

RETURN statement passes control back to the line following the GOSUB statement, while
this statement returns control to the head of the very line that was being executed.

This statement is mainly used for retry after an error occurs during I/O access and the
program branches by ON ERROR GOSUB statement. When an error occurs at the line of
multiple statement in branching by the ON ERROR GOSUB statement and control returns
by the RETURN RETRY statement, even if the error occurs at any part of multiple state-
ment, control returns to the head of the line in which the error occurs. An error occurs if a
RETURN RETRY statement is executed before execution of a GOSUB statement.

<Toc> <Ind> <C3. Syntax > C3-71

IM 34M6Q22-01E

RIGHT$
● Function

Function: Returns a character string of specified length, starting from the rightmost character.

Format: RIGHT$(c , m)

c: Character string expression.

m: Numeric expression.

Explanation: This function is used to isolate a specific number (m) of string characters, starting from the
rightmost character in the string represented by c. When m is equal to or greater than the
number of all characters in character string c, all characters in character string c are re-
turned.

Both a standard character and a large character are handled as one character.

If a character string is to be handled on the standard character basis, use HRIGHT$ func-
tion.

RND
● Function

Function: Returns a pseudo-random number.

Format: RND(x)

x: Numeric expression. (x≥0)

Explanation: For x more than 0, a pseudo-random number more than 0 and less than x is generated.

For x below 0, a pseudo-random number exceeding x and below 0 is generated.

If 0 is assigned, 0 is always given.

When the value of x is the same, the same random number sequence is generated on each
run of this function. When the RND function is executed after executing a RANDOMIZE
statement, a different random number sequence is returned.

RNPAR
● Function

Function: Returns parameter (integer) used when the program was initiated.

Format: RNPAR

Explanation: Program initiation parameters are as shown below :

Program Initiation RNPAR

RUN command 0
TC030117.EPS

If an FA-M3 controller is connected to a personal computer, the program initiation param-
eters are always 0.

1st Edition : Oct.29,1999-00

C3-72<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

ROTATE
● Function

Function: Rotates (shifts) bits in 16-bit integer.

Format: ROTATE(m , n)

m , n: Numeric expression (integer).

Explanation: This function is used to shift bits of a numeric value represented by m in a rotational man-
ner by n bits. When n is positive, the bits are rotated right. When n is negative, the bits are
rotated left.

Last bit removed from a bit string is assigned to the LASTBIT function. When n is 0, rotation
is not performed and the value of the LASTBIT function is 0.

Example: For ROTATE($9010 , –2)

1 0 0 1 0 0 0 0 0 0 0 0 0 0 01$9010

0

LASTBIT

0100001000000010$4042

FC030136.EPS

RUN
● Command

Function: Starts execution of the program stored in a user program area, beginning with its smallest
line number.

Format: RUN

Explanation: This command is used only when FA-M3 is connected to a personal computer.

The command executes the program stored in a user program area, beginning with its
smallest line number. As the RUN command initializes all work areas before starting pro-
gram execution, all variable types and values previously defined in the work areas are
deleted. However, common variables (defined by the COM statement) are not initialized.

If the [ESC] key is pressed while a program is being executed by a RUN command, the
program is suspended after execution of the current line number, and the BASIC system
enters the “waiting for command” state after displaying the following message on the
screen:

Line = XXXXX

Line number to be executed next

Program-block-name

PAUSE XXXXXXXX

FC030137.EPS

When the program block name is not program-loaded from the disk, ********* will be dis-
played for the program-block-name.

The CONT command can resume the execution at the suspended line only when neither
program editing nor program block change is done (see CONT command).

The program can be executed line-by-line with a STEP command (see the STEP com-
mand).

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-73

IM 34M6Q22-01E

SAVE
● Command

Function: Saves a program from user program area into auxiliary storage.

Format: (1) SAVE [program-file-name

(2) SAVE [program-file-name, ON

(3) SAVE [program-file-name, start-line-number, end-line-number

(4) SAVE [program-file-name; C

Explanation: A program-file-name is input in the following format.

[device-specification:] [path \] file-name [.extension]

(Character strings are used.)

When [device-specification] is omitted, the current drive is assumed. Upper-case alpha-
betic characters A through Z (one byte code) and numeric numbers can be used for file
names. A file name must start with an upper-case alphabetic character (the same as the
specification measures of file names in personal computers).

If an attempt is made to store a file in a directly that contains a file with the same name and
the same extension, the following message appears.

File name “XXXXXXXX” exists. Overwrite (Y/N) ?

If you do not wish to overwrite the file, input N. Save the file using another file name.

Saving programs in format (1)

The entire program block in the user program area is saved with format (1) above:
when subprograms are contained in the program in the user program area, the pro-
gram is saved along with subprograms, only subprograms in user program areas if
any, are also saved.

A program file is saved as source file. A source file is saved in character code format in
the specified disk.

To identify the files from those of intermediate language, it is recommended to name
the files with extensions “SA”.

Only source files can be APPENDed or MERGEd so save programs to be APPENDed
or MERGEd as source files.

When a program includes a library, it cannot be stored as a source file. When a pro-
gram is being debugged or for utility program, save them in source file format.

Saving programs in format (2)

The designation ON is valid when the program in a user area includes subprograms.
Once ON is designated, only the program block which was last designated by a
PROG command is saved as a source file (see format (1) above). To save subpro-
grams, save them after changing blocks with a PROG command.

To identify the files from those of intermediate language, it is recommended to name
the file with extensions “SA”.

To save subprograms, save them after changing blocks with a PROG command.

Saving programs in format (3)

Format (3) above is used for saving program blocks designated by the last PROG
command in the program block in the user program area.

Programs from the start-line-number to the end-line-number are saved in source file
format (refer to format (1) above). End-line-number cannot be omitted. When start-line-
number ^ end-line-number, only the program line indicated by the start-line-number is
saved.

1st Edition : Oct.29,1999-00

C3-74<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

To identify the files from those of intermediate language, it is recommended to name
the file with extensions “SA”.

Use this format when a part of the program which has been created can be utilized for
another program.

Saving programs in format (4)

All program blocks in the current user area are saved with this format.

When subprograms are included in a program in the user program area, they are also
saved. The program file is saved in the disk as an intermediate language file.

To identify the files from those of source files, it is recommended to name the file with
extensions “UN”.

Intermediate languages are translated codes (“tokens”) that are simple for the BASIC
interpreter to handle. An intermediate file uses less memory space in the disk than a
source file. In addition, it takes less time to load such a program with the LOAD com-
mand. When the library is included in a program, the program can be saved only in
format (4) (designating C).

Only programs saved in an intermediate language file can be initiated with a START
statement. Programs saved as intermediate language files cannot be APPENDed or
MERGEd. Intermediate language files are used to execute debugged programs in real
mode.

TIP

When subprograms are to be converted into subroutines, format (3) above is useful.

The only way to delete a once-entered SUB statement in a program is to delete the entire subprogram.
Therefore, when subprograms are to be converted into subroutines as shown in the example below,
proceed as follows:

(1) Enter PROG [S1, then press the ENTER key

(2) Enter SAVE [SAMPLE, 20, 30 then press the ENTER key.

Subprograms with the line numbers 20 to 30 are saved in a source file.

(3) Enter DEL [S1, then press the ENTER key.

Subprogram S1 is deleted from the user area.

(4) Enter PROG, then press the ENTER key.

Assume that the current program block is “main program”.

(5) Enter APPEND [SAMPLE, 100, then press the ENTER key.

The program saved in SAMPLE is added to the main program from line number 100.

