
d i s t r i b u t e d c o n t r o l s y s t e m s

www.isa.org/intech26 September 2002

A
legacy system is a process auto-
mation system that entered
service sometime in the past.
Many legacy systems devel-
oped before the widespread

use of modern software engineering
methods.

With standardization efforts in net-
working through Ethernet and TCP/IP
and through operating systems such
as Unix and Windows NT and 2000,dif-
ferences among systems in these
areas were reduced.

These legacy systems are now
reaching the end of their product life
cycles.Without continuing long-term
support, the problems of spare parts,
people knowledgeable in the sys-
tems, and system reliability, their
costs have risen to the point that re-
placement or renovation is necessary
to maintain operation.

Also, many companies are invest-
ing in current technologies to take
advantage of their openness and
connectivity to business and other
operation systems.

Inheriting
What to look out

BY BRUCE JENSEN AND BHAVIN PATEL

d i s t r i b u t e d c o n t r o l s y s t e m s

www.isa.org/intech 27September 2002

THROUGH THE GENERATIONS
Computer and software technologies have
changed rapidly in the last 30 to 40 years. Early
systems, 1970s through ’80s, using minicom-
puters did not have a wide set of configuration
tools.These systems had a monolithic structure
(practically no structure).

In the evolution of programming lan-
guages, often the terms 1GL (first-generation
language), 2GL, 3GL, 4GL, and 5GL apply to rep-
resent major steps or generations.

1GL was, and still is, machine language, or
the level of instructions and data the processor
actually uses and works on. In conventional
computers, this is a string of 0s and 1s.

2GL is assembler or assembly language. A
typical 2GL instruction looks something like
ADD 12,8.

3GL is a high-level programming language
such as Fortran, Basic, PL/I, C, or Java.A Java lan-
guage statement looks like this:

public boolean handleEvent (Event evt) {
switch (evt.id) {

case Event.ACTION_EVENT: {
if (“Try me” .equald(evt.arg)) {

A compiler converts the statements of a
specific high-level programming language
into machine language. In the case of Java, the
output is byte code, which converts into
appropriate machine language (1GL) by
means of a Java virtual machine that runs as
part of an operating system platform.

In earlier versions of Fortran, the compiler
converted the code to assembly language
(2GL), which was in turn converted to machine
code (1GL).

A 3GL requires a considerable amount of
programming knowledge.

4GLs are closer to natural language than a
3GL. Languages for accessing databases are
4GLs. A 4GL statement might look like this:

EXTRACT ALL CUSTOMERS WHERE
“PREVIOUS PURCHASES” TOTAL
MORE THAN $1,000
5GLs are visual or graphical development

interfaces that create a source language that
usually compiles using a 3GL or 4GL compiler.
Microsoft, Borland, IBM, and other companies
make 5GL visual programming products for
developing applications in Java, for example.

Visual programming allows easily envi-
sioned object-oriented class hierarchies and
drag-and-drop icons to assemble into program
components.

BUILDING WITH TRANSISTORS
These same terms sometimes describe the
computing platform (hardware) as well. A
first-generation computer is a computer
based on vacuum tubes and other esoteric
technologies. These are the computers
designed before the mid-1950s.

Second-generation computers were com-
puters built from transistors, designed

between the mid-1950s and mid-1960s. With
the advent of second-generation computers, it
became necessary to talk about them as com-
puter systems because the number of memory
units, processors, I/O devices, and other system
components could vary among different instal-
lations, even though the same basic computer
pushed the arrangement.

Third-generation computers refer to ones
built with small-scale integration integrated
circuits designed after the mid-1960s. Third-
generation computers used semiconductor
memories in addition to, and later instead of,
ferrite core memory.

Fourth-generation computers were com-
puters built using very large scale integra-
tion (VLSI) integrated circuits, especially a
microcomputer based on a microprocessor
or a parallel processor containing two to
thousands of CPUs.

VLSI made it routine to fabricate an entire
CPU, main memory, or similar device with a
single integrated circuit that industry mass
produced at low cost. This resulted in new
classes of machines such as high-performance
parallel processors that contain thousands of
CPUs and the PCs we see deployed in the
process industries today.

The computers and languages are basic
building blocks needed to create software
tools used to build process control applica-
tions. These applications are generally custom

the wind
 for when replacing a legacy system.

d i s t r i b u t e d c o n t r o l s y s t e m s

www.isa.org/intech28 September 2002

designed to perform control and monitoring
of process equipment, units, and facilities.They
provide information for operations and busi-
ness management.

We describe process control configuration
software tools that build control applications in
the same vein that we labeled the computers
and languages—by generation: 1GS, 2GS, 3GS,
and 4GS.

First-generation applications tools (1GS)
used the monolithic structured languages.
These are often 3GLs that create an applica-
tion through pure programming. Functions
written as reentrant routines often used
structures for I/O processing and control
algorithms such as proportional-integral-
derivative (PID) controllers.

Second-generation process software
(2GS) included fill-in-the-form types of tools.
A form included the pertinent information
in a tabular or comma delimited format. An
application compiler would operate on this
form to create the control or human-
machine interface (HMI).

