# User's <br> Manual 

## Model PR201 Power Monitor

## How to Install

## NOTE

(1) To install the product, select a location where:

- no one may accidentally touch the terminals,
- mechanical vibrations are minimal,
- corrosive gas is minimal,
- Ambient temperature: 0 to $50^{\circ} \mathrm{C}$; Ambient humidity: 50 to $90 \% \mathrm{RH}$

And the fluctuation is minimal,

- no direct radiant heat is present,
- no magnetic disturbances are caused,
- no wind blows against the terminal board (reference junction compensation element),
- no water is splashed,
- no flammable materials are around,
(2) Make sure to connect the grounding.
(3) Turn off the product before installation and wiring.
(4) Use the power supply within specifications.
(5) Observe the following instructions for correct installation:

Recommended panel thickness is 1 to 10 mm .
Install the product horizontally.
Install the product using attached fixture from the backside of the product.
Turn the screw only up to $180^{\circ}$ after the screw touches the mounting panel to prevent the case deformation by tightening the screw excessively.
(6) Observe the following instructions for correct wiring:

M3 screw terminal connection (output, communication, optional integrated control signal)
M4 screw terminal connection (input, power supply)
Applicable wire size for input signal and power supply is $1.25 \mathrm{~mm}^{2}$ or more of cross sectional area.

Model and Suffix Codes

(Note 1) Input specs. of 1 -phase 3 -wire system can only select rated input 3 and 4. Input voltage is 200VAC (100V +100 V ).
(Note 2) Rated input 1, $2(110 \mathrm{~V}$ ) can also be used at 120 V input.
(Note 3) Rated input 5, $6(440 \mathrm{~V})$ is the specs. only for 1 -phase 2 -wire system and 3-phase 3 -wire system.
(Note 4) Rated input A to F is the specs. for only 3-phase 4-wire system. Rated input voltage indicates phase voltage. A, B: $64 \mathrm{~V}, \mathrm{C}, \mathrm{D}: 127 \mathrm{~V}, \mathrm{E}, \mathrm{F}: 227 \mathrm{~V}$ indicate $110 \mathrm{~V} / \sqrt{3}, 220 \mathrm{~V} / \sqrt{ } 3,480 \mathrm{~V} / \sqrt{ } 3$ respectively. In case of $440 \mathrm{~V} / \sqrt{ } 3$ input, it can be used at $\mathrm{E}, \mathrm{F}: 227 \mathrm{~V}$ of rated input.
(Note 5) Specify this option when the previous style UZO05(S2.0) with option "Current 2 measuring Function" is required.
Current measuring object of current 2 measuring function:
1 -phase 3 -wire system: $l_{2}$ current r.m.s. value
3 -phase 3 -wire and 3 -phase 4 -wire system : $l_{3}$ current r.m.s. value

## NOTE

Before using the product, check that its model and suffix codes as you ordered.

LIST OF COMBINATION OF PR201 RATED INPUT

| Code | Rated Input | Phase \& Wire System |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1-phase 2-wire | 1-phase 3-wire | 3-phase 3-wire | 3-phase 4-wire |
| 1 | $110 \mathrm{~V} / 1 \mathrm{~A}$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ |
| 2 | $110 \mathrm{~V} / 5 \mathrm{~A}$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ |
| 3 | $220 \mathrm{~V} / 1 \mathrm{~A}$ | $\bigcirc$ | $\bigcirc^{*}$ | $\bigcirc$ | $\bigcirc$ |
| 4 | $220 \mathrm{~V} / 5 \mathrm{~A}$ | $\bigcirc$ | $\bigcirc^{*}$ | $\bigcirc$ | $\bigcirc$ |
| 5 | $440 \mathrm{~V} / 1 \mathrm{~A}$ | $\bigcirc$ | - | $\bigcirc$ | - |
| 6 | $440 \mathrm{~V} / 5 \mathrm{~A}$ | $\bigcirc$ | - | $\bigcirc$ | - |
| A | $64 \mathrm{~V} / 1 \mathrm{~A}$ | - | - | - | $\bigcirc$ |
| B | $64 \mathrm{~V} / 5 \mathrm{~A}$ | - | - | - | $\bigcirc$ |
| C | $127 \mathrm{~V} / 1 \mathrm{~A}$ | - | - | - | $\bigcirc$ |
| D | $127 \mathrm{~V} / 5 \mathrm{~A}$ | - | - | - | $\bigcirc$ |
| E | $277 \mathrm{~V} / 1 \mathrm{~A}$ | - | - | - | $\bigcirc$ |
| F | $277 \mathrm{~V} / 5 \mathrm{~A}$ | - | - | - | $\bigcirc$ |