(6) Enter GOSUB [100 as line number 30, then enter STOP for line number 40.

(7) Enter RETURN for line number 120 and END for line number 130.

Example:

10 INPUT "A=?';A

20 INPUT "B=?";B

30 CALL S1(A,B)

40 END

10 SUB S1(A,B)

20 PRINT "A=";A

30 PRINT "B=";B

40 SUBEND

10 INPUT "A=?';A

20 INPUT "B=?";B

30 GOSUB 100

40 STOP

100 PRINT "A=";A

110 PRINT "B=";B

120 RETURN

130 END
FC030138.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-75

IM 34M6Q22-01E

SCRATCH ● Command
● Statement

Function: Resets trace functions.

Format: subprogram-name
ALL

[SCRATCH

FC030139.EPS

Explanation: Resets the program branch trace functions (outputting the program branch) set by the
TRACE statement. For subprogram names and ALL, see TRACE statement.

SCRATCHP ● Command
● Statement

Function: Releases temporarily suspended functions.

Format: subprogram-name
ALL

[SCRATCHP

FC030140.EPS

Explanation: Release temporarily suspended functions set by a TRACEP statement. For subprogram
names and ALL, see TRACEP statement.

SCRATCHV ● Command
● Statement

Function: Releases variable trace functions set by the TRACEV statement.

Format: (1) When used as a command:

subprogram-name
ALL

[SCRATCHV

FC030141.EPS

(2) When used as a statement:

SCRATCHV

Explanation: This statement cancels variable trace functions set by a TRACEV statement. For subpro-
gram names and ALL, see TRACEV statement.

1st Edition : Oct.29,1999-00

C3-76<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

SEQACTV
● Statement

Function: Starts/ends a ladder program in the sequence CPU in a program block.

Format: SEQACTV [slot-number, block-number ; start/end-specification

Slot-number: Numeric-expression (integer type).

The number of slots (1 to 4) where the CPU in which a ladder program is
operating to be started/stopped is defined.

Block-number: Numeric expression (integer type). The block numbers which can be speci-
fied are as follows:

Sequence CPU Block number

F3SP21 1 to 32

F3SP25 1 to 128

F3SP35 1 to 1024
TC030118.EPS

E; Program block end
S; Program block start

Start/end-specification:

FC030142.EPS

Explanation: This statement starts/ends a ladder sequence program in the sequence CPU in a program
block.

For program block start/stop-specification,

E: End
S: Start

are used.

FC030143.EPS

In end-specification, it does not take more than one scan to end a ladder program from
execution of this statement. If the entire program is not started, this statement is ignored
even if starts a ladder program in a program block.

SET STATUS
● Statement

Function: Stores, if the execution of an I/O statement causes an error, the corresponding error code
into variables without generating a system error message.

Format: SET [STATUS [status-information-variable

Status-information-variable: Simple numeric variable.

Explanation: If an error occurs when an I/O statement (see below) is executed, system error (program
execution stop or branching by ON ERROR statement) is not assumed, the SET STATUS
statement stores the corresponding error code into the status-information-variable (if a
detail error occurs, the corresponding error code is stored into the ERRCE function) without
causing system error (program execution stop or branch by ON ERROR statements). Then
the execution proceeds to the next statement.

When the SET STATUS statement is executed, even if an error occurs, the corresponding
error code is not stored into the ERRC function. When no error occurs, the content of the
status-information-variable is still 0 (zero). To release the SET STATUS statement, use the
RESET STATUS statement. The following statements allow status-information-variables to
be used with the SET STATUS statements :

CONTROL,ENABLE,INTR,ENTER,HALT,OUTPUT,RESET,SET,TIMEOUT,STATUS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-77

IM 34M6Q22-01E

SET TIMEOUT
● Statement

Function: Sets the specified input/output monitoring time for the I/O module.

Format: SET [TIMEOUT [slot-number [, port-number] ; limit-time

Slot-number: Numeric expression (integer type).

Port-number: Numeric value or variable.

Limit-time: Numeric value or variable in milliseconds (resolution : 10 ms).

0 to 604800000ms (7 days).

Explanation: Sets the specified input/output monitoring time (in milliseconds) for an I/O module. The time
is set in units of 10 milliseconds. If 0 is set to the limit time, the default value for each I/O
module is applied.

If an error occurs in SET TIMEOUT statement when the status information variable is
designated in SET STATUS statement, the error code is stored in the status information
variable.

In this case, no system error occurs.

SETMD RES
● Command

Function: Declares/cancels a BASIC program to be resident in the user area.

Format: (1) SETMD [RES [ON

(2) SETMD [RES [OFF

This command can be executed only in the debug mode.

Explanation: Format (1)

This format specifies residence of a BASIC program in the memory (user area).

The residence specification holds the BASIC program in the user area without loss
even if power is turned off.

Format (2)

This format resets the program residence set by the format (1). To reset the status
using another command, NEW command can be used. However, NEW command also
deletes the program in memory.

Notice in specifying program residence

• Residence specification when BASIC programs are not present in the user area
causes an error.

• When a program residence is specified, commands or statements which load another
program into the user area, such as LOAD command, cause an error and thus cannot
be executed.

If these commands or statements are to be executed, first reset the residence specifi-
cation.

1st Edition : Oct.29,1999-00

C3-78<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

SETMD RUN
● Command

Function: Specifies/cancels BYE&RUN mode which executes resident programs in real mode when
debug mode has been ended by the BYE command.

Format: (1) SETMD [RUN [ON

(2) SETMD [RUN [OFF

Explanation: Format (1)

This format specifies BYE&RUN mode that executes resident programs in real mode
when the debug mode is ended by the BYE command (mode).

Format (2)

This format cancels BYE&RUN mode specified in format (1) above.

Notice for usage

• By default, BYE&RUN mode is canceled.

• Although SETMD RUN ON command specifies BYE&RUN mode, the program cannot
be executed if the program is not resident.

In addition, the program cannot be executed even if BYE&RUN mode has been
specified, when the debug mode ends by using [CTRL]+[C] keys.

• If either of the following commands is executed, BYE&RUN mode is canceled to return
to the default state.

• NEW command

• LOAD command

SGN
● Function

Function: Returns sign data.

Format: SGN(x)

x: Numeric expression.

Explanation: This function checks the sign of the numeric value or variable represented by x and returns
the following:

1 when x is greater than 0. (x>0)

0 when x is equal to 0. (x=0)

–1 when x is less than 0. (x<0)

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-79

IM 34M6Q22-01E

SHIFT
● Function

Function: Shifts bits in 16-bit integer.

Format: SHIFT(m , n)

m , n: Numeric expression (integer type).

Explanation: This function is used to shift bits represented by m (numeric value or variable) by n bits in a
16-bit integer. When n is positive, the bits are shifted right. When n is negative, the bits are
shifted left. Last bit removed from a bit string is assigned to the LASTBIT function.

Example: For SHIFT ($AB49, 1).

1 0 1 0 1 0 1 1 0 1 0 1 0 0 10$AB49

1

LASTBIT

0010010110101010$55A4

FC030144.EPS

SIN
● Function

Function: Returns the sine of x.

Format: SIN(x)

x: Numeric expression.

Explanation: This function returns the sine of the numeric value or variable represented by x in radians.

SPC
● Function

Function: Outputs the number of specified blank spaces.

Format: SPC(x)

x: Numeric expression.

Explanation: This function determines the positive integer n obtained by rounding-off the value x and
output n spaces

When the value of x is 0 or negative, no spaces are returned.

SQR
● Function

Function: Returns the square root of x.

