 ADMAG TI Series
AXG Magnetic Flowmeter
Flange JIS 20K

Size 2.5 to 15 mm (0.1 to 0.5 in.)

AXG002
AXG005
AXG010
AXG015

Size Code
B, D

Process Connection Code

Lining Code

Unit: mm (approx. in.)

*1: This length becomes 21 mm (0.83 in.) shorter when display code N is selected.

Size 25 to 125 mm (1 to 5 in.)

AXG025
AXG032
AXG040
AXG050

Size Code
B, C

Process Connection Code

Lining Code

Unit: mm (approx. in.)

*1: This length becomes 21 mm (0.83 in.) shorter when display code N is selected.

Size 150 to 200 mm (6 to 8 in.)

AXG150
AXG200

Size Code
B, C

Process Connection Code

Lining Code

Unit: mm (approx. in.)

*1: This length becomes 21 mm (0.83 in.) shorter when display code N is selected.

Unless otherwise specified, difference in the dimensions are specified as: General tolerance = ± (Criteria of tolerance class IT18 in JIS B0401-1) / 2
Size 250 to 300 mm (10 to 12 in.)

AXG250
AXG300

Size Code: A, B, C

Unit: mm (approx. in.)

Integral Flowmeter
Remote Sensor

- Integral Flowmeter
- Process Connection Code
- Lining Code

- Remote Sensor

*1: This length becomes 21 mm (0.83 in.) shorter when display code N is selected.

Direction of Cable Entry

<table>
<thead>
<tr>
<th></th>
<th>Standard (0°)</th>
<th>+90° rotation</th>
<th>+180° rotation</th>
<th>-90° rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral Flowmeter</td>
<td>Cable Entry</td>
<td>Display</td>
<td>Cable Entry</td>
<td>Display</td>
</tr>
<tr>
<td>Remote Sensor</td>
<td>Front Side</td>
<td>Cable Entry</td>
<td>Back Side</td>
<td>Cable Entry</td>
</tr>
</tbody>
</table>

* The direction of cable entry changes as shown left depending on the designation of the optional code RH with its rotational specification.
Remote Sensor

<table>
<thead>
<tr>
<th>Number of Bolt Holes</th>
<th>N</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>8</th>
<th>8</th>
<th>8</th>
<th>8</th>
<th>12</th>
<th>12</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>H1</td>
<td>164</td>
<td>164</td>
<td>164</td>
<td>164</td>
<td>164</td>
<td>164</td>
<td>164</td>
<td>143</td>
<td>104</td>
<td>154</td>
<td>156</td>
<td>177</td>
<td>199</td>
<td>214</td>
</tr>
<tr>
<td>Height</td>
<td>H2</td>
<td>164</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>80</td>
<td>66</td>
<td>86</td>
<td>86</td>
<td>99</td>
<td>108</td>
<td>114</td>
</tr>
<tr>
<td>Height</td>
<td>H3</td>
<td>-</td>
</tr>
<tr>
<td>Maximum Height</td>
<td>H1</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>218</td>
<td>171</td>
<td>272</td>
<td>272</td>
<td>294</td>
<td>313</td>
<td>353</td>
</tr>
<tr>
<td>Maximum Height</td>
<td>H2</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>218</td>
<td>171</td>
<td>272</td>
<td>272</td>
<td>294</td>
<td>313</td>
<td>353</td>
</tr>
<tr>
<td>Approx. Weight, Unit kg (lb) (2)*</td>
<td>6.2</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.9</td>
<td>3.9</td>
<td>4.0</td>
<td>5.2</td>
<td>6.3</td>
<td>6.6</td>
<td>7.5</td>
<td>9.9</td>
<td>13.1</td>
<td>17.7</td>
<td>26.5</td>
</tr>
<tr>
<td>Integral Flowmeter</td>
<td>12.3</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.8</td>
<td>4.1</td>
<td>4.5</td>
<td>6.7</td>
<td>8.8</td>
<td>9.9</td>
<td>13.1</td>
<td>17.7</td>
<td>26.5</td>
<td>35.6</td>
<td>41.2</td>
</tr>
<tr>
<td>Approx. Weight, Unit kg (lb)</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.6</td>
<td>7.7</td>
<td>8.8</td>
<td>9.2</td>
<td>10.2</td>
<td>12.5</td>
<td>15.2</td>
<td>20.2</td>
<td>26.1</td>
</tr>
</tbody>
</table>

Integral Flowmeter

| Grounding rings thin type (GR1, GRV, GRW) (*1) | +2 |
| Grounding rings thick type (GRN, GRV, GRW) (*1) | +6 |

*1: Add the value above (which is the total of both ends) to the lay length "L" when selecting optional grounding rings with/ without gaskets.

*2: When submersible use or optional code DHC is selected, waterproof glands with union joints and cables are attached. When the cable length is 30-meters, add 9.5 kg (20.9 lb) to the weight in the table.

*3: The tolerance of the lay length "L" is as follows.
- Size 2.5 to 200 mm (0.1 to 8 in.): 0/-3 mm
- Size 250 to 400 mm (10 to 16 in.): 0/-5 mm

All Rights Reserved. Copyright © 2017, Yokogawa Electric Corporation.
Terminal Configuration and Wiring

Remote Sensor:
<To be wired to Remote Transmitter>
Non Explosion Protection Use

Explosion Protection Use

Integral Flowmeter:
<To be wired to Power Supply and I/Os>
M4 Screw Type

Clamp Type

<table>
<thead>
<tr>
<th>Terminal Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Flow Signal Output</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>EX1</td>
<td>Excitation Current Input</td>
</tr>
<tr>
<td>EX2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protective Grounding (Outside of the terminal box)</td>
</tr>
<tr>
<td></td>
<td>Functional Grounding</td>
</tr>
</tbody>
</table>

Note: When submersible use or optional code DHC is selected, waterproof glands with union joints and cables are attached.