Service
 Manual
 DAQSTATION
 DX100/DX200

Important Notice To the User

This manual contains information for servicing the YOKOGAWA DAQSTATION DX100/ DX200. Check the serial number to confirm that this service manual corresponds to your instrument. Make sure not to use the wrong manual.

Before any maintenance and servicing, read all safety precautions carefully.

Only properly trained personnel may carry out maintenance and servicing in accordance with and to the extent permitted by this service manual.

Do not disassemble the instrument or its parts, unless otherwise clearly permitted by this service manual.

Do not replace any part or assembly, unless otherwise clearly permitted by this service manual.

Yokogawa Electric Corporation (YOKOGAWA) does not in principle supply parts other than those listed in the customer maintenance parts list in this service manual (mainly modules and assemblies). Therefore if an assembly fails, the user should replace the whole assembly and not components within the assembly (see NOTE). If the user attempts to repair the instrument by replacing individual components within the assembly, YOKOGAWA assumes no responsibility for any consequences, such as defects in instrument accuracy, functionality, or reliability, or user safety hazards.

YOKOGAWA does not offer more detailed maintenance and service information than that contained in this service manual.

All reasonable efforts have been made to assure the accuracy of the content of this service manual. However, there may still be errors such as clerical errors or omissions. YOKOGAWA assumes no responsibility of any kind concerning the accuracy or contents of this service manual, nor for the consequences of any errors.

All rights reserved. No part of this service manual may be reproduced in any form or by any means without the express written prior permission of YOKOGAWA. The contents of this manual are subject to change without notice.

Note

YOKOGAWA instruments have been designed in a way that the replacement of electronic parts can be done on an assembly (module) basis by the user. YOKOGAWA instruments have also been designed in a way that troubleshooting and replacement of any faulty assembly can be done easily and quickly. Therefore, YOKOGAWA strongly recommends replacing the entire assembly over replacing parts or components within the assembly. The reasons are as follows:

- The instruments use high-performance microprocessors, large scale CMOS gate arrays and surface-mount components to provide state-of-the-art performance and functions.
- Repair of components can only be performed by specially trained and qualified maintenance personnel with special highly-accurate tools, including costly ones.
- When taking the service life and cost of the instruments into consideration, the replacement of assemblies offers the user the possibility to use YOKOGAWA instruments more effectively and economically with a minimum in downtime.
- Zip is a trademark or registered trademark of lomega Corporation in the United States and/or other countries.
- Adobe and Acrobat are trademarks of Adobe Systems incorporated.

Introduction

This manual contains information for servicing the YOKOGAWA DAQSTATION DX100/ DX200.

Note

\qquad
This is the third edition of the manual, dated August 2007.

WARNING

This service manual is to be used by properly trained personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to the Safety Precautions prior to performing any service. Even if servicing is carried out by qualified personnel according to this service manual, YOKOGAWA assumes no responsibility for any result occurring from this servicing.

Safety Precautions

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific WARNINGS given elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. YOKOGAWA ELECTRIC CORPORATION assumes no liability for the customer's failure to comply with these requirements.

General Definitions of Safety Symbols Used on Equipment and in Manuals

High temperature. To avoid injury caused by hot surfaces, the operator must not touch the heatsink.

Danger. Affixed to the instrument, this symbol indicates danger to personnel or the instrument and the operator must refer to the user's manual. The symbol is also used in the corresponding place in user's manual.

Protective grounding terminal,to protect against electrical shock. This symbol indicates that the terminal must be connected to ground before operation of equipment.

Functional earth terminal. This terminal should not be used as a "Protective earth terminal."

WARNING

Describes precautions that should be observed to prevent serious injury or death to the user.

CAUTION

Describes precautions that should be observed to prevent minor or moderate injury, or damage to the instrument.

WARNING

Power Supply

Ensure the source voltage matches the voltage of the power supply before turning ON the power.

Protective Grounding

The protective earth terminal must be connected to ground to prevent an electric shock before turning ON the power.

Necessity of Protective Grounding

Never cut off the internal or external protective earth wire or disconnect the wiring of the protective earth terminal. Doing so poses a potential shock hazard.

Fuse

To prevent a fire, make sure to use a fuse with the specified standard (current, voltage, type). Before replacing the fuse, turn off the power and disconnect the power source. Do not use a different fuse or short-circuit the fuse holder. See page 3-3 or 3-4 in chapter 3.

Defect in the Protective Earth Terminal and Fuse

Do not operate the instrument when the protective earth terminal or fuse might be defective.

Do Not Operate New Flammable Meterials

Do not operate the instrument in the presence of flammable liquids or vapors. Operation of any electrical instrument in such an environment constitutes a safety hazard.

Do Not Remove Any Covers

There are some components inside the instrument containing high voltages. Do not remove any cover if the power supply is connected. The cover should be removed by qualified personnel only.

External Connection

To ground securely, connect the protective grounding before connecting to the measurement or control unit. Also, before touching the circuit, turn off the power to the circuit and check that there is no voltage being generated.

Overview of This Manual

This manual is meant to be used by qualified personnel only. Make sure you read the safety precautions at the beginning of this manual and the warnings and cautions contained in any relevangt chapters prior to carrying out servicing.

This manual contains the following chapters.

