Model IR400
Infrared Gas Analyzer

Unless otherwise specified, differences in the dimensions are specified as: General tolerance = ±(Criteria of tolerance class IT18 in JIS B0401-1998)/2.

Unit: mm

Power Switch
Sample gas inlet Rc1/4 or 1/4 NPT
Sample gas outlet Rc1/4 or 1/4 NPT
Purge gas inlet Rc1/4 or 1/4 NPT
Fuse
Connector for input/output terminal module

Weight: Approx. 22 kg
Accessory

- Input/Output Terminal Module

Unless otherwise specified, differences in the dimensions are specified as: General tolerance = ±(Criteria of tolerance class IT18 in JIS B0401-1998)/2.
• **Slide Rail**
 Model: equivalent to 305A-24/Accuride International Inc.

The slide rail is supplied at the delivery time.

- **Cabinet member** 1.52t
- **Intermediate member**
- **Drawer member** 1.27t
- **Reinforcement plate**

For easy maintenance, we recommended the mounting method which allows the rack to be drawn out along the slide rail.

<19-inch rack mounting method>

- For mounting with guide rails, a maintenance space (200 mm or more) should be provided on top of the main unit.

With slide rails

- **Rack size**
 - 450 or more
 - 465

Mounting diagram

- **Slide rails**

With guide rails

- **Rack size**
 - 450 or more
 - 465

Mounting diagram

- **Guide rails**

Unless otherwise specified, differences in the dimensions are specified as: General tolerance = ±(Criteria of tolerance class IT18 in JIS B0401-1998)/2.
Dedicated Relay Board (option code /R)

<How to connect>

CN9 1 3
CN1
CN2
CN3
CN4
CN5
CN6
CN7
CN8

Solenoid valve driving power
For switching sample
Reserved
For zero gas
For span gas

CN13

Relay board

CN3

I/O terminal module

Dedicated cable (D-sub 9-pin straight cable 1.5 m)

Unless otherwise specified, differences in the dimensions are specified as: General tolerance = ±(Criteria of tolerance class IT18 in JIS B0401-1998)/2.
External Connection Diagram

<table>
<thead>
<tr>
<th>Terminal block 1</th>
<th>Terminal block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td><TN1></td>
<td><TN2></td>
</tr>
<tr>
<td>Ch5 output</td>
<td>O2 analyzer input*</td>
</tr>
<tr>
<td>(Ch5_OUT)</td>
<td>(O2_IN)</td>
</tr>
<tr>
<td>Ch4 output</td>
<td>Ch10 output</td>
</tr>
<tr>
<td>(Ch4_OUT)</td>
<td>(Ch10_OUT)</td>
</tr>
<tr>
<td>Ch3 output</td>
<td>Ch9 output</td>
</tr>
<tr>
<td>(Ch3_OUT)</td>
<td>(Ch9_OUT)</td>
</tr>
<tr>
<td>Ch2 output</td>
<td>Ch8 output</td>
</tr>
<tr>
<td>(Ch2_OUT)</td>
<td>(Ch8_OUT)</td>
</tr>
<tr>
<td>Ch1 output</td>
<td>Ch7 output</td>
</tr>
<tr>
<td>(Ch1_OUT)</td>
<td>(Ch7_OUT)</td>
</tr>
</tbody>
</table>

- **<TN1>** (M3.5 screw)
- **<TN2>** (M3.5 screw)

<table>
<thead>
<tr>
<th>Terminal block 3</th>
<th>Terminal block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td><TN3></td>
<td><TN4></td>
</tr>
<tr>
<td>Unassigned</td>
<td>Unassigned</td>
</tr>
<tr>
<td>Unassigned</td>
<td>Unassigned</td>
</tr>
<tr>
<td>Remote hold input (R_HOLD)</td>
<td>Pump ON/OFF contact output (PUMP)</td>
</tr>
<tr>
<td>Average value reset input (RESET)</td>
<td>Calibration error contact output (FAULT)</td>
</tr>
<tr>
<td>Auto calibration remote start input (R_CAL)</td>
<td>Instrument error contact output (FAULT)</td>
</tr>
</tbody>
</table>

- **<TN3>** (M3.5 screw)
- **<TN4>** (M3.5 screw)

<table>
<thead>
<tr>
<th>Terminal block 5</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td><TN5></td>
<td><CN3></td>
</tr>
<tr>
<td>Unassigned</td>
<td>Contact output for sample gas selecting</td>
</tr>
<tr>
<td>Alarm3 output (ALM3)</td>
<td>1</td>
</tr>
<tr>
<td>Alarm2 output (ALM2)</td>
<td>2</td>
</tr>
<tr>
<td>Alarm1 output (ALM1)</td>
<td>3</td>
</tr>
</tbody>
</table>

- **<TN5>** (M3.5 screw)
- **<CN3>** (D-sub 9P)

Note 1: Unassigned terminals are used for internal connection. So they should not be used as repeating terminals either.

Note 2: The allocation of each channel (Ch1 to Ch12) depends on measured gas components. Refer to the table on the next page.