Often a PID controller was represented by
several tags: one tag to represent the input,
one to represent the algorithm, one to repre-
sent its set point, a tag to represent the alarms,
and a tag to represent the output.

With the advent of language standards
such as IEC 61131-3, third-generation process
application tools (3GS) became popular. IEC
61131-3 describes programming languages of
ladder logic, function blocks, sequential func-
tion charts,and structured textual languages of
the 3GL variety.

Third-generation software systems en-
abled modularity of the control application
such that the control function emulated the
equipment it was controlling. That is, a PID
function block would perform input pro-
cessing, the PID algorithm with alarming
and output processing within the one defi-
nition of a function block and thus labeled
as a single tag.

Fourth-generation tools (4GS) are applica-
tions built based on object-oriented software
structures. Here a graphical object represent-
ing a pump contains data attributes for the
representation of the object on the graphic,
such as color change for different operating
modes, as well as control attributes describing
its I/O and behavior for state changes. In addi-
tion, methods describing its behavior under
certain conditions and interfaces function
within the object.

MULTIPLE GENERATION SYSTEMS
In replacing a legacy distributed control sys-
tem (DCS), one first determines the generation
of the computer, the languages, and the soft-
ware tools of the legacy system.The largest dif-
ferences between legacy and state-of-the-art
systems are the data structures: hierarchical
and/or relational and the methods of program-
ming that link them.

Hardware differences are also an issue.
These differences have more to do with capac-
ity and computing ability than functionality,
though the type of system may force a type of
functionality on the user.

What is of issue is whether to replicate the
existing functionality exactly or redesign much
of the functionality to take advantage of the

increased power, sophistication, and ability of
the newer-generation systems.

In replicating the functionality, the design
analysis is to map existing structures repre-
senting functionality to new data structures.

The most common mistake assumes the
mapping phase can take place in one pass. But
there is rarely an expert in the legacy system
who can completely pass knowledge about the
older system to the designer of the new system.

Typically, project timelines often underesti-
mate the data problems in the migration tasks.

DIFFERENCES IN EQUIVALENCE
Replacing a legacy system based on 3GS data
structures with a new 3GS system might seem
to be simple. . . . Not!

Al Qaeda studies
cyberattack systems
Al Qaeda studies
cyberattack systems
The instrumentation,systems,and automation industry uses digital DCSs and supervisory control and data acquisi-

tion (SCADA) systems as tools of the trade to lower costs, get up on the competition, and operate more safely.
The U.S.federal government,in the form of the Commerce Department’s Critical Infrastructure Assurance Office,

is looking at DCSs and SCADAs as weak links in the fight to preserve security against those whose aims are to inflict
catastrophic harm on the industrialized world.

Working together, the FBI, Lawrence Livermore National Laboratory, and the Defense Department compiled a
forensic summary tracing telecommunications routed through Saudi Arabia, Indonesia, and Pakistan that cased
emergency telephone systems, electrical generation and transmission, water storage and distribution, nuclear
power plants, and gas facilities.

The Washington Post reported that some of the probes suggested planning for a conventional attack. But
others homed in on a class of digital devices that allows remote control of services such as fire dispatch and
of equipment such as pipelines. More information about those devices and how to program them turned up
on al Qaeda computers seized this year.

Most significantly,perhaps,U.S.investigators found evidence in the logs that mark a browser’s path through the
Internet that al Qaeda operators spent time on sites that offer software and programming instructions for the dig-
ital switches that run power, water, transport, and communications grids.

In some interrogations, al Qaeda prisoners described intentions, in general terms, to use those tools.
Millions of these specialized digital devices operate and direct the brains of American critical infrastructure.

Federal directive defines this term to mean industrial sectors that are essential to the minimum operations of the
economy and government.

The digital devices are DCSs and SCADA systems.The simplest ones collect measurements, throw railway
switches, close circuit breakers, or adjust valves in the pipes that carry water, oil, and gas.

More complicated versions sift incoming data, govern multiple devices, and cover a broader area.
What is new and dangerous is that most of these devices are now connecting to the Internet, some of them in

ways their owners do not suspect.
Industry designed these digital controls without public access in mind. They typically lack even rudimentary

security, having fewer safeguards than the online purchase of flowers.
Much of the required technical information to penetrate these systems is widely discussed in the public forums

of the affected industries, and specialists say potential attackers are well aware of these systems’security flaws.

d i s t r i b u t e d c o n t r o l s y s t e m s

www.isa.org/intech 29September 2002

For starters, it’s impossible to select a single
simplistic approach because legacy systems
typically are heterogeneous, using various lan-
guages, database systems, and hardware plat-
forms. Engineering software tools to imple-
ment the process application and view the
process are still widely diverse.

Differences in function blocks, structured
textual language statements, and other tools
differ greatly from vendor to vendor and from
decade to decade even from the same vendor.

When translating from 2GS to 3GS systems,
the complexity increases. Inherent system fea-
tures may replace functionality that required
application programming in the legacy system.