1 General Information
Provides an introduction and describes safety considerations.

2 Performance Tests
Describes the tests for checking the performance of the instrument.

3 Adjustment
Describes the adjustments which can be performed by users.

4 Principles of Operation
Function block diagrams and principles of operation.

5 Troubleshooting

Describes procedures for troubleshooting and how to handle the replacement of parts.

6 Schematic Diagram
Contains the system configuration diagram.

7 Customer Maintenance Parts List

Contains exploded views and a list of replaceable parts.

Specifications are not included in this manual; for specifications, refer to IM 04L01A01-01E or IM 04L02A01-01E.

Contents

Important Notice To the User 1
Introduction 2
Safety Precautions 2
Overview of This Manual 4
Chapter 1 Principles of Operation
1.1 Block Diagram of the DX 1-1
1.2 Input Section 1-1
1.2.1 A/D Assembly 1-1
1.2.2 Input Terminal 1-1
1.2.3 Scanner Assembly 1-2
1.3 Data Storage Functions 1-2
1.4 Display Unit 1-2
1.5 Calculation Function 1-2
1.6 Alarm Function 1-2
1.7 Other Functions 1-2
Chapter 2 Testing
2.1 Acceptance Test 2-1
2.2 Self Diagnostic Test 2-1
2.3 Performance Test 2-2
2.3.1 Before You Begin 2-2
2.3.2 Measurement Accuracy Test 2-3
2.3.3 Reference Junction Compensation Accuracy Test 2-4
Chapter 3 Replacing Parts
3.1 Replaceable Parts 3-1
3.2 When Repair is Necessary 3-1
3.3 Recommended Replacement Periods for Worn Parts 3-2
3.4 Replacing the Fuse 3-3
3.5 Replacing the Battery 3-4
Chapter 4 Adjustments
4.1 Before You Begin 4-1
4.2 AD Board Offset and Gain Adjustment 4-2
4.2.1 Manual Adjustment 4-2
4.2.2 PC Controlled Adjustment 4-5
Chapter 5 Troubleshooting
5.1 Procedure 5-1
5.2 Flow Chart 5-1
5.3 Troubleshooting Checklist 5-2
Chapter 6 Schematic Diagram
Chapter 7 Customer Maintenance Parts List
7.1 DX100 Customer Maintenance Parts List 7-1
7.2 DX100 Standard Accessories 7-8
7.3 DX200 Customer Maintenance Parts List 7-9
7.4 DX200 Standard Accessories 7-16

Chapter 1 Principles of Operation

This chapter describes the principles of operation for the DX100 and DX200.

1.1 Block Diagram of the DX

1.2 Input Section

1.2.1 A/D Assembly

The A/D assembly has items such as a programmable gain amp, voltage reference, PWM modulator, current source for RTD measurements, differential amp, voltage source for RJC, serial parallel converter, control logic, and an occurred scanner SSR control signal.

The A/D assembly uses a sinewave oscillating type self-resonant switching power supply (DC/DC converter), and noise filtering is achieved by signal integration.

The A/D assembly detects the frequency of the power while it is ON and the integrated time becomes 20 ms or 16.67 ms . Therefore it carries a very high rate of noise rejection for the power frequency (in auto mode).

In case the power frequency of the instrument and of the measured object are different, the appropriate integrated time is manually selectable. In case of the DX106, DX112, DX210, DX220, or DX230, the selection of 100 ms for $50 / 60 \mathrm{~Hz}$ is also available. A 16 bit resolution is achieved regardless of the integrated time.

1.2.2 Input Terminal

The input terminal is removable. The internal printboard is isothermal because a print board with a metal core is being used. Therefore, stable reference junction compensation is realized.

1.2.3 Scanner Assembly

An in-house SSR (solid state relay) is being used for the scanner. The SSR, having a semiconductor switch, has a withstand voltage as high as 1500 V and a leakage current of only 1 nA . For that reason, it has the following features.

1) Semi-infinite life due to the absence of mechanical contacts
2) Silent operation
3) No occurrence of thermoelectric power.

On the other hand, compared to a mechanical relay, the SSR has, the disadvantage of a bigger ON resistance and OFF capacity. As a result, RTD measurement and noise resistance characteristics are affected. Regarding RTD measurements, a differential amp was inserted into the previously mentioned analog circuit without increasing the number of parts, so that it would receive no influence from ON resistance.

For RTD measurements there is generally no insulation between channels.

1.3 Data Storage Functions

For storing data, the DX has 1.2 MB of internal memory and is equipped with a 3.5 -inch floppy disk drive (1.44 MB 2HD), a Zip drive, or an ATA flash memory card drive. The measured data can also be saved to external storage media such as floppy disks, Zip disks, and ATA flash memory cards.

1.4 Display Unit

The DX has a 5.5 -inch (DX100) or 10.4-inch (DX200) TFT color LCD on which it displays the measured results (240 (vertical) $\times 320$ (horizontal) pixels for the DX100 or 480 (vertical) $\times 640$ (horizontal) pixels for the DX200).

1.5 Calculation Function

The DX performs differential computation, linear scaling, and square roots using a microprocessor on the CPU board.

1.6 Alarm Function

The following six alarm types can be set.
High limit (H), low limit (L), differential high limit (h), differential low limit (I), rate-ofchange on increase (R), rate-of-change on decrease (r), alarm delay upper limit alarm (T), or alarm delay lower limit alarm (t).