Format: SQR(x)

x: Numeric expression (^0).

Explanation: This function returns the square root of the numeric value or variable represented by x. The
value of x must be equal to or greater than 0.

1st Edition : Oct.29,1999-00

C3-80<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

STATUS
● Statement

Function: Reads the specified module status.

Format: (1) STATUS [slot-number, port-number [, register-number] ; numeric-variable

(2) STATUS [slot-number, 1 ; reference-variable

Slot-number: Numeric expression (integer type)

Port-number: Numeric expression. Can specify two or more numbers.

Register-number: Numeric expression.

Reference-variable: Numeric variable.

1 : Stopping status

2 : Running status

Negative values : Error-occurring state

Explanation: Format (1)

Format (1) is used for I/O modules.

Reads parameters set in the module or module-status values and store them in the
specified variable. In other words, reads module-specific information or special param-
eters, and save them in the specified variable.

Format (2)

Format (2) is used for sequence CPU modules.

Reads the running / stopping status or error-occurring state of the sequence CPU
module.

If an error occurs in STATUS statement when the status information variable is designated
in SET STATUS statement, the error code is stored in the status information variable.

In this case, no system error occurs.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-81

IM 34M6Q22-01E

STEP
● Command

Function: Executes the next line of the program suspended by a PAUSE, TRACEP statement or the
[ESC] key.

Format: STEP

Explanation: The STEP command is normally used during debugging. It cannot be used when BASIC is
activated on a stand-alone personal computer.

When the STEP command is executed after the variables are checked or rewritten with the
program set in a PAUSE status using PAUSE, TRACEP statement or the [ESC] key, only
the next one line is executed and the program returns to a PAUSE status again.

This command is useful for inspecting or checking the program operations line by line.

If the STEP command is executed at other than execution suspension time, an error may
occur.

The STEP command cannot be executed even in execution suspended time,

• When the program list is corrected (including EDIT) or

• When the program block is changed (using PROG command).

Further, when the execution is suspended by a STOP or END statement, the STEP com-
mand cannot be executed. In addition, the STEP command cannot be executed at the head
of the program.

STOP
● Statement

Function: Stops the execution of the program.

Format: STOP

Explanation: The STOP statement may be omitted when the program is to be stopped after execution of
the line with the largest line number of the main program. (END statement has the end
declaration function). When the STOP statement is executed, all files that have been
declared open are closed.

When the STOP statement is executed, the message given below is displayed in the
display.

Line=XXXXX

Line-number of STOP statement

Program-name

STOP ********

FC030145.EPS

The STOP statement can be used only in a main program.

1st Edition : Oct.29,1999-00

C3-82<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

STR$
● Function

Function: Returns a character string representing a numeric value or variable.

Format: STR$(x)

x: Numeric expression.

Explanation: This function converts the value of a numeric value or variable repre-sented by x into a
character string. When a character string is to be converted into a numeric value, use the
VAL function.

SUB
● Statement

Function: The SUB statement declares a subprogram.

Format: (1) SUB [subprogram-name

(2) SUB [subprogram-name(formal-argument [, formal-argument...])

Explanation: Format (1) is used to declare a subprogram requiring no arguments.

Format (2) is used to declare a subprogram requiring arguments.

For the types and usage of available arguments that can be used, see the CALL statement.

When a formal-argument is an array variable, a DIM or COM statement for the formal
argument need not be declared. When branching using ON....., format (2) cannot be used.

Differences between subroutine and subprogram are described below.

When a variable (formal argument) is used, a subroutine must have the same variable
name as that for the main routine. When a subprogram is used, different variable names
may be used provided that they have the same variable type. The execution time for each
subprogram should be 1 second or longer. When the execution time is less than 1 second,
perform processing in the main program or set it to a subroutine. If a subprogram has an
execution time of less than 1 second, the overall program processing time may be longer.

Notices in creating a program

• Main programs and subprograms share the following items. Note this fact in program
creation.

Card-slot-number and timer-number.

SUBCOM
● Statement

Function: Specifies the start position of a subprogram common area.

Format: SUBCOM [[common-variable-name]

Explanation: The SUBCOM statement is used within a main program. The start position of the common
area specified by a COM statement in a subprogram is set to the position of the common
variable specified in the preceding SUBCOM statement.

When a common-variable-name is not specified or the SUBCOM statement itself is omit-
ted, the subprogram common area is positioned at the start of the main program common
area.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-83

IM 34M6Q22-01E

SUBEND
● Statement

Function: Designates the end of a subprogram.

Format: SUBEND

Explanation: The SUBEND statement, which is entered at the end of a subprogram, cannot be omitted.
When the SUBEXIT statement is omitted, the SUBEND statement is also used to return to
the main program from a subprogram.

SUBEXIT
● Statement

Function: Returns control from a subprogram.

Format: SUBEXIT

Explanation: The SUBEXIT statement return control to the statement following the CALL statement
which called the subprogram.

The SUBEXIT statement may be omitted when terminating subprogram execution at the
end of the subprogram (The SUBEND statement is provided with a return declaration
function).

The variable area ensured in a subprogram is released when SUBEXIT statement is
executed.

SUBEXIT RETRY
● Statement

Function: Returns from a subprogram to the line in which the branch occurred.

Format: SUBEXIT [RETRY

Explanation: As a rule, the SUBEXIT RETRY statement is used to return from a subprogram accessed
with an ON ERROR CALL when is necessary.

The SUBEXIT RETRY statement declares a return from a subprogram accessed with the
CALL statement to the line in which the branch occurred.

While the SUBEXIT statement returns to the next line following the line in which the branch
occurred, the SUBEXIT RETRY statement returns to the line in which the branch occurred.

Hence, the SUBEXIT RETRY statement is mainly used when an error occurs during I/O
access and a branch is taken with an ON ERROR CALL … .

SWAP
● Statement

Function: Swaps the values of two variables.

Format: SWAP [variable-name , variable-name

Explanation: Values can be swapped between variables of any type, as long as the variables are of the
same variable type (integer, long integer, single-precision real number, double-precision
real number, or character string). If the variables are of the same variable-type, values can
be swapped between array variable and simple variable, or between array variables. A
whole array cannot be swapped with SWAP statement.

1st Edition : Oct.29,1999-00

C3-84<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

TAN
● Function

Function: Returns the tangent of x.

Format: TAN(x)

x: Numeric expression.

Explanation: This function returns the tangent of the numeric value or valiable represented by x in
radians.

TIME$
● Function

Function: Returns the time.

Format: TIME$

Explanation: This functions returns the current time of day in the form a character string hh:mm:ss,
where hh represents hours, mm represents minutes, and ss represents seconds.

To change the time, use the BASIC Programming Tool M3 for Windows.

For details, see the Instruction Manual for BASIC Programming Tool M3 for Windows (IM
34M6Q22-02E).

TIMEMS
● Function

Function: Returns the elapsed time in ms (millisecond) since 0 hour 0 minute.

Format: TIMEMS

Explanation: This function is used to return a measure of the elapsed time in ms since 0 hour 0 minute
(24-hour system). The resolution is 10 ms. TIMEMS has a single-precision real numeric
value.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-85

IM 34M6Q22-01E

TRACE ● Command
● Subcommand

Function: Outputs information on program branches occurring during program execution.

Format:
subprogram-name [; start-line-number , end-line-number]
start-line-number , end-line-number
ALL

[TRACE

FC030146.EPS

Explanation: This statement is valid only in debug mode and ignored in real mode.