O: Available —:Not available
*200V AC (100V+100V)

## External Dimensions and Panel Cutout Dimensions

## - External Dimensions



- Panel Cut Dimension



## ■ Mounting the Product

Turn off the power to the product before installing it on the panel because there is a possibility of electric shock.

After opening the mounting hole on the panel, follow the procedures below to install the product:

1. Insert the product into the opening from the front of the panel so that the terminal board on the rear is at the far side.
2. Set the brackets in place on the top and bottom of the product as shown in the figure below, then tighten the screws of the brackets. Take care not to overtighten them.


## Terminal Arrangement



|  | Signal |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { TML } \\ & \text { No. } \end{aligned}$ | 1-phase 2-wire | 1-phase 3-wire | 3-phase 3-wire | 3-phase 4-wire | Input |
| 1 | 1S | 1S | 1S | 1S |  |
| 2 | 1L | 1L | 1L | 1L |  |
| 3 |  | 2S | 3S | 2S |  |
| 4 |  | 2L | 3L | 2L |  |
| 5 |  |  |  | 3S |  |
| 6 |  |  |  | 3L |  |
| 7 | P1 | P1 | P1 | P1 |  |
| 8 | P2 | P0 | P2 | P0 |  |
| 9 |  | P2 | P3 | P2 |  |
| 10 |  |  |  | P3 |  |
| 11 | + |  |  |  | Output |
| 12 | - |  |  |  |  |
| 13 | A |  |  |  | Communication |
| 14 | B |  |  |  |  |
| 15 | C |  |  |  |  |
| 16 |  |  |  |  | Communication Terminating |
| 17 |  |  |  |  |  |
| 18 | + |  |  |  | Optional Integrated Control Signal |
| 19 | - |  |  |  |  |
| 20 | L |  |  |  | Power Supply |
| 21 | N |  |  |  |  |
| 22 |  |  |  |  |  |
| 23 | GND |  |  |  |  |

## Wiring Diagrams



1 phase 2 wire system

3 phase 3 wire system



1 phase 3 wire system

Power Side


3 phase 4 wire system

The following caution for safety should be taken for handling of product. We are not responsible for damage incurred by use contrary to caution.

- The following items should be checked before turning power on. Use of product ignoring specifications may cause over heating or burning.
(a) Voltage of power supply and input value applied to the product should meet with required specifications.
(b) External wiring to terminals should be connected correctly.
(See precding Article 4)
- When take off wiring from the product, check to see primary side of $\mathrm{CT}, \mathrm{PT}$ and power supply is in OFF status. If CT secondary side is in OPEN status during operation, be careful for danger of high voltage.
- Do not use the product in such dangerous places where exist inflammable and explosive gas or steam.


## ■ Outline of Each Section



1 kWh (Integration)
Light on when data on Display Section is integrated power [kWh].

2 Wh (Optional Integration)
Light on when data on Display Section is optional integrated power [Wh].

3 W (Power)
Light on when data on Display Section is power momentary value [W].
4 V (Voltage)
Light on when data on Display Section is voltage momentary value [V].

5 A (Current)
Light on when data on Display Section is current momentary value $[\mathrm{A}]$.
$6 \cos \phi$
Light on when data on Display Section is power factor momentary value [cos $\phi$ ].
$7 \times 10^{3}$
Light on when data value on Display Section is kilo unit. And light on when integrated power value is mega unit.
$8 \times 10^{6}$
Light on when data value on Display Section is mega unit.