1.7 Other Functions

1 Communication function:
Ethernet (standard)
RS-232/RS-422A/FOUNDATION Field bus interface added (optional).
2 Remote function:
The trigger, start/stop, time adjustment, and other functions can be controlled remotely (optional).
3 Relay contact:
Alarm output and memory end/fail output (optional).
4 Transmitter power supply:
DC24 V output for transmitter (optional).

Chapter 2 Testing

This chapter describes the following tests.
2.1 Acceptance test
2.2 Self Diagnostic test
2.3 Performance test

2.1 Acceptance Test

This section describes the procedure to perform the acceptance test.

1 Read the preface, to the user's manual, "Checking the Package Contents" and verify that you have all of the contents.
2 Make sure to understand the operating procedures as described in the user's manual.
3 Check each function using the user's manual.
4 Read and implement section 2.2, "Self Diagnostic Test."
5 Read and implement section 2.3, "Performance Test."

2.2 Self Diagnostic Test

The DX is provided with complete self diagnostic functions to enhance reliability in measurement and serviceability.
When you turn ON the power, the DX will automatically execute the following types of diagnoses alternately and display the results. After these tests are completed, the DX is ready for use.

1 Main ROM sum test
2 Main RAM write/read test
3 A/D and A/D ROM sum test
4 Acquisition memory test

Table 2 shows the order and results of the self diagnostic tests.

Code	Message
901	ROM failure.
902	RAM failure.
910	A/D memory failure for all input channels.
911	Channel 1 A/D memory failure.
912	Channel 2 A/D memory failure.
913	Channel 3 A/D memory failure.
914	Channel 4 A/D memory failure.
921	Channel 1 A/D calibration value error.
922	Channel 2 A/D calibration value error.
923	Channel 3 A/D calibration value error.
924	Channel 4 A/D calibration value error.
930	Memory acquisition failure.
940	The Ethernet module is down.

2.3 Performance Test

This paragraph describes several tests to verify the operation of the DX's performance against published specifications.

2.3.1 Before You Begin

2.3.2 Measurement Accuracy Test
2.3.3 Reference Junction Compensation Accuracy Test

The performance tests need not be performed in any specific order.

2.3.1 Before You Begin

Testing Conditions

When carrying out the performance tests described in the following pages, make sure the instrument is tested under the following conditions:
Ambient temperature: $\quad 23 \pm 2^{\circ} \mathrm{C}$
Humidity: $\quad 55 \pm 10 \%$ RH
Power supply voltage: $\quad 90$ to 132 VAC, 180 to 250 VAC
Power supply frequency: $\quad 50 / 60 \mathrm{~Hz} \pm 1 \%$

Preparation
Perform the following steps before carrying out the performance tests described in the following pages.
1 Turn ON the power supply and verify that the DX passes the self diagnostic test without any problems.
2 Allow a warm up time of at least 30 minutes for required instruments and the unit under test.

Instruments Required for Tests

Instrument	Required Specifications	Recommended
DC Voltage Generator	Accuracy: $\pm 50 \mathrm{ppm}$	FLUKE 5520A
Decade Resistance Box	Accuracy: $\pm 10 \mathrm{ppm}$	YOKOGAWA 279301
Thermostatic Chamber	$\pm 0.01^{\circ} \mathrm{C}$	
Thermocouple	Calibrated	

2.3.2 Measurement Accuracy Test

Figure 2.1 Connection diagram

Procedure

1 Connect the equipment as shown in Figure 2.1
2 Carry out the preparations as described in 2.3.1
3 Apply input voltage/resistance to the DX and verify that the measured value lies within the tolerance for each range according to the table below.

Range	Input Voltage	Tolerance	Specification
20 mV	$\begin{array}{r} \hline-20 \mathrm{mV} \\ 0 \mathrm{mV} \\ +20 \mathrm{mV} \end{array}$	$\begin{gathered} -20.04 \text { to }-19.96 \\ -0.02 \text { to }+0.02 \\ +19.96 \text { to }+20.04 \\ \hline \end{gathered}$	
60 mV	$\begin{array}{r} \hline-60 \mathrm{mV} \\ 0 \mathrm{mV} \\ +60 \mathrm{mV} \end{array}$	$\begin{gathered} -60.08 \text { to }-59.92 \\ -0.02 \text { to }+0.02 \\ +59.92 \text { to }+60.08 \end{gathered}$	
200 mV	$\begin{array}{r} -200 \mathrm{mV} \\ 0 \mathrm{mV} \\ +200 \mathrm{mV} \end{array}$	$\begin{gathered} -200.4 \text { to }-199.6 \\ -0.2 \text { to }+0.2 \\ +199.6 \text { to }+200.4 \end{gathered}$	$\pm(0.1 \%$ of reading + 2 digits)
2 V	$\begin{array}{r} \hline-2 \mathrm{~V} \\ -1 \mathrm{~V} \\ 0 \mathrm{~V} \\ +1 \mathrm{~V} \\ +2 \mathrm{~V} \end{array}$	$\begin{aligned} & -2.004 \text { to }-1.996 \\ & -1.003 \text { to }-0.997 \\ & -0.002 \text { to }+0.002 \\ & +0.997 \text { to }+1.003 \\ & +1.996 \text { to }+2.004 \end{aligned}$	
6 V	$\begin{array}{r} -6 \mathrm{~V} \\ 0 \mathrm{~V} \\ +6 \mathrm{~V} \end{array}$	$\begin{aligned} & -6.008 \text { to }-5.992 \\ & -0.002 \text { to }+0.002 \\ & +5.992 \text { to }+6.008 \end{aligned}$	
20 V	$\begin{array}{r} -20 \mathrm{~V} \\ 0 \mathrm{~V} \\ +20 \mathrm{~V} \end{array}$	$\begin{gathered} -20.04 \text { to }-19.96 \\ -0.02 \text { to }+0.02 \\ +19.96 \text { to }+20.04 \\ \hline \end{gathered}$	
50 V	$\begin{array}{r} -30 \mathrm{~V} \\ 0 \mathrm{~V} \\ +30 \mathrm{~V} \end{array}$	$\begin{gathered} -30.06 \text { to }-29.94 \\ -0.03 \text { to }+0.03 \\ +29.94 \text { to }+30.06 \end{gathered}$	$\pm(0.1 \%$ of reading + 3 digits)