Here, lines of sequential code in 2GS sys-
tems must be captured and translated into
either function blocks, logic charts (truth
tables), sequential code, or other types of soft-
ware implementation tools. Decisions of this
type must capture generic functionality and
handle exceptions on an individual basis.

The intricacy increases exponentially
again when translating 1GS to 3GS or even
4GS systems.

FEEDING THE RAW VALUES
The two main differences for an equivalent
functionality in a function block are in the algo-
rithm and the data structures.

One of the most common algorithms in the
industry is also one of the most diverse.The PID
algorithm and tuning constants may be stan-
dards in their most basic forms, but different
vendors implement them in different ways.
There are noninteracting and interacting con-
troller types, for instance.

Also, the tuning constants are often differ-
ent. For example, some systems refer to con-
troller gain, while others summon proportional
band. Integral units may have to translate from
repeats per minute to seconds per repeat. And
derivative gain may express in different time
units that may depend on controller gain.

To ensure that the tuning constants of the
new system will perform like the loops already
in place,a conversion between the existing tun-
ing factors and the new ones is necessary. Even
that may not solve the problem completely.

Some systems do I/O scanning asynchro-
nously, feeding the raw values to a buffer that
the PID function uses to calculate its output on
a periodic basis and which then feeds the result
to another data buffer that writes to the output.

Other systems perform the input, calcu-
lation, and output in a single dedicated scan

cycle. This means the overall timing of the
loop is in question, and different loop per-
formance may occur.

Calculation blocks among systems are
also quite diverse. Some have limits on the
number of inputs and outputs, the number
of internal registers for data storage, nor-
malization, and the number of lines of struc-
tured text that may be applied.

Often, scripts or use of tools, such as
Microsoft Access with its query tools, can aid in
parameter mapping. Advantages in writing
these scripting tools are that translation can
take place for a myriad of components quickly.

Also,reusing scripting substantially reduces
time on subsequent projects. The downside is
the time needed to create the script, the
debugging effort, and other tuning and tweak-
ing necessary to ensure proper conversion.

MAPPING THE ROAD FROM PAST
Differences in data structures are the most
challenging. A PID function block in a legacy
system, for instance, has several parameters
from which the function block operates.

We can assume every PID should have the
parameters of set point, measurement, and
output as well as proportion gain,integral time,
and derivative gain. However, other features
have to be verified, such as antireset windup,
set point rate of change, output limiting and
tracking, and others.

Believe it or not, many systems do not have
all these features within the same function
block. Other blocks came on board, at some
time in the past, to augment missing features.
Thus, it may be a many to one relationship
among function blocks.

Alternatively, the new system may have
more powerful tools with which to implement
the legacy system functionality. The best tools
should be used to achieve the equivalent func-
tionality. This allows for increased efficiency of
implementation, display, and maintenance.

Thus, a documented mapping strategy
must take place at the design stage. This pro-
vides not only the rules and road map to
replace existing functionality but also the basis
for documentation of functional design, imple-
mentation, and testing.

Also, when replacing legacy systems, the
differences in programming software execu-
tion structure are often overlooked, underesti-
mated, and misunderstood. The legacy system
may have software execution similar to a pro-
grammable logic controller that uses ladder
logic. These systems execute code left to right,
top to bottom in a single sweep.

The replacement system may have soft-
ware execution that is sequential, similar to a
DCS.Then one must pay very close attention to
the existing application and sort out code that
must execute continuously, such as interlocks,
from code that must execute sequentially.

A further issue is converting the HMI’s look
and feel. In theory, the HMI should be the easi-
est to replace or convert. But the new systems
usually offer more sophisticated and flexible
HMI tools and operation abilities.

And that’s the problem!
You might have a few engineers responsi-

ble for the DCS system, yet there is an army of
operators running the plant. For most of them,
HMI or graphics is an emotional issue.

Some operators want the new system to
look and feel the same as before, while some
want to use all the bells and whistles, incorpo-
rating three-dimensional graphics, animation,
colors, and the like.

Also, one has to be sensitive to the needs
of some operators, such as color blindness.

It is very important to devise consensus HMI
standards using input from operators to fashion
a road map of HMI design. By doing so, the
operators are part of the team so they neces-
sarily buy in to the conversion. This avoids the
common unpleasantness that management is
forcing the system on the operators. IT

Behind the byline
Bruce Jensen and Bhavin Patel work for
Yokogawa Corporation of America in Newnan,Ga.
Jensen is the systems engineering support man-
ager, and Patel is a senior applications engineer.

In late July, Joe Weiss, ISA Fellow and
control system cybersecurity expert

for KEMA Consulting, appeared before the
U.S. House of Representatives to address

the topic of the cybersecurity of the
critical industry infrastructures.

Read his testimony, his assessment of
the issue, and his recommendations at
www.isa.org/Content/ContentGroups/
News/2002/July6/InTech5/Control_
system_cyber_securityandNum8212;
maintaining_the_reliability_of_the_
critical_infrastructure.htm. Or go to

isa.org, and search on Weiss.