9 COMM
Light on during communication (RS-485 communication) is made.

## 10 Display Section

Display measured value data, preset parameter symbol, set value data, adjustment parameter symbol, adjustment data and the like.
(1) Measurement items: integrated power, optional integrated power, power momentary value voltage momentary value, current momentary value, power factor momentary value
(2) Setting items: RS-485 station number, data transmission rate, lower limit of input range, upper limit of input range, PT ratio, CT ratio, integrating low cut power, integrating pulse unit (fixed point part, exponent), integrating pulse ON pulse duration
(3) Adjustment items: power momentary value input zero, power momentary value input span,voltage momentary value input zero, voltage momentary input span, current momentary value input zero, current momentary value input span, power momentary value input zero, power momentary value input span
11 SET/ENT SET/ENT Switch
This switch is used for changing over displays of screens and items. It is also used for registration of set values and adjusted values. Pressing the switch for 3 seconds or more changes over the displays for measured value, parameter setting, or input/output adjusting.

12 $>$ Range Switch
This switch is used for changing over display of phases. It is also used for shifting digit position and decimal position of set values on parameter setting display.

This switch is used for the followings:

1. Increase the set value on parameter setting display.
2. Display the maximum value of voltage or current.
3. Increase the adjusted value at input/output adjustment.
$14 \boxtimes$ Figure DOWN switch
This switch is used for the followings:
4. Parameter decrement at parameter setting.
5. Display the minimum value of voltage or current
6. Decrease the adjusted value at input/output adjustment

## Schematic Diagram of Change-over Display Screen

| Input/Output Adjust Screen |  |
| :---: | :---: |
| P-7 | Instantaneous power input zero level adjust |
| P-5, | Instantaneous power input span level adjust |
| - $\quad$ - | Instantaneous voltage input zero level adjust |
| B-59 | Instantaneous voltage input span level adjust |
| B-7 | Instantaneous current input zero level adjust |
| 日-59, | Instantaneous current input span level adjust |
| PF-B | Optional instantaneous input zero level adjust |
| PF59n | Optional instantaneous input span level adjust |
| 0-7 | Analog output zero level adjust |
| $0-59$ | Analog output span level adjust |


Screen Development Sequence SET/ENT Key used

|  |  | त <br> $\frac{0}{2}$ <br> $\frac{0}{0}$ <br> $\frac{1}{3}$ | $\begin{aligned} & \frac{त}{0} \\ & \frac{0}{0} \\ & \frac{01}{0} \\ & \sum \\ & \vdots \end{aligned}$ | $\begin{aligned} & \frac{\rightharpoonup}{0} \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \sum \\ & \sum \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |

Screen Development Sequence SET/ENT Key used
*1: Press SET/ENT key till the PT Ratio Setting Screen is displayed
*2: Press SET/ENT key till the Instantaneous Power Input Zero Level Adjust Setting Screen is displayed. *3: Press SET/ENT key till the last MEASURED VALUE DISPLAY SCREEN is displayed. *4: By-passed if option is none.
*: If no key operation continues during five minutes when INPUT/OUTPUT ADJUST DISPLAY SCREEN
VALUE DISPLAY SCREEN and displays the last measured value.

## Example of Parameter Setting Screen (PT Ratio Setting)

7


1 Display Setting Screen at pressing SET/ENT key within three seconds
2 Change decimal point position at pressing $>$ key

3 Fixing decimal point position at pressing SET/ENT key
4 Change numeral column at pressing $>$ key
5 Change numeral column at pressing $\mathbb{\nwarrow}$ and $\mathbb{V}$ key
6 Fixing numeral value at pressing SET/ENT key
7 Light on and off of setting value.
8 If the setting is complete correctly, press SET/ENT key.
If required correcting, press any of $>$ key, $₫$ key, and $\mathbb{V}$ key, then repeat from step 1.

Example of Communication Connection


## Specifications

## - Input \& Output Specifications

Input Specs
Phase \& wire system: 1-phase 2-wire system, 1-phase 3-wire system, 3-phase 3-wire system, 3-phase 4-wire system
Input frequency: 45 to 65 Hz
Rated input voltage: 110 V AC, 220 V AC, 440 V AC , 3-phase 4-wire system: 64 V AC, 127 V AC, 277V AC
Permissible Input voltage: 1.2 times of rated voltage (continuous), 1.5 times ( 10 seconds)
Rated input current: 1A AC, 5A AC
Permissible Input current: 1.2 times of rated current (coninuous), 2 times ( 10 seconds), 10 times (3 seconds)
Input (power) measuring range (secondary side of PT, CT when CT, PT are set)