Range	Temperature	Input Resistance	Tolerance	Specification
Pt100	$-200^{\circ} \mathrm{C}$	18.52Ω	-200.6 to -199.4	
	$0^{\circ} \mathrm{C}$	100.00Ω	-0.3 to +0.3	$\pm\left(0.15 \%\right.$ of reading $\left.+0.3^{\circ} \mathrm{C}\right)$
	$600^{\circ} \mathrm{C}$	313.71Ω	+598.8 to +601.2	

For /N1 model

Range	Temperature	Input Resistance	Tolerance	Specification
Pt100	$-200^{\circ} \mathrm{C}$	18.52Ω	-201.2 to -198.8	
	$0^{\circ} \mathrm{C}$	100.00Ω	-0.6 to +0.6	$\pm\left(0.3 \%\right.$ of reading $\left.+0.6^{\circ} \mathrm{C}\right)$
	$600^{\circ} \mathrm{C}$	313.71Ω	+597.6 to +602.4	
Cu 0	$-200^{\circ} \mathrm{C}$	1.326Ω	-201.8 to -198.2	
	$0^{\circ} \mathrm{C}$	9.036Ω	-1.0 to +1.0	$\pm\left(0.4 \%\right.$ of reading $\left.+1.0^{\circ} \mathrm{C}\right)$
	$300^{\circ} \mathrm{C}$	20.601Ω	+297.8 to +302.2	
Cu25	$-200^{\circ} \mathrm{C}$	3.750Ω	-201.4 to -198.6	
	$0^{\circ} \mathrm{C}$	25.000Ω	-0.8 to +0.8	$\pm\left(0.3 \%\right.$ of reading $\left.+0.8^{\circ} \mathrm{C}\right)$
	$300^{\circ} \mathrm{C}$	56.875Ω	+298.3 to +301.7	

Note

The error of a connected apparatus is not included in the tolerance.

2.3.3 Reference Junction Compensation Accuracy Test

Connection

Figure 2.2 Connection diagram

Procedure

1 Connect the instruments as shown in figure 2.2.
2 Carry out the preparations as described in 2.3.1.
3 Carry out stable ambience and secure the terminal cover to avoid the influence of wind.
4 Set the input range for the desired thermocouple, and set the span to $\pm 50^{\circ} \mathrm{C}$.
5 Verify that the measured value lies within the tolerance.

Tolerance

Temperature	Thermocouple	Tolerance
$0^{\circ} \mathrm{C}$	K, T	$\pm 0.5^{\circ} \mathrm{C}^{*}$

* Detremining the actual temperature measured accuracy consists of adding the RJC compensation accuracy and temperature range accuracy. In other words, the actual measured value which lying within the tolerance consists of adding this value and $0^{\circ} \mathrm{C}$ measured accuracy (T and K range).
Test should be done under stable ambience with the terminal cover secured to avoid the influence of wind.

Chapter 3 Replacing Parts

This chapter describes what to do when parts need to be replaced, either for preventive maintenance or because of failure.
3.1 Replaceable Parts
3.2 When Repair is Necessary
3.3 Recommended Replacement Periods for Worn Parts
3.4 Replacing the Fuse
3.5 Replacing the Battery

3.1 Replaceable Parts

When replacement of parts is necessary, we strongly recommend replacement with an assembly unit. YOKOGAWA instruments have been designed in a way that the replacement of parts can be done on an assembly (module) basis by the user.

Parts supplied by YOKOGAWA are listed in the Customer Maintenance Parts List (CMPL), in chapter 7. Smaller parts than listed in the CMPL are not supplied. The CMPL comprises the following:

- The item number,
- The YOKOGAWA part number,
- The item quantity,
- A description.

3.2 When Repair is Necessary

When repair is necessary, clearly state the information listed below and forward it to the nearest sales representative or service center. Addresses may found on the back cover of this manual.

- Your address.
- Name and telephone number of the person in charge.
- Model code and suffix code of the instruments, which can be found on the name plate. The name plate is found on the right inside of the recorder.
- Detailed explanation of the problem, including measures taken and displayed messages.

