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PERFORMANCE IMPROVEMENT OF
SMITH PREDICTOR THROUGH
AUTOMATIC COMPUTATION OF
DEAD TIME

VERONESI Massimiliano *1

It is known that the classical tuning formula for typical Proportional-
Integral-Derivative (PID) controllers in general provides unsatisfactory results for
industrial plants where the time delay exceeds the dominant lag time. For this
reason, alternative strategies have been studied in order to cope with this problem
and, in this context, the most popular scheme is the Smith Predictor. In this paper
the theory behind this algorithm is explained and its implementation through YS170
controller language and CENTUM CS3000 Control Drawing Builder are presented
in order to verify their effectiveness in industrial environments. This approach
requires a good model of the process under control. In fact, the performance of the
Smith Predictor can decrease dramatically (become unstable) due to modelling
errors, especially for the dead time which, contrary to what would be expected, can
vary considerably depending on the working conditions (i.e. the fluid flow). In this
paper a simple adaptive law for the automatic tuning of the model time delay is
suggested. When this method is applied, the performance of the Smith Predictor is
easily improved due to the automatically tuned model dead time and the control
algorithm is capable of meeting variable working conditions.

*1 Yokogawa Italia, Industrial Automation Department

INTRODUCTION

In process control it is not uncommon for systems to be affected
by dead times, due to material transfer times. This is evident

typically in pipelines. A fluid of density ρ and flow rate w in a
section of pipe A the length of d takes the amount of time
τ=ρAd/w to cover the whole distance (see Figure 1).

This means the controller (human or digital) can only be
aware in retrospect of the effect of actions taken, and decisions
must therefore be based on previous situations, typically resulting
in troublesomely long oscillations around the steady state value.
In this case, however, we can take some countermeasures which
are not so complicated and do not stray far from the traditional
and popular PID control architectures.

Switching to mathematical relationships, a first order SISO

(Single Input Single Output) process affected by dead time can be
described by a differential equation such as

( ))();()( τ−= tutxftẋ (1)
where x(t) is the measured variable at time t, u(t) is the
manipulated variable and τ is the dead time.

Considering the simpler and more popular linear case, (1) can

Figure 1  Time Delay Due to the Fluid Transfer Time in a
Pipeline

d

FIC

=   Ad/wτ    ρ

Manuscript received March 3, 2003
Final manuscript received April 23, 2003

Technical Report



26 Yokogawa Technical Report English Edition, No. 35 (2003)

be re-written as
)()()( τ−⋅+⋅= tubtxatẋ (2)

which, by Laplace transformation, corresponds to the usual
algebraic relationship in the complex variable “s”
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, where µ = -b/a  and  T = -1/a (3)

Such an equation is used to describe all those processes with
dynamic behaviour that are dominated by a one time constant T
and a time delay τ (FOPDT: First Order Plus Time Delay).

Referring to the simple PID formula
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where u is a manipulated variable, and e is an error (given by the
difference between a setpoint value and a measured variable), the
transfer function of the PID is:
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From the previous equations it is clear that the control action
is computed as the sum of three terms and that, through the tuning
of Kp, Ti and Td it is possible to give different weights to them in
order to achieve the desired performance for a closed loop
system. Proportional action has exactly the same trend in error;
the integral action (proportional to the sum of the past errors) is
used to reset the steady state error; and the derivative action
(proportional to the error tendencies) can ultimately anticipate the
future error behaviour during the transient. This last effect of the
derivative action, however, can not be useful if the process is
affected by dead time. Its action, in fact, is based on the
evaluation of something that has already started to happen. In this
case, the process variable starts to change after τ seconds and so
the derivative of the error remains zero throughout the duration of
the dead time. In other words the measured value does not contain
adequate information to foresee the future.

The usual PID controllers are suitable for controlling stable
process in which the τ/T ratio is small. In fact, if it is large, tuning

the PID parameters would be difficult, and lengthy trial-and-error
activities could cause heavy loads for the plants, possibly
exposing them to danger. Moreover, disregarding this heavy load,
the final results would not be adequately satisfactory.

THE SMITH PREDICTOR

A simple algorithm for control processes affected by dead
time is the one proposed by Hȧ̇gglund (named Predictor-PI)(2) and
based on the idea of decreasing the manipulated variable by an
amount equal to all that was computed in the last τ seconds.
However the more popular scheme for control processes affected
by time delay was proposed by O. J. M. Smith(6) and is shown in
Figure 2.

Let P(s)=G(s)e-sτ be the transfer function of the process and
let’s indicate the setpoint with y° and a generic load disturbance
with d.