The TRACE statement checks for program branches occurring in a specified range of lines
in a specified program block. If the YEWMAC line computer is connected, the trace output
device can be specified in a LISTDEV statement independently of the output device speci-
fied in a PRINT statement in the program. The program block in which program branches
are traced can be selected by specification of parameters in the following formats.

(1) When a TRACE statement is directly entered as a command:

Format Program Block

Subprogram-name specified

Subprogram-name omitted

TRACE ALL
TC030119.EPS

Specified subprogram.

• Current program block
(When a TRACE statement is used in pause status).

• Main program block
(When a TRACE statement is used in other than pause status).

Entire program blocks.

(2) When a TRACE statement is entered in a program:

Format Program Block

Subprogram-name specified

Subprogram-name omitted

TRACE ALL
TC030120.EPS

Specified subprogram.

A program block containing a TRACE statement.

Entire program blcoks.

The range of lines in the program block in which program branches are traced can be
selected in the following formats:

Format Explanation

Both start-line number and end-line-number
omitted

Both start-line-number and end-line-number
specified

TC030121.EPS

All lines in the program block

Lines ranging from start-line-number to
end-line-number

Labels cannot be used to specify line numbers in a TRACE statement. Trace output data
includes both the line numbers at which program branches occur and the line numbers to
which control is subsequently passed. For branches to subprograms, however, the line
numbers from which control is passed and to which control is returned are output.

To cancel the TRACE function, use the SCRATCH statement.

CAUTION

The TRACE statement line number cannot be changed by the RENUM command.

1st Edition : Oct.29,1999-00

C3-86<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E

TRACEP ● Command
● Statement

Function: Suspends the execution of a program immediately before executing the specified line.

Format: TRACEP [[subprogram-name ;] line-number [, number-of-times]

Line-number: Numeric constant (Labels cannot be used as line numbers).

Number-of-times: Numeric constant.

Explanation: This statement is valid only in debug mode and ignored in real mode.

The TRACEP statement pauses the execution of a program immediately before executing a
specified line in a selected program block the designated number of times. (This program
state is similar to the PAUSE statement.) The TRACEP statement must be described
before the line specified by the line-number. When the number-of-times is omitted, the
program pauses each time before executing the specified line. The TRACEP statement is
valid only in debug mode.

In real mode, the TRACEP statement only generates a message without pausing.

Only one TRACEP statement can be specified for one program block. When several
TRACEP statements are specified, the last TRACEP statement is valid. The TRACEP
statement line number is not changed with an RENUM command. To cancel the TRACEP
statement, execute a SCRATCHP statement. The TRACEP statement is used in program
blocks shown below:

Format Program Block

Subprogram-name specified

Subprogram-name omitted

Named subprogram

When TRACEP is used as a command.
: Current program block (specified by a PROGcommand)

When TRACEP is used as a statement.
: A program block containing a TRACEP statement

TC030122.EPS

To cancel the TRACEP function, use SCRATCHP statement.

CAUTION

The TRACEP statement line number cannot be changed by the RENUM command.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C3. Syntax > C3-87

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

TRACEV ● Command
● Statement

Function: Outputs variable changes occurring during program execution.

Format: TRACEV [[subprogram-name ;] variable-list

Variable-list: When more than one variable is specified, separate them with commas “,”.
Up to five variables can be specified.

Explanation: This statement is valid only in debug mode and ignored in real mode.

The TRACEV statement outputs changes in specified variables (line numbers, variable
names, and variable values) in the program block to a personal computer display or the
YEWMAC line computer. Program blocks are specified in the same way as those for a
TRACE statement. The YEWMAC line computer output device can be specified by the
LISTDEV statement.

The output format is as follows:

Value assigned to variable.

TRACE —— “program-block-name” LINE line-number variable = assigned-value

Variable

Line number in which
the variable value is changed

FC030147.EPS

Program block names are displayed as follows:

Program Entered from Keyboard
Program Entered from
Auxiliary Memory Unit

Main program ******** Program Name

Subprogram Subprogram Name Subprogram Name
TC030123.EPS

One TRACEV statement can be specified at a time for one program block. When more than
one TRACEV statement is specified, the last TRACEV statement is valid.

The variables for this statement are as follows:

For simple variables: Specify variable names.

For array variables: Specify variable names without ().

Example: Specify A for A(*) or A(3).

Array variable elements cannot be specified on a one-by-one basis.

All elements of the specified array variable are output.

To release the TRACEV statement, use the SCRATCHV statement.

C3-88<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

TRANSFER
● Statement

Function: Used for starting I/O operation of I/O modules.

Format:

[

character-string-variable

FORMAT
NOFORMAT
BFORMAT

TRANSFER [slot-number [, instrument-number] [

[
FROM
INTO

FC030148.EPS

Slot-number: Numeric expression (integer type).

Instrument-number: Numeric expression (Whether it can be specified depends on
the I/O modules).

Character-string-variable: Character string variable to store data (character strings) to be
input or output.

Explanation: This statement is used for inputs or outputs for I/O (specifically communication) modules. It
is always used in a pair with ON EOT statement.

TRANSFER...FROM is used to output data. This has the same functions as an OUTPUT
statement.

TRANSFER...INTO is used to input data. This has the same functions as the ENTER
statement. Unlike OUTPUT and ENTER statements, the TRANSFER statement, after
initiating I/O operations, advances to the next step of BASIC program regardless of comple-
tion of I/O operations.

Since completion of I/O is informed by branch with ON EOT statement, declare ON EOT
statement before execution of TRANSFER statement.

If a character string is output like OUTPUT statement, the character string preceding the
null code is recognized as an effective character string. The null code cannot be output.

Note, that when a character string is initiated with a null code, output is disabled, and no
branch occurs with an ON EOT statement.

Specification of formats such as NOFORMAT and others must be executed by combining
with the specification of ENTER/OUTPUT formats. For details, see instruction manuals for
each I/O module.

<Toc> <Ind> <C3. Syntax > C3-89

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

VAL
● Function

Function: Returns a numeric value represented by a character string.

Format: VAL(c)

c: Character string expression.

Explanation: This function converts a character string c into a numeric value.

Conversion of a character string is performed as follows:

• The first character in a character string c must be a numeral, a + or – sign, $, a deci-
mal point or a space. If other character other than those above, when used, will cause
an error.

• When the first character in a character string c (excluding “$” if the leading character is
$) can be converted into a numeric value, characters from the first character to a
convertible one are converted. In this case, even if a character that cannot be con-
verted into a numeric value is contained in the character string c, no error occurs.

• When the first character in a character string c is “$” and the character just after “$” is a
numerical or “A” to “F”, four characters beginning with other than zero are converted
into a numeric value. Zero following “$” is ignored. However, when a character that
cannot be converted is encountered, conversion to a numeric value is truncated even
if the number of characters is less than 4.

• When character string c is composed of Null characters (CHR$(0)), it is converted into
zero.

C3-90<Toc> <Ind> <C3. Syntax >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

WAIT
● Statement

Function: Suspends or delays the execution of a program.

Format: (1) WAIT

(2) WAIT [time-delay

Time-delay is specified as a numeric expression.

1 to 604800000 (7 days). Set in units of millisecond.

Explanation: Format (1).

This WAIT format stops the execution of a program. The program is released from the
wait status when an event occurs (when ON … GOSUB or ON … GOTO statement is
executed) or when the “STOP” key is pressed. When ON … GOSUB statement is
executed, control passes to the statement next to the WAIT statement after return.
When ON … GOTO statement is executed, control passes to the statement specified
by GOTO. When an interruption is disabled by a DISABLE statement (except DIS-
ABLE [C), if format (1) above is used, the operation is the same as that of an
ENABLE statement (to cancel the DISABLE statement) is executed unconditionally.
During this operation, ENABLE [C is not performed. While an interruption is pro-
cessed by ON … CALL or ON … GOSUB statement, if the format (1) is used, an error
will occur.