3.3 Recommended Replacement Periods for Worn Parts

To maintain the reliability of this recorder and in order for this recorder to deliver outstanding performance for a long time, periodic replacement of worn parts is recommended. The replacement parts may change to accommodate preventive maintenance over extended time. Be sure to check with your nearest YOKOGAWA dealer. The recommended replacement periods for worn parts are shown in the following table. The periods shown in this table assume that the recorder is operating under standard operating conditions. Please consider the actual operating conditions when determining the replacement provids for your recorder. The replacement of the worn parts except the fuse must be conducted by qualified YOKOGAWA personnel. When required, contact your nearest Sales \& Service Office; the addresses may be found on the back of this manual.
DX100

Item	Replacement	Part Name	Part Number	Specifications	Quantity Used
Fuse	2 years	FUSE	A1347EF	250 V, 1 A, time lag (except for /P1 model)	
Fuse	2 years	FUSE	A1352EF	$250 \mathrm{~V}, 4 \mathrm{~A}$, time lag (for /P1 model)	1
LCD	5 years	Back light module			1
Battery	10 years	Lithium battery			1
Rubber strip	5 years	Dust and water proof rubber strip		for front panel for front cover	1 each
Floppy disk drive	5 years	-	-		1
$\overline{\mathrm{Zip}}$ disk drive	5 years	-	-		1
PWB assembly	5 years 5 years 5 years	Power Assy Sub Power AD Assy*			$\begin{aligned} & \hline 1 \\ & 1 \\ & \text { Up to models } \end{aligned}$

* Replacement Period at the Upper Limit of the Normal Operating Temperature $\left(50^{\circ} \mathrm{C}\right)$

The replacement period varies depending on the temperature in which the instrument is operated, and the instrument's specifications. If the instrument is used in a $30^{\circ} \mathrm{C}$ environment, it may be operational for 10 years or more.

DX200

Item	Replacement	Part Name	Part Number	Specifications	Quantity Used
Fuse	2 years	FUSE	A1423EF	$250 \mathrm{~V}, 1.25 \mathrm{~A}$, time lag 1 (except for /P1 model)	
Fuse	2 years	FUSE	A1463EF	$250 \mathrm{~V}, 6.3 \mathrm{~A}$, tim (for /P1 model)	
LCD	5 years	Back light module			1
Battery	10 years	Lithium battery			1
Rubber strip	5 years	Dust and water proof rubber strip		for front panel for front cover	1 each
Floppy disk drive	5 years	-	-		1
Zip disk drive	5 years	-	-		1
PWB assembly	5 years 5 years 5 years	Power Assy Sub Power AD Assy*			1 1 Up to models

* Replacement Period at the Upper Limit of the Normal Operating Temperature $\left(50^{\circ} \mathrm{C}\right)$

The replacement period varies depending on the temperature in which the instrument is operated, and the instrument's specifications. If the instrument is used in a $30^{\circ} \mathrm{C}$ environment, it may be operational for 10 years or more.

Note

- The LCD replacement period indicates the half life of the brightness when the brightness is set to the factory default setting. The half life is shortened as the brightness is set higher. The deterioration of brightness varies depending on the condition of use, and its determination is subjective. Consider these facts for determining the actual replacement period.
- The color of the LCD may become yellowish as time elapses. The discoloration tends to progress faster as the brightness is set higher.

3.4 Replacing the Fuse

Replace the fuse at least once every two years for preventive maintenance.
DX100

WARNING

- For safety reasons, make sure to turn OFF the power switch and disconnect the recorder from the main power supply before replacing the fuse.
- To prevent the possibility of fire, use only the specified fuse purchased from YOKOGAWA.
- Never short circuit the fuse holder to bypass the use of a fuse.
- To avoid the possibility of electric shock, open the front panel only when replacing the fuse.
- Do not touch the rear side of the front panel when replacing the fuse, because it can become hot.
- Make sure not to damage the cable while replacing the fuse.

Follow the procedures below to replace the fuse.

1. Turn OFF the power switch.
2. Disconnect the recorder from the main power supply.
3. Open the cover and remove the two screws.
4. Pull the front panel slightly toward you and lift it.
5. While pushing in the fuse carrier located to the right of the power switch, turn it counter-clockwise approximately 45 degrees. The carrier and the fuse will slide out.
6. Replace with a new fuse, insert the carrier in the fuse holder, and turn it clockwise while pushing in the carrier to fix it in place.
7. Lift the front panel slightly, and attach it to the top and then the bottom of the rubber packing. Secure the front panel with screws.

Figure 3.1 Fuse illustration (DX100)

Note

For recorders which are mounted vertically side-by-side, the front panels will interferes with those of the instrument above it such that they cannot be opened. Therefore you must first open the top front panel and then the ones directly below it, one by one. For the same reason, when closing front panels, first close the bottom front panel and then the ones above it.

WARNING

- For safety reasons, make sure to turn OFF the power switch and disconnect the recorder from the main power supply before replacing the fuse.
- To prevent the possibility of fire, use only the specified fuse purchased from YOKOGAWA.
- Never short circuit the fuse holder to bypass the use of a fuse.

Follow the procedures below to replace the fuse.

1. Turn OFF the power switch.
2. Disconnect the recorder from the main power supply.
3. While pushing in the fuse carrier located to the right of the power switch, turn it counter-clockwise approximately 45 degrees. The carrier and the fuse will slide out.

Figure 3.2 Fuse illustration (DX200)
4. Replace with a new fuse, insert the carrier to the fuse holder, and turn it clockwise while pushing in the carrier to fix it in place.

3.5 Replacing the Battery

This battery will last for ten years under normal operating conditions. For replacement, please contact your nearest sales and service office; addresses may be found on the back cover of this manual.
To avoid injury, do not replace the lithium battery yourself or disassemble this recorder to attempt the replacement.