- 1-phase 2-wire system

| Input (AC) |  | Input range | App. Consumed VA |  |
| :---: | :---: | :---: | :---: | :---: |
|  | RP |  | Voltage | Current |
| 110V/1A | 100W | -120 to +120W | 0.2VA | 0.2VA |
| 110V/5A | 500W | -600 to +600 W |  |  |
| $220 \mathrm{~V} / 1 \mathrm{~A}$ | 200W | -240 to +240W | 0.4VA |  |
| 220V/5A | 1000W | -1200 to +1200W |  |  |
| 440V/1A | 400W | -480 to +480W | 0.8VA |  |
| 440V/5A | 2000W | -2400 to +2400W |  |  |

- 1-phase 3-wire system

| Input (AC) | Input range | App. Consumed VA |  |  |
| :---: | ---: | :---: | :---: | :---: |
|  |  |  | Voltage | Current |
| $200 \mathrm{~V} / 1 \mathrm{~A}$ | 200 W | -240 to +240 W | $0.2 \mathrm{VA} /$ | $0.2 \mathrm{VA} /$ |
| $200 \mathrm{~V} / 5 \mathrm{~A}$ | 1000 W | -1200 to +1200 W | phase | phase |

-3-phase 3-wire system

| Input (AC) |  | Input range | App. Consumed VA |  |
| :---: | :---: | :---: | :---: | :---: |
|  | RP |  | Voltage | Current |
| 110V/1A | 200W | -240 to +240W | 0.2VA/ <br> phase | $\begin{aligned} & 0.2 \mathrm{VA} / \\ & \text { phase } \end{aligned}$ |
| 110V/5A | 1000W | -1200 to +1200W |  |  |
| 220V/1A | 400W | -480 to +480W | 0.4VA/ <br> phase |  |
| 220V/5A | 2000W | -2400 to +2400W |  |  |
| 440V/1A | 800W | -960 to +960W | $0.8 \mathrm{VA} /$ phase |  |
| 440V/5A | 4000W | -4800 to +4800W |  |  |

## - 3-phase 4-wire system

| Input (AC) |  | Input range | App. Consumed VA |  |
| :---: | :---: | :---: | :---: | :---: |
|  | RP |  | Voltage | Current |
| 110V/1A | 300W | -360 to +360W | $\begin{aligned} & 0.2 \mathrm{VA} / \\ & \text { phase } \end{aligned}$ | 0.2VA/ phase |
| 110V/5A | 1500W | -1800 to +1800W |  |  |
| 220V/1A | 600W | -720 to +720W | $0.4 \mathrm{VA} /$ <br> phase |  |
| 220V/5A | 3000W | -3600 to +3600W |  |  |
| 64V/1A | 200W | -240 to +240W | 0.1VA/ phase |  |
| 64V/5A | 1000W | -1200 to +1200W |  |  |
| 127V/1A | 400W | -480 to +480W | 0.2VA/ phase |  |
| 127V/5A | 2000W | -2400 to +2400W |  |  |
| 277V/1A | 800W | -960 to +960W | $0.5 \mathrm{VA} /$ <br> phase |  |
| $277 \mathrm{~V} / 5 \mathrm{~A}$ | 4000W | -4800 to +4800W |  |  |

When outer set of PT, CT, check to see the primary side input power is less than 10000 MW and the value calculated by the formula below is within above input measuring range list.
Input range $(\mathrm{W})=$ Primary side input power $(\mathrm{W})$
(PT ratio) x (CT ratio)
Rated power factor: LEAD 0.5 to 1 to LAG 0.5
<Optional integrated control signal>
Input point: 1 point
Input signal: contact or voltage

|  | Contact signal | Voltage signal |
| :--- | :--- | :--- |
| ON signal | below $200 \%$ 。 | -1 V DC, below $200 \%$ 。 |
| OFF signal | over $100 \mathrm{k} \%$ | 4.5 to 25 V DC |