This algorithm requires a minimal knowledge of the process
to describe it through a transfer function (model)
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is a rational function of the complex

variable “s”, which should approximate the process without
delay. The parameters of the model can be achieved by popular
identification experiences such as the one based on the open loop
system response to a step change of the control variable.

As shown in Figure 2, the feedback is closed not on the
process value y, but on the z variable, which has the same value
that y had τm seconds earlier; and therefore it is in some ways a
“prediction” of the measure; that is why this control architecture
is called Smith “Predictor”.

So, the resulting controller transfer function is
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The poles of the model are zeros of R(s) and so, if the model is

Figure 2  Equivalent Schemes for the Smith Predictor
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a good approximation of the real process, the controller can
perform a zero/pole cancellation independently by the values of
the PID parameters.

In fact, being D(s) the Laplace transformation of the load
disturbance, the following transfer functions can be computed as
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Therefore, from a theoretical point of view, and with a good
model (Gm(s)=G(s)), the PID controller can be tuned as it would
be for a process without a time delay; thereby making it easy to
achieve its best performance.

Thanks to digital technologies, it is not so difficult to realise a
Smith Predictor algorithm. Modern controllers have a rich library
of parameters and function blocks with which it is easy to build a
transfer function; among them there are, for instance, the ones

corresponding to 





+ sT1
µ

 and e-sτ operators.

In Figures 3 and 4, two examples of the Smith Predictor are

shown. In the first one, the low level YS170 language was used,
while in the second one the algorithm is performed by the
function blocks available in the CENTUM CS1000/3000 control
drawing builder. The DLAY-C block performs the transfer

function )1(
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, and its output is added to the error

internally at the PID block (through the parameter VN). For this
reason the Compensation Gain (CK) of the PID block has to be set
to -1. The meanings of the other variables are explained in the
figures themselves. In both cases the PID algorithm is performed
by a single action (BSC for the YS170 and PID for CENTUM), as
dictated by the programming language.

Specifically, in the PID block the INPUT COMPENSATION
option has to be selected in the Function Block Detail Builder /
Control Calculation Tab. Then the dead time is computed as the
product of the parameter SMPL (available by DLAY-C tuning
window) and the number of sample points which has to be set by
engineers in the Function Block Detail Builder / Basic Tab.

It must be emphasized that in case the process has an
integrator (that is s=0 is a pole for the transfer function G(s)), the
Smith Predictor is not able to accommodate a load disturbance
D(s) on the process input. In fact, it can be proved that in a steady
state the ratio between the process value and the load disturbance
is proportional to the model gain and time delay. This means that
the integral of the load disturbance will not be compensated; or in
other words, that the controller is not able to reset the steady state
error.

Figure 4  Smith Predictor Designed with the Control Drawing Builder of CS1000/3000 Yokogawa DCS

Figure 3  Smith Predictor Realised through the YS170 Programming Language
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The most effective scheme for load disturbance
compensation is the one proposed by Matausek, Micic(3). The idea
is to eliminate additional feedback by subtracting from the
manipulated variable an amount proportional to the difference
between the process variable and its estimation, as provided by
the model. That difference, in fact, is by construction the best
approximation of the load disturbance that we have after the dead
time.

AUTOMATIC DETERMINATION OF THE DEAD
TIME VALUE

The performance of the Smith Predictor dramatically
decreases (become unstable) due to modelling errors, especially
for the dead time (τm). This is very dangerous because it can vary
widely depending on the working conditions (i.e. the fluid flow).

Let’s consider, for instance, a simple FOPDT process with
T=1 sec. and τ=10T. A step change in the setpoint is applied and
then, when τ=100 sec, a load disturbance will be simulated. In
Figure 5 the trends achieved with ±50% delay estimation
mistakes are illustrated. The performances (achieved by re-tuning
proportional gain and integral time) are worse than that of the
ideal situation in which τ=τm. In fact, in case of under-estimation,
the PID algorithm will anticipate the action generating oscillation
around the steady state value. However, on the other hand, in case
of super-estimation, the PID will be late and the approach to
setpoint will therefore be slow and hesitating.

If it is not possible to measure the flow and thereby
dynamically adapt the delay time value τm in the algorithm, a filter
on the modelling error (y-ym) could be a countermeasure, but its
robustness is a drawback to the speed, especially for load
disturbance rejection. Therefore it can be useful to find a way to
autonomously adjust τm to τ. For such an achievement, the
following adaptive law can be proposed:
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It is not difficult to understand the reasoning behind this
formula.