Chapter 4 Adjustments

This chapter describes how to adjust the DAQSTATION DX100/DX200.
Adjustment is required when the performance test results in an excessive tolerance error, or after replacing the AD board assembly. In addition, adjustments are recommended once a year to maintain high accuracy.

This chapter consists of the following sections.
4.1 Before You Begin
4.2 AD Board Offset and Gain Adjustment

4.1 Before You Begin

Adjustment Conditions

When carrying out the adjustments described below, make sure the recorder's environment meets the following conditions.

Ambient temperature:
Humidity:
Power supply voltage:

35 to 75% RH
rated voltage \pm (rated voltage $\times 5 \%$)

Preparation

Perform the following steps before carrying out the adjustments.
1 Turn on the power supply and verify that the unit under adjustment passes the selfdiagnostic tests without any problems.
2 Allow a warm-up time of at least 30 minutes for the required instruments and the unit under adjustment.

Required Instruments

Instrument	Required Specifications	Recommended
DC voltage standard	Accuracy: ± 50 ppm of setting	FLUKE
	Resolution: $10 \mu \mathrm{~V}$	5520 A
Decade resistance box	Accuracy: $\pm 0.01 \%$	YOKOGAWA
		2793
Personal computer	With ETHERNET or RS-232	
	or RS-422A/485 interface	
	(depends on your system)	

4.2 AD Board Offset and Gain Adjustment

An EEPROM for saving calibrated values is located on every AD board, so you must perform adjustments on each board.

4.2.1 Manual Adjustment

Connection

Figure 4.1 Connection diagram
The AD board may be shared by a number of channels. Connect the object channels to the AD board you want to adjust using the table below as a reference.

Model	A/D No. 1		A/D No. 2		A/D No. 3		A/D No. 4	
	Zero	FS	Zero	FS	Zero	FS	Zero	FS
DX102	CH1	CH2	-	-	-	-	-	-
DX104	CH1	CH2	CH3	CH4	-	-	-	-
DX106	CH1	CH2	-	-	-	-	-	-
DX112	CH1	CH2	-	-	-	-	-	-
DX204	CH1	CH2	CH3	CH4	-	-	-	-
DX208	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
DX210	CH1	CH2	-	-	-	-	-	-
DX220	CH1	CH2	CH11	CH12	-	-	-	-
DX230	CH11	CH2	CH11	CH12	CH21	CH22	-	-

Procedure

1 Connect the equipment according to figure 4.1.
2 Turn on the power while pushing the \uparrow key and DISP/ENTER key on the UUA (unit under adjustment) to activate the adjustment mode. The Calibration Mode screen will appear in the display.
Select the A/D number that you wish to adjust and press ENTER.

Figure 4.2 A/D No. selecting screen.

3 After step 2, the screen in figure 4.3 will appear.
Select item \#2 for Cal/Exec.

Figure 4.3 Task item select on screen.

4 The screen in figure 4.4 appears.
Select the adjusting range then press ENTER.

5 Apply DC voltage or resistance to the input of the selected A / D number on the $D X$ using a voltage standard or decade resistance box.
6 The value is adopted by pressing the ENTER key when the calibration value stabilizes.
7 Repeat steps 4 to 6 for all ranges according to table below.

Range	Input at zero point	Input at FS point
20 mV	0 mV	20 mV
60 mV	0 mV	60 mV
200 mV	0 mV	200 mV
1 V	0 V	1 V
2 V	0 V	2 V
6 V	0 V	6 V
20 V	0 V	20 V
Pt100	100Ω	300Ω
Pt100*	10Ω	300Ω
$\mathrm{Cu10}$ *	10Ω	50Ω
Cu25*	10Ω	50Ω

*: When option $/ \mathrm{N} 1$ is installed

8 If all ranges are set, push the ESC key. The screen returns to figure 4.3.
Select item \#3 to end the task.
9 The dialog box in figure 4.5 appears.
Select Yes to save the calibrated value to the EEPROM. The screen will return to figure 4.2.

Figure 4.5 calibration value saving screen.

10 Repeat steps 3 to 9 for all A/D number's.
11 If adjustment was successful turn the power to the UUA off.
When you select task \#1, Display in figure 4.3, the screen below (figure 4.6) will appears. Confirm the calibration value of each range (decimal value $=215$: shows converted 15 bits data.)

Figure 4.6 Calibration value confirmation screen.

1 When confirmation is finished, press ESC to return to the screen in figure 4.3.
Select item \#3 to end the task.
2 After step 1, the dialog box in figure 4.5 will appear.
Select No for normal operation.

CAUTION

Do not change the displayed value, as it influences the measured value.

4.2.2 PC Controlled Adjustment

You can also adjust the DX using a PC.

Connection

Commands
The commands below are used for adjustment.