ON signal: Optional integration start (reset, integration start)
OFF signal: Optional integration stop
(Note) Control of optional integration can also be made through communication. Control by communication is once made, only control by communication is once made, only control by communication is made thereafter.
Integratad lowcut power: Integrated lowcut power below lowcut power is not made by integrated power, optional integrated power and integrated pulse output. Set integrated lowcut power for input to this instrument

| Parameter setting <br> screen item | Setting <br> range | Fixed decimal point |
| :---: | :---: | :---: |
| Integrated lowcut power | 0.1 to 99.9 W | 0.5 W when shipment |

Output Specs.
Output point: 1 point (commonly used for analog and integrated pulse outputs)
<Analog Output>
Function: Conversion of output instantanous power into DC current.
Output signal (instantanous power) : 4 to 20 mA DC
Permissible load resistance: 0 to $750 \Omega$
Input scaling: Indicates instantanous power range to be converted. Input scaling can be set by " H " and "L" levls of analog output on parameter setting screen. Set "L" and "H" levels within measuring range of this instrument. Also set span (difference between "L" level and "H" level) so as it would be more than $50 \%$ of rated power. If not specified when ordering, it would be shipped "L" level at OW, and "H" level at rated power (W).
<Integrated pulse output>
Function: Outputs pulse in proportion to integrated power Output signal: Open collector
Output capacity: $\quad 200 \mathrm{~mA}, 30 \mathrm{~V}$ DC
Integrated pulse unit: Indicates actual kWh corresponding 1 pulse input to this instrument. It can be set through integrated pulse unit characteristic and mantissa sections on parameter setting screen.

| Rated power | Setting range |
| :---: | :---: |
| 100W | $5.556 \times 10^{-6}$ to $1.000 \times 10^{-1} \mathrm{kWh} /$ pulse |
| 200W |  |
| 300W |  |
| 400W |  |
| 500W |  |
| 600W |  |
| 800W |  |
| 1000W | $6.667 \times 10^{-6}$ to $1.000 \times 10^{-1} \mathrm{kWh} /$ pulse |
| 1500W | $1.000 \times 10^{-5}$ to $1.000 \times 10^{-1} \mathrm{kWh} /$ pulse |
| 2000W | $1.334 \times 10^{-5}$ to $1.000 \times 10^{-1} \mathrm{kWh} /$ pulse |
| 3000W | $2.000 \times 10^{-5}$ to $1.000 \times 10^{-1} \mathrm{kWh} /$ pulse |
| 4000W | $2.667 \times 10^{-5}$ to $1.000 \times 10^{-1} \mathrm{kWh} /$ pulse |

(Note) When power OFF, integrated power on display is maintained. As for integrated pulse output, error of less than 1 pulse of integrated power arises.
Integrated pulse ON pulse width: Indicates ON time of pulse to output. It can be set on parameter setting screen. Set it so as not to exceed maximum ON pulse widthe obtained by the formula below:
Maximum On pulse width (ms)
$=$ pulse unit $[\mathrm{kWh} /$ pulse $] \times 3600 \times 1000^{2}-10$ rated power [W] x 1.2

| Setting range | Remarks | Initial value if not specified |
| :---: | :---: | :---: |
| 10 to 1270 ms | Set at 10 ms unit | 50 ms |

## - Communication Output specs.

Output point: 1 point (Commonly use for RS-485 and LON communications)
Function:Refer "Communication Output"

## - Standard Performance

Accuracy rating: Instantanous power, voltage r.m.s. value, current r.m.s. value $\pm 0.5 \%$ of rated value (at $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ )
(Equivalent JIS C 11020.5 grade)
Integrated power energy
$\pm$ (Power measuring accuracy $+0.5 \%$ of rdg) (at
$23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ )
Power factor
$\pm 2 \%$ of rated value (at $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ )
Analog output
$\pm 0.5 \%$ of span (at $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ )
(Equivalent JIS C 11110.5 grade)
However, $\pm 1 \%$ of span in case span is 50 to $80 \%$ of rated power.
Optional integrationg function: This function integrates power energy during the time optional integration starts to operate and display it by digital. There are 2 methods to control optional integration, one is made through optional integrating control signal and the other is made through communication. When optional integration control is made through commuication, optional integrationg control signal thereafter becomes invalid. Therefore, make control through either one of the above 2 methods. When optional integration changes over from stop to start, integration starts after optional integrated power is reset.