Format (2).

With this format, program execution is delayed for the specified time (milliseconds).
While the program execution is delayed, if an event occurs (when the ON … GOSUB
or ON … GOTO statement is executed), the program branches to the specified line.
When a branch was caused by a ON … GOSUB statement, control, after return, waits
the remaining specified time delay before passing to the next statement after return.
When a branch was caused by the ON … GOTO statement, program execution is
transferred to the specified line (without any time delay). While the program execution
is delayed, if the “STOP” key is pressed, the delay is canceled and execution is sus-
pended. At this time if a CONT command is executed, the statement following the
WAIT statement is executed. This format (2) allows program execution to be delayed
even when an interruption is disabled by the DISABLE statement. While an interrup-
tion is executed by the ON … CALL or ON … GOSUB statement, program execution
can be delayed using this format (2).

When used as a multiple statement, the WAIT statement must be used at the end of the
line and cannot be used at any other position of the line either in format (1) or in format (2).
(An error will occur.)

<Toc> <Ind> <C3. Syntax > C3-91

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

WHILE/END WHILE
● Statement

Function: Executes statements repeatedly while conditions are satisfied.

Format: WHILE [expression

to

END [WHILE

Explanation: While the condition of the expression is true (≠0), statements between the WHILE state-
ment and END WHILE statement are executed repeatedly. When the condition of the
expression is false (=0), program goes to the statement after the END WHILE statement. If
a condition of the relational or logical expression specified by the WHILE statement is not
satisfied, statements between the WHILE statement and END WHILE statement are not
executed. A relational expression such as (A>0) can be used. Other types of expressions
can be used if numeric values must be resulted. The WHILE/END WHILE statement may
be nested for multiplexing like FOR NEXT (see FOR NEXT statement). A program in the
loop of the WHILE and END WHILE statements may branch outdside the loop by using a
GOTO statement. But an external program cannot branch into the loop of the WHILE and
END WHILE statements. The WHILE and END WHILE statements cannot be used with a
multiple statement.

Blank Page

<Toc> <Ind> <C4. Error Code List > C4-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

C4. Error Code List

C4.1 YM-BASIC/FA Error Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

System errors

Intermediate code not interpreted

Parameter error

Timer error

Syntax error

Incorrect syntax (invalid operand specified)

RESERVED

Executing TRANSFER statement (attempted to access module while executing TRANSFER statement)

Computation error

Computation overflow

Division by zero

Underflow error

Integer overflow

Unmatched data type (incorrect data results)

Numeric value abnormal or argument (function) error

Unallocated variable

Undefined variable name

String concatenate overflow

Cannot assign

Array variable declaration error

Invalid subscript value (less than 0 or above 32768) in ALLOCATE statement

Array size exceeded

Common area size exceeded

Used-defined function error

Undefined function

RESERVED

Wrong number of arguments

RESERVED

Attempt to redefine a previously defined function

Reference to array variable

Array subscript out of range

Array subscript dimension error

FOR - NEXT error

Improper FOR ~ NEXT, WHILE ~ END WHILE, IF ~ ENDIF matching

Needs simple numeric variable in FOR statement

RESERVED

Error Code Error Message

TC040101.EPS

C4-2<Toc> <Ind> <C4. Error Code List >

IM 34M6Q22-01E

Insufficient data

30 Too many entries (excessive input data)

31 Too few entries (insufficient data)

32 No data to be read by READ statement

Unmatched data type

33 Unmatched

34 RESERVED

Image data error

35 Improper match between IMAGE and data item

36 RESERVED

37 RESERVED

38 RESERVED

Output overflow

39 Output data overflow

40 Value overflow

41 RESERVED

Invalid line number

42 IMAGE statement missing in a line referenced

43 Branch destination for GOTO/GOSUB statement not found

44 Program statement name not found

Sequence error of declaration statements

45 Invalid position of OPTION BASE statement

46 Invalid position of DEFINT, DEFLNG, DEFSNG, DEFDBL statements

47 Invalid operand in DEFINT, DEFLNG, DEFSNG, DEFDBL statements

48 RESERVED

49 RESERVED

50 RESERVED

Inter-user area communications error

51 RESERVED

52 Communications error/CPU type error

53 Communications error/CPU type error

54 Communications error/CPU type error (refer to detail error codes)

55 SIGNAL transmission error

56 RESERVED

57 RESERVED

58 RESERVED

59 RESERVED

60 RESERVE, RELEASE statement error

Error Code Error Message

TC040102.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C4. Error Code List > C4-3

IM 34M6Q22-01E

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

80

81

82

83

84

85

86

87

88

92

93

94

95

101

102

103

104

105

Invalid numeric value in ON statement

Existing variable or array redeclared

RESERVED

Incorrect RETURN statement (RETURN with no GOSUB)

RESERVED

RESERVED

Numeric conversion error

Error detected in ON ERROR processing

RESERVED

Attempt to execute a statement not executable.

RESERVED

RESERVED

RESERVED

RESERVED

Prerun error, conflicting program

Conflicting error in main program

RESERVED

Syntax error in subprogram

Memory overflow

Stack area is now being used (insufficient area).

Insufficient area for reserving variable areas

I/O error (see detailed error codes)

File or library error

File name (program name) already exists.

File name (program name) not found. File name contains double-width spaces.

END OF FILE

RESERVED

RESERVED

Error generated in library 88-7u u: u-th parameter error

Resident mode error

Resident program size too large

Resident program upload error

CHAIN statement execution error

System error

Insufficient dynamic free area

Variable name not found in the symbol table

Numeric data value abnormal

Numeric data value abnormal

Source line length exceeds 306 bytes.

Error Code Error Message

TC040103.EPS

1st Edition : Oct.29,1999-00

C4-4<Toc> <Ind> <C4. Error Code List >

IM 34M6Q22-01E

106 Non-reserved word in program code

107 Error in analysis of a computational expression

108 Reserved word code not found

109 Coding error in coded text

110 Parameter error in subroutine call

111 Editor error

112 Editor error

113 Editor error

114 Editor error

Command error

115 Command entry validity error, command-disabled state due to Type SS, US, or SB program

116 Syntax error

117 Statement not found

Invalid line number

118 Line number not found

119 Invalid line number

120 Line number exceeds 65535.

Alarm

121 Character string not found

122 Free area not more than 400 bytes

Subprogram error

123 Subprogram not found

124 Unable to assign new subblock. Illegal replacement of SUB statement

Syntax error

130 Unable to assign stack area

131 Invalid array variable in a statement

132 GO, GOTO, GOSUB not described in ON statement.

133 Invalid timer number

134 RESERVED

135 Variable name other than that described as operand was used.

136 Incorrect line number or comma described as operand

137 Invalid significant character string

138 Invalid program name

139 FROM or INTO operand in TRANSFER statement.

140 TO operand missing (FOR statement, etc.)

141 RESERVED

142 RESERVED

143 Invalid operand description

144 Computational expression error

Error Code Error Message

TC040104.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <C4. Error Code List > C4-5

IM 34M6Q22-01E

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Error Code Error Message

TC040105.EPS

RESERVED

RESERVED

Invalid data list

Invalid #Tn or #Un description

Invalid binary constant

RESERVED

Invalid line number or label

Too many variable names or labels

Invalid variable type declaration

Nesting of IF statement exceeds 16 levels.