In fact, if τm
o <τ , during the transient between y1° and y2° > y1°,

the model response is faster than the process one, hence ym-y > 0
for the most part of the time. Therefore, τm being proportional to
that difference, it will grow from the initial value τm

o  to τ. On the
other hand, if τm

o > τ, the model response will be slower than the
process one and so ym-y < 0 for an extensive period. Thus, due to
the proposed adaptive law, τm will decrease. Ultimately, when
ym=y, the derivative of τm will become stable. Analog
consideration holds in the case of y2° < y1°.

If Gm(s)=G(s) , by indicating with ŷ the process variable not
affected by delay, it holds that
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Looking at Figure 6, if τm
o > τ, it can be seen that
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Then, considering a simple FOPDT process, the open loop
response without dead time is
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Figure 5  Ideal Trend Compared to the One Achievable with
± 50% Delay Estimation Mistake

Figure 6  Graphical Representation of Equation (15)
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Therefore
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This is the proof that the proposed adaptation law
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brings τm to τ for t→∞ faster the more they are different at the
beginning.

The algorithm works even if the loop is closed and the
feedback allows the use of a coefficient Kτ ≠ 1/µ in order to
accelerate its convergence. In this way the loop can be left in
Automatic Mode and the algorithm will autonomously identify
the value of τ through a few simple setpoint changes.

Some countermeasures have to be considered because the
sign of Kτ must agree with that of the setpoint change, and the

adaptive law has to be disabled when the process variable joins
the steady state. In fact, after that, a load disturbance would be
misunderstood as a change of the manipulated variable and so
would provide a change in τm. In order to avoid these behaviours,
the following formula (suggested in [Veronesi, Visioli,
- 2000])(8)(9) can be used:
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In this manner, the time delay is quickly identified and
therefore the proposed algorithm can improve the robustness of
the Smith Predictor in control processes affected by long time
delays. The effectiveness of the method is shown in Figure 7,
where some setpoint step changes are applied. It is easy to see that
the performance is dramatically better than the one achievable
without model delay adaptation and that a higher value of Kτ can
speed up the computation of τm.

The proposed technique is also robust enough to
accommodate some modelling errors, such as a wrong evaluation
of the process dominant lag time (at least the supposed correct
estimation of process gain). In Figure 8 comparative simulation
results are shown (referring to the case in which τm

o =2τ and Kτ

=10; analog results can be achieved if τm
o =τ/2).

If the dominant lag time of the model is greater than that of
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the process (Tm>T), the transport dead time τ will be under-
estimated (solid line, on the right side of Figure 8). This means
that τm will converge to a value lower than the real τ. On the
contrary, if Tm<T, then the dead time will be super-estimated
(dotted line, on the right side of Figure 8).

As seen in the left side of Figure 8, this is the best that the
algorithm can do. However, the achievable performances are
better than the standard Smith Predictor without any automatic
time delay computation. For the purpose of presenting a clearly
understood figure, the two setpoints have been scaled by a factor
of 0.5.

CONCLUSIONS

In this paper the theory behind the control process affected by
dead time through the Smith Predictor has been explained.
Furthermore, considering the common FOPTD (First Order Plus
Time Delay) process, it has been shown how easy it is to
implement it with Yokogawa controller (YS170) and DCS
(CENTUM CS1000/3000).

Since the dead time can change depending on the fluid speed
in the pipelines, a new law for its automatic computation has been
proposed for supporting the operators in the fine tuning of the
algorithm. Thanks to the suggested method, the dead time can be
quickly estimated through quite simple step changes in the
manipulated variable (open loop approach) or even in the setpoint
(closed loop approach). These step changes can be applied
manually by the operator when it is realized that the process
variable behaviour is not satisfactory. Step changes in the setpoint
can also be part of a program which has to be run automatically
when the measured variable is too unstable.

The algorithm works better if a good model of the process is
available, but it works well even if the main lag time is only
roughly estimated. Should the system under control be an integral
process, additional Matausek-Micic feedback should also be
incorporated into the control strategy.

Recently some other modifications of the Smith Predictor
have been proposed (see bibliography).  They are, however, not

focused on algorithm tuning. In these proposed modifications, if
the dead time of the model is wrong, the performance
dramatically decreases (become unstable). On the other hand, the
proposed method in this paper can improve performance in
accommodating a wrong value of the dead time of the model (τm)
due to bad initial tuning or even to changes in the working
conditions in the process (i.e. a change of the flow rate in the
pipelines).
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