Backup when power off (power meter): Integrated power holds last integrated value when power off. Optional integration has not this function.
Response speed of instantanous power (analog output): Within 1 second (until enter into $\pm 1 \%$ of last value)
Up date of transmit data: Power, voltage, current, power factor within 500 ms
Insulation resistance: $100 \mathrm{M} \Omega$ ( 500 V DC) between any two points of voltage input, current input, optional integrated control signal, output, communication output, power supply and ground
Withstand voltage: 2000 V AC/minute between any two points of voltage input, current input, output, power supply and ground 2000 V AC/minute between communication output and (input, power supply) $1000 \mathrm{~V} \mathrm{AC} /$ minute between communication output and (output, ground). 500 V AC/minute between optional integrated control signal and (input, output, communication output, power supply and ground)
Impulse withstand voltage: $5 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between input and output, input and ground, power supply and ground
Temperature range: -10 to $55^{\circ} \mathrm{C}$
Humidity range: 5 to $90 \%$ RH (no condensation)
Effect of power supply voltage fluctuation: $\pm 0.3 \%$ of RV (instantanous value)/85 to 264 V AC $\pm 1.0 \%$ of RV (power factor) $/ 85$ to 264 V AC
Effect of temperature change: $\pm 0.5 \%$ of RV (instantanous value) $10^{\circ} \mathrm{C}$ $\pm 2.0 \%$ of RV (power factor) $/ 10^{\circ} \mathrm{C}$
Effect of input frequency: $\pm 0.3 \%$ of RV (instantanous value)/45 to 65 Hz
$\pm 1.0 \%$ of RV (power factor) $/ 45$ to 65 Hz ( $\mathrm{RV}=$ Rated Value)
Power voltatge: 85 to $264 \mathrm{~V} \mathrm{AC}, 45$ to 65 Hz
Power dissipation: 6VA (at 100 V AC ) 8 VA (at 200 V AC)

## - Display Operation

PT ratio CT ratio:
Setting of PT and CT ratio makes display converting input of this instrument into primary side input value of PT and CT. Setting can be done on parameter setting screen.

| PT ratio setting range | CT ratio setting range |
| :---: | :---: |
| 1 to 32000 | 0.05 to 32000 |

Integrated power:
$\square \square \square \square \square[\mathrm{kWh}]$ or $\square \square \square \square \square[\mathrm{MWh}]$ (w/o symbol, partially fixed decimal point integer 5 digits)

| Input power rating <br> x PT ratio x CT ratio | Display, decimal point |
| :--- | :--- |
| 30 W to 99999 kW | 0 to 99999 kWh |
| 100 kW to 999.99 kW | 0.00 to $999.99 \mathrm{MWh}\left(\mathrm{kWh}+10^{3}\right)$ |
| 1 MW to 9.9999 MW | 0.0 to $9999.9 \mathrm{MWh}\left(\mathrm{kWh}+10^{3}\right)$ |
| 10 MW over | 0 to $99999 \mathrm{kWh}\left(\mathrm{kWh}+10^{3}\right)$ |

Inregrated power data is reset to zero when the data exceed maximunm display value.