THEN without processing statement

ELSE without corresponding IF

ENDIF without corresponding IF

Statement not terminated in correct format

Left part or “=” does not appear in computational expression

Invalid DEF statement

Permissible numeric size exceeded

Invalid hexadecimal constant

Invalid FIND command operand

Undefined statement type

Command headed by a line number

Not executed with immediately executable statement

Six or more LF codes found between significant characters other than blank characters

Invalid statement number

Coded statement area (514 bytes) not assigned

Statement not allowed in multiple statement line

Data type error

Invalid subscript

Operand error (incorrect operator described in character expression)

Variable, label or line number not defined in an immediately executable statement

1st Edition : Oct.29,1999-00

C4-6<Toc> <Ind> <C4. Error Code List >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

C4.2 Detail Error Codes
The detail error code is output for BASIC error codes of 082 (I/O error), 054 (shared access
error), 055 (SIGNAL transmission error). For details, see instruction manuals for each
module.

● I/O errors

82- ××

The following describes the meaning of error codes and probable causes where errors are
output when accessing the Sequence CPU Module and Contact Input/Output Module.

Where errors appear when accessing another module, see applicable instruction manual.

01

0C

13

81

82

83

84

85

86

91

92

93

94

95

9A

9B

9C

9D

Detailed
Error Code

(expressed in
hexadecimal)

Error Message Probable Cause

TC040201.EPS

No driver exists.

Insufficient system area

Driver internal error

No driver exists.

Invalid function

Invalid logical file number

Invalid buffer length

Invalid parameter

Invalid parameter address

Invalid parameter

Invalid data setting

Invalid command description

Invalid module specified

Invalid bit pattern

Number of specified processing requests exceeded

Number of specified processing requests exceeded

Internal error in ASSIGN statement

ASSIGN statement not executed, I/O not installed

• Attempted to execute statement which module
does not support (OUTPUT statement for input
module, etc.).

• Incorrect I/O module slot number

• Invalid number of devices

• Invalid parameter

• Device number out of range
• Invalid parameter

• Data setting incorrect (data type, etc.)
• Specified terminal number other than 0 or 1

• Invalid format specified

• Invalid module name assigned
• Module name not assigned

• Incorrect module name assigned
• Module name not assigned
• Sequence CPU module not found

<Toc> <Ind> <C4. Error Code List > C4-7

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

A1

B0

B1

B2

B3

B4

B5

B6

BB

BC

C1

C7

CD

D1

D2

D4

D5

D6

D7

D8

D9

DA

DB

DC

E1

E2

E3

E6

E8

EA

F1

F2

F3

F4

F6

FE

Detailed
Error Code

(expressed in
hexadecimal)

Error Message Probable Cause

TC040202.EPS

Incorrect slot number

Invalid access procedure

Invalid module designation or data number

Data high/low limit overflow

Invalid device specification

Improper number of devices accessed

Invalid data or code

Invalid module designation

Invalid interruption code or number

Interruption code already requested.

Buffer overflow

I/O reset detected

Insufficient area (driver work area)

Device error

Data verification error

Receiving data error

Communication error

No terminator in received text

Communication error

Hardware error during data transmission

Received text header information invalid

Program initiation text received

Invalid transmission mode

Buffer overflow

DEVICE NOT READY

DEVICE BUSY

Data error

Timeout

Checksum error

Data overrun

Statement-execution check error

Improper internal status

Internal error

Internal error

Internal error

Device not configured

• Incorrect device name

• Incorrect read/write units

• Incorrect device name

• Faulty module

• Module not installed
• Incorrect slot number
• Faulty module

• Sequence CPU module cannot receive a
BASIC statement.

• Received statement not processed within the
given time.

• Sequence CPU module not in statement
execution status

• Statement executed, but sequence CPU
module is not in normal status

C4-8<Toc> <Ind> <C4. Error Code List >

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

● Shared access errors

54- ×× or 55- ××

The following describes the meaning of error codes and probable causes where errors
appear at the time of shared accessing.

03

05

82

84

88

89

91

92

9D

A7

B1

B2

B3

B4

B5

B6

B7

BA

Detailed
Error Code

(expressed in
hexadecimal)

Error Message Probable Cause

TC040203.EPS

Destination BASIC task not found

Event-receive intermediate buffer overflow in
destination BASIC

Internal error

Incorrect buffer length specification

Incorrect destination UNIT type (incorrect
configuration)

Incorrect own UNIT type

Invalid parameter

Invalid data setting

Sequence CPU not installed

Unconnected UNIT no. specified

Internal error

Internal error

Internal error

Internal error

Internal error

Internal error

Internal error

Internal error

• Common variables are not of integer type or
long integer type.

• Invalid parameter

• Set data do not match with configuration.

• Incorrect module name assigned
• Sequence CPU not assigned
• Sequence CPU module not found

<Toc> <Ind> <C4. Error Code List > C4-9

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

C1

C3

C4

D1

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

E1

E6

FE

Detailed
Error Code

(expressed in
hexadecimal)

Error Message Probable Cause

TC040204.EPS

Destination memory access error

Internal error

Internal error

Error found in a communication line

Error found in a communication line

Error found in a communication line

Error found in a communication line

Error found in a communication line

Error found in a communication line

Error found in a communication line

Error found in a communication line

Error found in a communication line

Error found in a communication line

Error found in a communication line

Error found in a communication line

DEVICE NOT READY

Timeout

Device not configured

• Module not installed
• Invalid slot number
• Faulty module
• Subunit turned OFF/ON at the time of Shared

accessing

Invalid slot number

Blank Page

<Toc> <Ind> <Appendix 1. Listing of Internal Codes> App1-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

Appendix 1. Listing of Internal Codes

Appendix 1.1 Data Formats
The YM-BASIC/FA programming language has four data types: an integer, long integer,
single-precision real number, and double-precision real number. These data types differ in
format from one another. You do not have to pay any regard to the data format, however,
unless you use such arithmetic functions as those for handling binary digits.

■ Integers

Sign (one bit)

16 bits

Range of value: –32768 to 32767
FAP0101.EPS

■ Long Integers

Sign (one bit)

32 bits

Range of value: –2147483648 to 2147483647
FAP0102.EPS

■ Single-precision Real Numbers

Decimal point Sign

32 bitsFixed-point part
Exponent

part

7 bits24 bits 1 bit

FAP0103.EPS

Notes 1: The exponent part is shifted at 26. For example, it is 20 if the least-significant 7 bits is $40.
2: The fixed-point part is always represented as a whole number.

Examples:

00 ------- 0000.0

0.5

–0.5

------------------------ 0 0

10 ------- 010 ------------------------ 0 0

10 ------- 010 ------------------------ 0 1

FAP0104.EPS

Range of value in decimal number representation

9.223372 × 1018 ̂Positive value ̂5.421010 × 10–20;

–9.223372 × 1018 % Negative value % –2.710505 × 10–20; and

0 (zero)

where, the number of significant digits is 7.

App1-2<Toc> <Ind> <Appendix 1. Listing of Internal Codes>

IM 34M6Q22-01E

■ Double-precision Real Numbers

Decimal point Sign

64 bitsFixed-point part Exponent part

7 bits56 bits 1 bit

FAP0105.EPS

Note: A double-precision real number shares the same format with a single-precision real number, except that its fixed-point
part is 32 bits longer.