Command contents	Syntax	Parameters				
		P1	P2	P3	P4	P5
Change mode	DSp1 (Ex) DS2	Mode*1				
Adjustment executing	XZp1,p2,p3 (Ex) XZ01-02,CAL/EXEC,20mV	Group*2	CAL/ EXEC	Range*3		
Calibration value saving	XZp1,p2,p3 (Ex) XZ01-02,END,STORE	Group*2	END	Way*4		
Calibration value confirmation	XZp1,p2? (Ex) XZ01-02,DISPLAY? or XZp1,p2,p3? (Ex) XZ01-02,DISPLAY,20mV?	Group*2	DISPLAY	Range*3		
Calibration value editing	XZp1,p2,p3,o4,p5 (Ex) XZ01-02,DISPLAY,Pt100,0,-32768	Group*2	DISPLAY	Range*3	Zero calibrated value	FS calibrated value

*1: 0= Change to normal operation, $1=$ Change to setup mode, 2= Change to adjustment mode
*2: 01-02, 03-04, 05-06, 07-08, 01-06, 01-10, 11-20, or 21-30.
*3: 20mV, $60 \mathrm{mV}, 200 \mathrm{mV}, 1 \mathrm{~V}, 2 \mathrm{~V}, 6 \mathrm{~V}, 20 \mathrm{~V}, \mathrm{Pt100}, \mathrm{Cu} 10$, or Cu25
*4: STORE (: saved), ABORT (: don’t saved)

Chapter 5 Troubleshooting

5.1 Procedure

This chapter explains the causes of problems and how to identify faulty assemblies through self diagnosis and troubleshooting.

1 Determine the type of problem.
2 Check for possible user error. Check the connections and the settings of equipment to determine whether there was a handling mistake.
3 Execute the self diagnostic test by turning the power ON, and identfy any problem items.
4 Analyze the cause of the problem according to the troubleshooting flow chart.
Do not touch the circuit or parts with live voltage because the power unit contains a highvoltage electrical circuit. The power unit is furnished with a dedicated cover to prevent electric shock. Do not remove this cover. Never touch any part not subject to adjustment.

Make sure to connect input terminals (voltage or current) correctly. The internal circuit may be damaged when wrongly connected.

5.2 Flow Chart

This flow chart consists of general service operations when a fault occurs. This chart is not always suitable for every kind of fault. However, it is recommended to perform operations according to the flow chart.

5.3 Troubleshooting Checklist

Trouble	Operational			Check Item
	$\begin{aligned} & \text { ¿̈ } \\ & \text { © } \end{aligned}$	$\frac{\stackrel{\rightharpoonup}{n}}{\stackrel{\rightharpoonup}{6}}$		
Power is not turned ON				Power cable connection Fuse is blown Power ass'y CPU ass'y Memory ass'y Display ass'y
FAIL state				CPU ass'y Memory ass'y Display ass'y Optional terminal ass'y
Memory cannot be backed up			\checkmark \checkmark \checkmark \checkmark	Battery connector is disconnected? Battery voltage is low (less than +3.0 V) CPU ass'y Memory ass'y Display ass'y
Panel key operation is not nomlal	\checkmark		\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark	FFC ass'y of the keyboard is disconnected/broken Keyboard ass'y CPU ass'y Memory ass'y Display ass'y
LCD is not normal	\checkmark		\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark	FFC ass'y of the LCD is disconnected/ broken CPU ass'y Memory ass'y Display ass'y LCD ass'y
Measured value incorrect	$\stackrel{\imath}{v}$	\checkmark	\checkmark	Input wiring is disconnected Noise A/D ass'y Scanner ass'y
Measured temperature is incorrect	$\begin{aligned} & \hline \imath \\ & \imath \\ & \imath \\ & \imath \end{aligned}$	\checkmark	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	Input is disconnected Noise Terminal cover is removed RJC INT/EX T setting A/D board ass'y Input terminal Scanner board ass'y
Measured value fluctuates	$\stackrel{\checkmark}{\checkmark}$			Power frequency setting is incorrect Noise
External storage media is not normal	\checkmark		\checkmark	Floppy disk/Zip disk/PC card drive unit

Chapter 6 Schematic Diagram

Chapter 7 Customer Maintenance Parts
 List

7.1 DX100 Customer Maintenance Parts List
7.2 DX100 Standard Accessories
7.3 DX200 Customer Maintenance Parts List
7.4 DX200 Standard Accessories

7.1 DX100 Customer Maintenance Parts List

Note:

- Parts marked with a ©symbol are Customer Maintenance Parts (CMP).
- The contents of this CMPL are subject to change without prior notice as a result of continuing improvements to the instrument's performance and functions.

Complete Set

Item	Part No.	Qty	Description		
(0) 1	B9967AM	1	Tag Cover		
(0) 2	B9967AN	1	Tag Plate (DX102,104) $\}$ (select)		
	B9967AP	1	Tag Plate (DX106,112) $\}$ (select)		
(0) 3	Y9308LB	2	B.H.Screw,M3x8		
4	B9967BA	1	Bezel Assembly (see page 5)		
5	-	1	Fuse Holder		
(0) 6	$\begin{aligned} & \text { A1347EF } \\ & \text { A1352EF } \end{aligned}$	1	$\left.\begin{array}{l}\text { Fuse (not /P1) } \\ \text { Fuse (/P1) }\end{array}\right\}$ (select)		
(${ }^{\text {a }}$	B9968AT	4	Sheet (not/H5])		
(0) 8	B9968AK	2	Sheet (not/H5D)		
9	B9967AX	1	Packing		
10	B9900BP	-	Tag Plate (Customer Option)		
11	B9967AZ	1	Name Plate		
12	F9342NF	1	FF Label (/CF1)	Note:	
13	B9967AC	1	Name Plate	()	CMPL parts