Optional integrated power:
$\square \square \square \square \square[\mathrm{Wh}]$ (w/o symbol, integer 5 digits)
Instantanous power:
$\pm \square \square \square . \square[\mathrm{W}]$ to $\pm \square \square \square \square[\mathrm{MW}]$ (w/symbol. floating decimal point 4 digits, minimum resolution:0.1W)
Voltage r.m.s. value: $\square \square \square . \square[\mathrm{V}]$ to $\square \square \square \square[\mathrm{kV}]$ (w/o symbol, floating decimal point 4 digits, minimum resolution: 0.1 V )
Current r.m.s. value: $\square . \square \square \square[\mathrm{A}]$ to $\square . \square \square \square[\mathrm{kA}]$ (w/o symbol, floating decimal point 4 digits, minimum resolution:0.001A)
Voltage maximum value: $-\square \square \square . \square[\mathrm{V}]$ to $-\square \square \square \square[\mathrm{kV}]$ (w/o symbol, floating decimal point 4 digits, minimum resolution: 0.1 V )
Voltage minimum value: $— \square \square \square \square[\mathrm{~V}]$ to $\quad \square \square \square \square[\mathrm{kV}]$ (w/o symbol, floating decimal point 4 digits, minimum resolution:0.1V)
Current maximum value:
$-\square . \square \square \square[\mathrm{A}]$ to $-\square . \square \square \square[\mathrm{kA}]$ (w/o symbol,
floating decimal point 4 digits, minimum resolution:0.001A)
Instantanous power factor:
$\mathrm{d} \square . \square \square \square$ to 1.000 to $\mathrm{G} \square . \square \square \square[\mathrm{COS} \phi]$ (w/o symbol, fixed decimal point 4 digits, minimum resolution:0.001COS $\phi$, d:Lead, G:Lag)
kWh LED: Light on during display of integrated power [ kWh ].
Wh LED: Light on during display of optional integrated power [Wh].
W LED: Light on during display of instantanous power [w].
V LED: Light on during display of voltage r.m.s. value [V].
A LED: Light on during display of current r.m.s. value [A].
$\operatorname{COS} \phi$ LED: Light on during instantanous power factor [COS $\phi$ ]
$\mathrm{X} 10^{3}$ LED: Light on when displaying instantanous value is kilo unit. Or lighton when integrated power [ kWh ] is Mega unit.
$\mathrm{X} 10^{6}$ LED: Light on when displaying instantanous value is mega unit.
COMM LED: Green light on when RS-485 or LON communication. As for LON communication, red light on and off when network parameter is under construction, and red light on when communication trouble or service.
SET/ENT Switch: This switch changes-over display of integrated power, optional integrated power, instantanous power, voltage r.m.s. value, current r.m.s. value and instantanous power factor. Also, it selects parameter setting item and input/output adjust item.

## R, S, T (phase indicator)

Light on phase that the data is displayed in data display.
Current display: R, S, T
Voltage display: R-S, S-T, T-R

> R, S, T (3-phase 4-wire system)
$\otimes$ (Range switch)
This switch is used for display line change-over, and for movement column position of setting data and decimal point position.
§ (Numeric up switch)
This switch is used for increment of setting parameter and input/output adjustment data.
$\mathbb{V}$ (Numeric down switch)
This switch is used for decrement of setting parameter and input/output adjustment data.
Note 1: Instantanous power value is displayed with symbol in case only negative.
Note 2: When display of maximum value, ‘-' is displayed at the top with light on and off.
Note 3: When display of minimum value, '_-' is displayed at the top with light on and off.
Note 4: Instantanous power factor is displayed only when measuring option is designated.

## - Communication Output

RS-485 or LON communication outputs can optionally be selected
<Communication data>
Following measuring value can be read out by converting input into $\mathrm{PT} \cdot \mathrm{CT}$ primary side input.

- Integrated power
- Optional integrated power (present value)
- Optional integrated power (last value)
- Instantanous power
- Voltage r.m.s. value
- Current r.m.s. value
- Instantanous power factor or Current 2 r.m.s. value
- Voltage maximum value
- Valtage minimum value
- Current maximum value
- Current 2 maximum value

Also, start•stop of optional integrated power and reset of maximum and minimum values of voltage r.m.s. value and maximum value of current r.m.s. value can be done through communication.
<RS-485 Communication>
Function: Various measuring values can be read out through personal computer by command/ response mode. Readout of measuring value would be made individually or in block.
Also, control of optional integration and initialization of maxium and mimimum values can be done through persomal computer.

## System Configuration:



Note: RS-232C/485 Converter is recommended to use our ML1 in AUTO mode.

Communication specs.: RS-485 Interface
Transmit distance: Maximum about 1.2 km
(When use of 24AWG twist pair cable)

Connectiong mode:
(1) RS-485 standard Multi-drop connection Maximum 32 stations (including upper personal computer)
(2) Terminating resistor: $120 \Omega$
(ON by terminal short)
(3) Not insulated with inner circuit

Connecting Terminal: 3 terminals back face
A: Balanced type twist pair cable -
B: Balanced type twist pair cable +
C: Shield
Transmit mode: Half duplex communication
Synchronizing mode: Start-stop synchronization
Transmit speed: Can be set through parameter setting screen

| Setting Range |
| :---: |
| $9600 / 4800 / 2100 / 1200$ |

Data format: Start bit 1 bit
Data bit 8 bits
Parity None
Stop bit 1 bit
Error detect: SUM CHECK (simply adding 2 bytes)
Xon/Xoff Control: None
Terminating character designation: Yes (CR)
Station number setting: Can be set through parameter setting screen

| Setting range |
| :---: |
| 1 to 31 |

Communication error disposal: If data received is other than command, reading is ignored and no disposal be made. (noise or erroneous data would be ingnored).
Make time-out disposal through upper computer. Set time-out time more than 1 second.