Range of value in decimal number representation

9.223372036854776 × 1018 ̂Positive value ̂5.421010862427522 × 10–20;

–9.223372036854776 × 1018 % Negative value % –2.710505431213761 × 10–20; and

0 (zero)

where, the number of significant digits is approximately 16.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <Appendix 1. Listing of Internal Codes> App1-3

IM 34M6Q22-01E

Appendix 1.2 Character Code Format
Each alphanumeric character of the YM-BASIC/FA programming language is represented
by a character code of one byte, which equals 8 bits, as shown below.

■ Alphanumeric Character

0

7 6 0 bit

7-bit code

FAP0201.EPS

1st Edition : Oct.29,1999-00

App1-4<Toc> <Ind> <Appendix 1. Listing of Internal Codes>

IM 34M6Q22-01E

Appendix 1.3 Listing of Alphanumeric Character
Codes

b8 b7 b6 b5 b4

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

b3

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

b2

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

b1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

0

0

0

0

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

0

0

0

1

1

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

0

0

1

0

2

SP

!

"

#

$

%

&
,

(

)

*

+

,

–

.

/

0

0

1

1

3

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

0

1

0

0

4

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

0

1

0

1

5

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

0

1

1

0

6

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

0

1

1

1

7

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

DEL

Control codes Character codes

,

FAP0301.EPS

Note: SP ($20) denotes a space.
DEL ($7F) denotes a control code.

1st Edition : Oct.29,1999-00

<Toc> <Ind> <Appendix 2. Listing of Reserved Words> App2-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

Appendix 2. Listing of Reserved Words
ABORTIO

ABS

ALL

ALLOCATE

AND

APPEND

ARNAM

ASC

ASSIGN

AT

ATN

ATTR$

AUTO

BATCH

BATCHOFF

BCD

BEEP

BFORMAT

BINAND

BINNOT

BINOR

BINXOR

BIT

BLEN

BOOT

BOX

BOX FILL

BYE

CALL

CALLLIB

CHAIN

CHAR

CHG

CHR$

CIRCLE

CIRCLE FILL

CLOSE

COL

COLOR

COM

COM IS

CONT

CONTROL

COPY

COS

DATA

DATE$

DBADD

DBCLOSE

DBCOND

DBDEF

DBDEL

DBDELM

DBDROP

DBEND

DBFIND

DBFLD

DBFLUSH

DBGET

DBGETM

DBINIT

DBOPEN

DBORDER

DBPUT

DBPUTM

DBRLS

DBUPD

DEF

DEFAULT OFF

DEFAULT ON

DEFDBL

DEFFILE

DEFGCUR

DEFINT

DEFLNG

DEFSHORT

DEFSNG

DEFVOL

DEL

DEL#

DELF

DELP

DIM

DISABLE

DISP

DISP USING

DIV

DJLINE

DP

DU

EDIT

ELLIPSE

ELSE IF

ELSE

ENABLE

ENABLE INTR

END

ENDIF

END WHILE

ENTER

EOL

ERASE

ERLIST

ERRC

ERRCE

ERRCS

ERRL

ERRM$

EXOR

EXP

FIELD#

FILES

FIND

FOR

FORMAT

FRAME

FREE

FROM

FUSING

GCOLOR

GCREADX

GCREADY

GCURSOR OFF

GCURSOR ON

GDISPLAY OFF

GDISPLAY ON

GERASE

GET#

GINIT

GLOAD

GMODE

GO

GOSUB

GOTO

GPOSITION

GPRINT

GRAPHIC IS

GSAVE

GSELECT BT

GSELECT NT

HALT

HEX$

HINSTR

HLEFT$

HLEN

HMID$

HRIGHT$

IF

IMAGE

INIT

INPUT

INPUT#

INPUT$

INSTR

INT

INTO

IOLOAD

IOSAVE

IOSIZE

KEY IS

KEY LABEL

LASTBIT

LBCD

LBINAND

LBINNOT

LBINOR

LBINXOR

LBIT

LCOPY

LEFT$

LEN

LET

LHEX$

LINE

LINKLIB

LINPUT

LINPUT#

LIST

LISTDEV

LOAD

LOCAL

LOCAL LOCKOUT

LOF

LOG

LROTATE

LSHIFT

MAINTENANCE

MASTER

MERGE

MID$

MOD

MOVE

NAM

NEW

NEWL

NEXT

NL

NOFORMAT

NOT

OFF COMINT

OFF EOF

OFF EOT

OFF ERROR

OFF EVENT

OFF EXEVENT

OFF GRAPHIC

OFF INPUT

OFF INT

TAP0201.EPS

App2-2<Toc> <Ind> <Appendix 2. Listing of Reserved Words>

IM 34M6Q22-01E

OFF KEY

OFF SEQEVT

OFF SYSEV

OFF TIME

OFF TIMEOUT

OFF TIMER

ON

ON COMINT

ON EOF

ON EOT

ON ERROR

ON EVENT

ON EXEVENT

ON INPUT

ON INT

ON KEY

ON SEQEVT

ON SYSEV

ON TIME

ON TIMEOUT

ON TIMER

ON UNIT

OPEN

OPTION BASE

OR

OUTPUT

PAINT

PAUSE

PEEK

PI

POINT

POKE

POLYGON

POLYGON FILL

POSITION

POSITION#

POSX

POSY

PR

PRCSRD

PRCSWT

PRELEASE

PRESERVE

PRINT

PRINT BFORMAT

PRINT NOFORMAT

PRINT USING

PRINT#

PRINTER IS

PROG

PSET

PU

PUT#

QUIT

RANDOMIZE

READ

READ IO

RECEIVE

RECOM

RELESE

REM

REMOTE

RENAME

RENUM

REPEAT

RESERVE

RESET

RESET STATUS

RESTORE

RETRY

RETURN

RIGHT$

RND

RNPAR

ROTATE

RUN

SAVE

SCRATCH

SCRATCHP

SCRATCHV

SEND

SEQACTV

SET BLINK

SET CHAR

SET LINE

SCREEN

SET MARKER

SET PAINT

SET PEN

SET STATUS

SET TEXT

SET TIMEOUT

SETDAY

SETMD RES

SETTIME

SGN

SHIFT

SIGNAL

SIN

SLOAD

SPC

SQR

SSAVE

START

STATUS

STEP

STOP

STR$

SUB

SUBCOM

SUBEND

SUBEXIT

SWAP

TAB

TAN

THEN

TIME$

TIMEMS

TO

TRACE

TRACEP

TRACEV

TRANSFER

TRIGGER

UN TIL

USING

VAL

VIEWPORT W

VOL$

VOLUMES

WAIT

WHILE

WINDOW

WRITE IO

TAP0202.EPS

1st Edition : Oct.29,1999-00

<Toc> <Ind> <Appendix 3. Listing of MS-DOS Special Editing Functions> App3-1

IM 34M6Q22-01E 1st Edition : Oct.29,1999-00

Appendix 3. Listing of MS-DOS Special
Editing Functions
Table 3.1 lists the MS-DOS (DOS/V) special editing functions. The term “template” here
refers to a special area reserved by MS-DOS (DOS/V) where you can temporarily store
data, for example.

Press the return () key after typing a character string following the prompt (BSC, bsc or
>). The data of the typed character string is stored in a template. For an EDIT command or
statements, the character strings of their execution results are supported in terms of tem-
plate storage. Only character strings of no more than 252 bytes are included in template
storage. If you specify a character string of greater than 252 bytes, characters of the extra
bytes are excluded from template storage and therefore are discarded. The data in the
template is overwritten each time you press the key.