Item	Part No.	Qty	Description
1	B9967BH	1	Key Case Assembly
2	B9967BN	1	Hinge Pin
3	B9567AQ	1	Spring
4	B9967BP	1	Front Plate
5	E9655AL	1	Spring
6	B9967BM	1	Door Knob
7	B9967BJ	1	Front Cover
8	B9967BL	1	Key Top
9	B9967TC	1	SW Board Assembly
10	B9967BZ	1	Micro SW Pin
11	B9967BK	1	Front Case

Item	Part No.	Qty	Description
12	B9967BU	2	Screw
13	B9967AY	1	Packing
14	B9967MA	1	Key FPC
15	B9967BT	1	FPC Guard
16	B9967BX	1	Rivet
17	B9967BB	1	Sub Bezel Assembly
18	B9967BF	1	LCD Assembly
18a	A1053VA	1	LCD
18b	B9967AQ	1	Name Plate
18c	A1039VZ	1	Back Light Module
19	B9968BM	2	Hinge Arm
20	B9967MB	1	Display FFC
21	B9967BY	1	Stay Bracket
22	B9968EN	1	Bushing

7.2 DX100 Standard Accessories

Standard Accessories

Item	Part No.	Qty	Description		
(0) 1	A1006WD	1	$\begin{aligned} & \text { Power Supply Code (UL.CSA standard) *1.*2 } \\ & \text { 3P-2P Adapter *1 } \end{aligned}$		
(0) 2	A1253JZ	1			
(0) 3	A1009WD	1	Power Supply Code (VDE standard) *3		
() 4	A1023WD	1	Power Supply Code (BS standard) *4		
(0) 5	A1024WD	1	Power Supply Code (SAA standard) *5		
(0) 6	A1064WD	1	Power Supply Code (GB standard) *6		
(0) 7	A1347EF	1		Note :	
	A1352EF	1	Fuse (/P1) \} (select)	Note :	
8	-	1	Manuals	*2	DX1
	B9968MZ	1	CD-ROM for Manuals	* 3	DX10]-D- - /H5F
() 9	A1179MN	1	Magnetic Part (/CF1)	*4	DX10]-D-D- /H5J
(0) 10	B9900BX	2	Bracket Assembly (not/H5])	*5	DX1ロ-D- - /H5R
(0) 11	E9655FX	5	B.H.Screw,M4x6 (土)	* 6	
(0) 12	A1053MP	1	$\left.\begin{array}{l}\text { Mag Memory :Zip 100MB disk (DX1D -2) } \\ \text { Mag Memory :Zip 250MB disk (DX1 } 1 \text {-5) }\end{array}\right\}$ (select)	(CMPL Parts
	A1056MP	1		(CMPL Parts
(0) 13	B9968NL	1	CF32MB+CF Adapter (DX1■] -3)		
(0) 14	B9991JW	1	DAQSTD SOFT CD-ROM (DX1D]-D-1,2) \} (select)		
	B9991KL	1			

7.3 DX200 Customer Maintenance Parts List

Note:

- Parts marked with a ©symbol are Customer Maintenance Parts (CMP).
- The contents of this CMPL are subject to change without prior notice as a result of continuing improvements to the instrument's performance and functions.
YOKOGAWA © copyright Oct. 1999(YK). 13th Edition:Oct. 2009 (YK) CMPL DX200-01E
Yokogawa Electric Corporation

Complete Set

Item	Part No.	Qty	Description	
1	B9968BA	1		
	B9968BE	1		
2	A1423EF	1	(select)	
3	Y9412LB	3	B.H.Screw,M4x12	
4	B9968AN	1	Tag Plate (DX210,220,230)Tag Plate (DX204,204C,208,208C) $)$ (select)	
	B9968AP	1		
5	B9968AM	1	Tag Cover	
6	B9968AT	4	Sheet (not/H5■)	
7	B9968AK	4	Sheet ($\mathrm{not} / \mathrm{H} 5 \mathrm{\square}$)	
				Note:
8	B9968AX	1	Packing	*1 DX2 \square - \square-1
9	B9968AD B9968HL	1	$\left.\begin{array}{l}\text { Name Plate (not/P1) } \\ \text { Name Plate (/P1) }\end{array}\right\}$ (select)	*2 DX2 \square - \square-2

Item	Part No.	Qty	Description	
1	B9968BA	1	Bezel Assembly (for English)	$\}$ (select)
	B9968BE	1	Bezel Assembly (for Japanese)	
2	B9968BB	1	Sub Bezel Assembly	
3	B9968PA	1	Back Light Unit (NEC)	$\}$ (select)
	A1048VZ	1	Back Light Unit (KYOCERA)	
4	B9968BR	1	Key Case Assembly (for English)	\} (select)
	B9968BV	1	Key Case Assembly (for Japanese)	
5	B9968BW	1	Front Plate	

7.4 DX200 Standard Accessories

Standard Accessories

Item	Part No.	Qty	Description	
(0) 1	A1006WD	1	Power Supply Code (UL.CSA standard) *1.*2	
(0) 2	A1253JZ	1	3P-2P Adapter *1	
(0) 3	A1009WD	1	Power Supply Code (VDE standard) *3	
(0) 4	A1023WD	1	Power Supply Code (BS standard) *4	(select)
(0) 5	A1024WD	1	Power Supply Code (SAA standard) *5	
(0) 6	A1064WD	1	Power Supply Code (GB standard) *6	