## <LON Communication>

Function: Measuring data can be simply read out on personal computer through LON communication adapter and DDE: server without consciousness of communication. Also, control of optional integration and initaialization of maximum and minimum values can be done through personal computer. Please contact us as to connection with other instruments.

## System Configuration:



## - Shape \& Mounting

External dimension: $110 \times 110 \times 111 \mathrm{~mm}(\mathrm{HxWxD})$
Mounting method: Panel mouting (Refer panel cut dimension)
Material:
Case: uninflammable ABS plastic (black)
Terminal board: uninflammable ABS plastic (black)
Weight: Abt 500g
Connecting method: M3 screw terminal connection (output, communication, optional integrated control signal) M4 screw terminal connection (input, power supply)

## - Accessories:

Label...2, Nut M5...2, Washer M5... 2 Spring washer M5... 2 Short bar... 1

# YOKOGAWA <br> Yokogawa Electric Corporation 

YOKOGAWA ELECTRIC CORPORATION
Network Solutions Business Division
2-9-32, Nakacho, Musashino-shi, Tokyo, 180-8750 JAPAN
Phone: +81-422-52-7179 Facsimile: +81-422-52-6793
Sales Branch Offices
Tokyo, Nagoya, Osaka, Hiroshima, Fukuoka

## OKOGAWA CORPORATION OF AMERICA

## Headquater

Dart Road, Newnan, GA. 30265-1094 U.S.A
Phone: +1-770-253-7000 Facsimile: +1-770-251-0928
Sales Branch Offices / Texas, Chicago, Detroit, San Jose

## YOKOGAWA EUROPE B. V.

## Headquaters

Databankweg 20, 3821 AL Amersfoort THE NETHERLANDS
Phone: +31-334-64-1611 Facsimile: +31-334-64-1610
Sales Branch Offices / Houten (The Netherlands), Wien (Austria), Zaventem
(Belgium), Ratingen (Germany), Madrid (Spain), Bratislava (Slovakia), Runcorn (United Kingdom), Milano (Italy), Velizy villacoublay(France), Johannesburg(Republic of South Africa)

YOKOGAWA AMERICA DO SUL S.A.

## Headquarters \& Plant

Praca Acapulco, 31-Santo Amaro, Sao Paulo/SP, BRAZIL CEP-04675-190 Phone: +55-11-5681-2400 Facsimile: +55-11-5681-4434

## YOKOGAWA ENGINEERING ASIA PTE. LTD.

## Head office

5 Bedok South Road, Singapore 469270 SINGAPORE
Phone: +65-6241-9933 Facsimile: +65-6241-2606
YOKOGAWA ELECTRIC KOREA CO., LTD.
Seoul Sales office
395-70, Shindaebang-dong, Dongjak-gu, Seoul,156-010, KOREA
Phone: +82-2-3284-3000 Facsimile: +82-2-3284-3019

## YOKOGAWA TAIWAN CORPORATION

## lead office

7F, No.39, Sec. 1, Chung Hwa Road Taipei, 100 TAIWAN
hone: +886-2-2314-9166 Facsimile: +886-2-2314-9918

## YOKOGAWA AUSTRALIA PTY. LTD

## Head office

entrecourt D1, 25-27 Paul Street North, North Ryde, N. S. W. 2113, AUSTRALIA
Phone: +61-2-9805-0699 Facsimile: +61-2-9888-1844

## YOKOGAWA INDIA LTD.

Head office
40/4 Lavelle Road, Bangalore, 560 001, INDIA
Phone: +91-80-227-1513 Facsimile: +91-80-227-4270

## TD YOKOGAWA ELECTRIC

Grokholskiy per. 13, Build. 2, 4th Floor, 129010, Moscow, RUSSIA FEDERATION
Phone: +7-095-737-7868 Facsimile: +7-095-737-7869