Table 3.1 Special Editing Functions

Key Editing Function

[F1]
[→]

[F2]

[F3]

[F4]

[F5]

[↓]

[Ins]

[Del]

COPY 1

COPY UP

COPY ALL

SKIP UP

NEW LINE

VOID

INSERT MODE

SKIP 1

Copies one character from the template to the command line.

Copies characters of up to one immediately preceding the specified
character from the template to the command line.

Copies all characters remaining in the template from the template to a
command line.

Skips (excludes from copying) the template’s characters of up to one
immediately preceding the specified character.

Copies data in the command line to the template (creates a new
template if the key is not pressed).

Cancels the current entry in the command line and feeds a line. Data in
the template is not updated, however.

Places the system in the insert mode.

Skips (excludes from copying) one character among characters in the
template.

TAP0301.EPS

Note that these editing functions are case-sensitive and any lower-case letter is not con-
verted to an upper-case letter. If you delete a line by specifying the line number only, the
template is supplied with the code “DEL [(line number).” If you view the program with a
LIST command, the template is supplied with the data of the program’s last line.

Blank Page

i<Int> <Toc> <Ind>

IM 34M6Q22-01E

Revision History
Edition

1st

 Date

Oct. 1999

Revised Item

New publication

Written by Product Marketing Section, PLC Center
Industrial Automation Business Head Quarter.
Yokogawa Electric Corporation

Published by Yokogawa Electric Corporation
2-9-32 Nakacho, Musashino-shi, Tokyo 180-8750, JAPAN

Printed by Yokogawa Graphic Arts Co., Ltd.

1st Edition : Oct. 29,1999-00

Blank Page

	Important
	Introduction
	Copyright and Trademarks Notices
	A1. Overview
	A2. Specifications
	A2.1 Function Specifications
	A2.2 Operating Environment
	A2.3 Model and Suffix Code
	A2.4 Components and Their Functions
	A2.5 External Dimensions
	A2.6 Attaching/Removing the BASIC CPU Module
	A2.7 System Configuration and Restrictions on Module Installation
	A2.7.1 System Configuration
	A2.7.2 Restrictions on Module Installation

	A3 Basic CPU Operation and the CPU’s Functions
	A3.1 CPU’s Operating Modes
	A3.2 Module Operation during Power-on/off Sequences
	A3.2.1 Module Operation during Power-on Sequence

	A3.3 Module Operation during Momentary or Total Power Failure
	A3.3.1 Module Operation during Momentary Power Interruption
	A3.3.2 Setting the Mode for Detecting Momentary Power Interruption

	A3.4 Configuration Function
	A3.4.1 Setting the Sizes of User and Common Areas
	A3.4.2 Configuring the Shared Devices

	A3.5 Program Residence Function
	A3.6 ROM Writer Function
	A3.7 Access Using a Personal Computer Link
	A3.7.1 Personal Computer Link System
	A3.7.2 Accessing the Common Area

	A4. Programming Tool
	A5. Corrective Actions in Case of Failure
	B1. Standard Specifications and Features of YM-BASIC/FA
	B1.1 Standard Specifications of YM-BASIC/FA
	B1.2 Features of YM-BASIC/FA

	B2. Basic Syntax of YM-BASIC/FA
	B2.1 Programs and Commands
	B2.2 Sentences and Lines
	B2.3 Character Set
	B2.4 Data Types
	B2.5 Constants
	B2.6 Variables
	B2.6.1 Naming a Variable
	B2.6.2 Declaration of the Type of Variable
	B2.6.3 Declaration of Variables and Their Defaults
	B2.6.4 Length of a Character-string Variable
	B2.6.5 Array Variables

	B2.7 Type Conversion
	B2.8 Expressions and Operations
	B2.8.1 Arithmetic Operation
	B2.8.2 Relational Operation
	B2.8.3 Logical Operation

	B2.9 Character-string Operation
	B2.9.1 Concatenation of Character Strings
	B2.9.2 Comparison between Character Strings

	B2.10 Functions
	B2.10.1 Intrinsic Functions
	B2.10.2 User-defined Functions

	B2.11 Priority of Operations

	B3. Subprograms
	B3.1 Structure of a Program
	B3.2 Subprograms
	B3.3 Call of Subprograms
… …
… … …
	B3.4 Independency of Programs
	B3.5 Arguments Transferable to Subprograms
	B3.6 Subprograms and Subroutines
	B3.7 Variables and Labels

	B4. Real-time Statements
	B4.1 Execution Modes
	B4.2 Wait for Events (WAIT)
	B4.3 Interrupt

	B5. Common Variables
	B5.1 Common Area
	B5.2 Basics of How to Use Common Variables
	B5.2.1 Functions COM Statement
	B5.2.2 Clearing the Common Area
	B5.2.3 Restrictions on the Use of Common Variables

	B5.3 Statements Related to COM Statement
	B5.3.1 SUBCOM Statement
	B5.3.2 RECOM Statement

	B5.4 Data Exchange with Subprograms

	B6. Data Exchange with a Ladder Sequence Program
	B6.1 Data Exchange between CPU Modules
	B6.1.1 Data Exchange Using Common Variables
	B6.1.1.1 Sharing of Sequence Devices
	B6.1.1.2 BASIC Common Variables and Sequence Devices
	B6.1.1.3 COM #S Statement
	B6.1.1.4 Example of Data Exchange

	B6.1.2 Data Exchange Using an ENTER or OUTPUT Statement
	B6.1.2.1 ENTER Statement
	B6.1.2.2 OUTPUT Statement
	B6.1.2.3 Selectable Sequence Devices
	B6.1.2.4 Example of Data Exchange

	B6.1.3 Synchronization between Programs
	B6.1.4 Precautions with Data Exchange

	B6.2 Starting/Stopping a Ladder Sequence Program
	B6.2.1 Starting/Stopping a Ladder Sequence Program
	B6.2.2 Starting/Stopping a Ladder Sequence Program Block

	B6.3 Reading the Operating Status of a Ladder Sequence Program
	B6.4 Error Codes

	B7. Methods of Access to I/O Modules
	B7.1 Means of Access to I/O Modules
	B7.2 Slot Number and Terminal Number
	B7.3 Declaring Use of I/O Modules
	B7.4 Access to Contact I/O Modules
	B7.4.1 Contact Input Modules
	B7.4.2 Interrupt from a Contact Input Module
	B7.4.2.1 Interrupt from a Contact Input Module
[
	B7.4.2.2 Interrupt Input from a High-speed Input Module

	B7.4.3 Contact Output Modules
	B7.4.4 Defining the Operating Mode of a Contact Output Module
	B7.4.5 Contact I/O Modules

	B7.5
	B7.6 Contact Input/Contact Output Modules-Programming
Exercise
	B7.6.1 Contact Input Modules
	B7.6.2 Contact Output Modules

	B8. Libraries
	B8.1 What Is a Library?
	B8.2 Incorporating Libraries into a User Program
	B8.3 Program Flow

	C1. Syntax Usage
	C1.1 Positioning the Part “Syntax”
	C1.2 Terms Used in This Part

	C2. List of YM-BASIC/FA Functions
	C2.1 Commands and Subcommands
	C2.2 Statements
	C2.3 Functions
	C2.4 Libraries

	C3. Syntax
	C4. Error Code List
	C4.1 YM-BASIC/FA Error Codes
	C4.2 Detail Error Codes

	Appendix 1. Listing of Internal Codes
	Appendix 1.1 Data Formats
	Appendix 1.2 Character Code Format
	Appendix 1.3 Listing of Alphanumeric Character Codes

	Appendix 2. Listing of Reserved Words
	Appendix 3. Listing of MS-DOS Special Editing Functions
	Revision History

